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Curvature-induced symmetry breaking
determines elastic surface patterns
Norbert Stoop1, Romain Lagrange1, Denis Terwagne2†, Pedro M. Reis2,3 and Jörn Dunkel1*
Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common
to a wide range of systems and processes such as embryogenesis, tissue di�erentiation and structure formation in
heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity
of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical
models. Here, we report a generalized Swift–Hohenberg theory that describes wrinkling morphology and pattern selection
in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find
quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases.
Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and
microscopic systems. Our approach builds on general di�erential-geometry principles and can thus be extended to arbitrarily
shaped surfaces.

Symmetry breaking and structure formation are intrinsically
linked. Symmetry-breaking transitions encompass a diverse
range of phenomena, from the emergence of large-scale

cosmological structures1 or the formation of sand dunes2 to
crystallization of solids3 and the development of form and
function in living organisms4,5. Theoretical analysis of symmetry
breaking typically builds on effective nonlinear field equations that
describe complex many-particle systems6 by a few macroscopic
field variables. This approach has proved fruitful in identifying
generic aspects of structure formation, as exemplified by the
Ginzburg–Landau theory of phase transitions7 and Turing’s
description of reaction–diffusion patterns8,9. Generally, however, it
is challenging to derive nonlinear field theories systematically10–13
from the underlying microscopic dynamics. Instead, effective
field equations are often inferred from abstract symmetry
considerations and bifurcation theory14, resulting in a large number
of undetermined parameters that limit the predictive power
and complicate comparison with experimental data. Here, we
systematically derive and experimentally test an effective field
theory that predicts quantitatively the surface-pattern selection in
curved bilayer systems consisting of a stiff film on a soft substrate
(Figs 1 and 2).

Buckling of thin films plays a prominent role in the morpho-
genesis of multilayered soft tissues, governing the wrinkling of
skin15, fingerprint formation16 and the development of brain
convolutions17. In addition to their biological relevance, wrinkling
processes under curvature constraints are attracting considerable
interest as promising techniques for nanoscale surface patterning18,
microlens array fabrication19 and adaptive aerodynamic drag
control20. Recent experiments and simulations suggest that
wrinkling patterns may vary strongly with applied stress21–25
and substrate curvature20,26–30. However, so far, the complexity of
the numerically implemented tensor equations has prevented a
detailed analytical understanding. Despite substantial progress

in the theoretical description of planar bilayer membranes31,32,
it is unclear how curvature controls pattern selection in non-
planar geometries.

The scalar field theory presented below solves this longstand-
ing problem by providing detailed quantitative predictions for
curvature- and stress-induced pattern-formation transitions. Start-
ing fromKoiter’s shell theory33, we derive a generalized fourth-order
Swift–Hohenberg (GSH) equation for the normal displacement field
of a film bound to an arbitrarily curved surface (Supplementary
Information). In the case of a spherical geometry, our GSH theory
reveals that curvature triggers a transition from labyrinth-like to
hexagonal wrinkling patterns through a curvature-induced symme-
try breaking in the field equation. The theory further predicts a
coexistence region separating two ‘pure’ phases (Fig. 1a–c). Both
the theoretically predicted surface patterns and the analytically
predicted phase diagram agree quantitatively with data from our
macroscale experiments (Figs 1d–f and 3). The GSH model implies
that analogous transitions occur when the compressive stress in
the film is increased. This prediction is in agreement with recent
microscale experiments28,34 (Fig. 1g–i), suggesting that the theory
is universally applicable to both microscopic and macroscopic
systems. As our derivation of the GSH model builds on general
differential-geometric principles, it can be extended to arbitrarily
shaped surfaces, thus providing a generic framework for future
studies of curvature-controlled wrinkling in physical, biological and
chemical systems.

Theory of thin-film deformation on soft substrates
Our derivation starts from the covariant Koiter shell equations33,
obtained from three-dimensional elasticity theory through an
expansion in the film thickness h→ 0 (Fig. 2). Koiter’s model
expresses the elastic energy of a freestanding curved shell in terms
of deformations of its central surface (Supplementary Information).
Although the Koiter equations have been successfully used in
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) γ0=−0.029,
a=0.00162, c=0.0025; (b) γ0=−0.04, a=−1.26× 10−6, c=0.002; (c) γ0=−0.02, a= 1.49× 10−4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10mm. Parameters: Ef=2,100 kPa, R=20mm, ν=0.5 and (d) Es=230 kPa, h=0.630mm; (e) Es=29 kPa,
h=0.14mm; (f) Es=63 kPa, h=0.10mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress σ , leading to a wrinkling pattern with wavelength λ and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress σ
through the pressure di�erence1p=pe−pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure offers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a stiff film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es�Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ν. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ∇u and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial differential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

∂tu= γ01u−γ212u−au−bu2
−cu3

+Γ1
[
(∇u)2+2u1u

]
+Γ2

[
u(∇u)2+u21u

]
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christoffel symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (γ0, γ2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (Γ1, Γ2) terms account for higher-order
stretching forces. For Γ1 = Γ2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(Γ1, Γ2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h→∞,
allows us to express the coefficients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ν,
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Figure 3 | Phase diagram of wrinkling morphologies. Experimental data
points for hexagonal (blue), bistable (yellow) and labyrinth (red) patterns
are shown for di�erent values of curvature radius R/h=κ−1 and excess film
stressΣe. Symbols indicate the elastic moduli ratio η=3Es/Ef (square,
η=0.019; circle, η=0.036; clubsuit, η=0.041; downtriangle, η=0.055;
diamond, η=0.09; triangle, η=0.328). The data suggest that phase
boundaries are independent of η in the experimentally tested range. Only
the largest vertical error bars are shown (standard deviation of 12 amplitude
measurements; see Methods). Horizontal error bars are smaller than the
symbol size. Solid lines are theoretically predicted phase boundaries,
obtained from equation (3) with parameter c1=0.0188 (Table 1).

effective curvature κ=h/R, Young ratio η = 3Es/Ef, and excess
stress Σe= (σ/σc)−1 (Table 1). The theory contains only a single
fitting parameter, c1, related to the cubic stretching force term cu3.
Equation (1) predicts that the unbuckled solution u=0 is stable for
negative excess stressesΣe<0, whereas wrinkling occurs forΣe≥0.
Linear stability analysis atΣe=0 and κ=0 reproduces the classical37
pattern-wavelength relation for planar wrinkling, λ/h= 2πη−1/3
(Supplementary Information).

Numerical simulation of equation (1) is non-trivial owing to
the metric dependence of the biharmonic operator 12 (ref. 35). To
compute the stationary wrinkling patterns (Fig. 1a–c) predicted
by equation (1), we implemented a C1-continuous finite-element
algorithm specifically designed for covariant fourth-order
problems (Methods). A main benefit of equation (1), however,
is that it enables analytical prediction of the various pattern-
formation regimes.

Pattern selection
Pattern selection in the wrinkling regime Σe ≥ 0 is a nonlinear
process and, therefore, cannot be inferred from linear stability
analysis. Numerical parameter scans of equation (1) yield a variety
of qualitatively different stationary states that can be classified
as representatives of a hexagonal phase (Fig. 1a), labyrinth phase
(Fig. 1c) or intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be understood
through a symmetry argument: the (b,Γ1) terms in equation (1)
break the radial reflection invariance of its solutions under the
transformation u→−u, as also evident from the corresponding
energy functional that is given in Supplementary Equation (37). As
b and Γ1 are controlled by κ=h/R (Table 1), we expect a curvature-
induced symmetry-breaking transition at some critical value of κ .
Furthermore, recalling that the inclusion of similar symmetry-
breaking terms causes a transition from labyrinths to hexagonal

Table 1 | List of parameters for equation (1) in units h= 1, with
η=3Es/Ef, γ 2=1/12, Σe=(σ/σ c)−1 and κ=h/R.

γ0=−
η2/3

6
−

[
2(1+ν)
η2/3

−
1
3

]
κ2

a=
η4/3

12
+

6(1+ν)−η2/3

3
κ2+ã2Σe

b=3(1+ν)κ3

c=
2(1+ν)η2/3

3
c1

Γ1=
1+ν
2
κ

Γ2=
1+ν
2
κ2

ã2=−
η4/3(c+3|γ0|Γ2)

48γ 2
0

The only remaining fitting parameter of the model is c1 .

patterns in the classical Swift–Hohenberg model36, it is plausible to
expect a hexagonal phase at large curvatures κ and labyrinths at
smaller values of κ in our system.

To obtain a quantitative prediction for the phase boundaries,
we approximate equation (1) through a standard Swift–Hohenberg
equation and make use of established results from nonlinear
stability analysis38. Assuming plane-wave solutions with ampli-
tude A and wavevector k, the Γ1 term exerts an average
force Γ1〈(∇u)2+2u1u〉λ=−Γ1A2k2/2 per wavelength λ. One
may therefore approximate the Γ1 term by an effective quadratic
force −Γ1k2u2, and similarly the Γ2 term by an effective cubic
force Γ2k2u3/2 (Supplementary Information). Inserting for k the
most unstable mode, k∗ =

√
|γ0|/(2γ2), equation (1) can be

approximated by the standard Swift–Hohenberg equation

∂tφ=−21φ−12φ−Aφ−Bφ2
−φ3 (2)

where φ = u/u∗, u∗ = |γ0|/
√
(c/3)+Γ2|γ0|, A = 3a/γ 2

0 , and
B=u∗ [(b/3)+2|γ0|Γ1]/γ 2

0 . Nonlinear stability analysis of
equation (2) yields the critical phase transition curves as functions
of A and B (ref. 38). Note that the coefficients in equation (2) can be
directly traced back to geometric and material parameters, whereas
in many other pattern formation processes Swift–Hohenberg-type
equations have been applied only in a purely phenomenological
manner6. In terms of the original system parameters, one finds the
stability criteria (Supplementary Information)

Hexagonal phase: −κ2/(20c21 )<Σe<κ
2/c21

Bistable phase: κ2/c21<Σe<4κ2/c21 (3)

Labyrinth phase: 4κ2/c21<Σe

where the parameter c1 sets the strength of the cubic stretching
force (Table 1). In the bistable coexistence phase, both hexagon and
labyrinth solutions are stable, suggesting a strong dependence on
initial conditions in this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argument and
implies, moreover, that the pattern-formation transitions can be
controlled not only by curvature, but also through the excess
film stress Σe, in agreement with recent experimental results28
(Fig. 1g–i).
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Figure 4 | Bifurcation diagram of wrinkling patterns. Stability analysis of equation (2) predicts two hysteresis cycles, shown here for R/h=40. Solid
(dashed) lines correspond to stable (unstable) amplitude solutions; see equation (4) and Supplementary Information. a, The hysteresis path across the
bistable phase is realized by first decreasing (red) and subsequently increasing (blue) the excess stressΣe. b, Enlarged view of the second
curvature-dependent hysteresis cycle nearΣe=0, corresponding to the highlighted region in a. Starting from a stable unwrinkled solution atΣe<0, the
system switches to a hexagonal state atΣe=0 (blue path). When decreasing the excess stress again to negative values (red), the hexagons remain stable
in the subcritical region until a critical valueΣe=−δΣe is reached. The width δΣe and height δUH of this hysteresis loop depend on curvature κ=h/R; see
equation (4).

Comparison with experiments
We test the theoretical predictions, obtained from equations (1)–(3),
by studying the wrinkling of centimetre-sized polydimethylsiloxane
(PDMS)-coated elastomer hemispheres (Methods). In our experi-
ments, wrinkling is controlled by the swelling of the film during fab-
rication and bymanual depressurization after fabrication (Fig. 2a,c).
The displacement field u, from which the excess film stress Σe can
be estimated through amplitude measurements32, is obtained from
three-dimensional (3D) surface scans (Methods).

The experimental data confirm quantitatively the theoretically
predicted curvature-induced phase transitions from hexagons
to labyrinths (Figs 1 and 3). At high values of curvature
κ=h/R, we find the hexagonal phase, characterized by localized
spherical depressions that are typically surrounded by 6 neighbours
(Fig. 1a,d), although occasional topological defects with 5 or 7
neighbours exist as required by Euler’s polyhedral theorem39. As
predicted by equation (1), experimentally observed hexagons always
buckle inwards. For intermediate values of κ , the experiments
further confirm coexisting domains of hexagonal and labyrinth-like
patterns (Fig. 1b,e). In our simulations of equation (1), we find that
the energy of such hybrid patterns remains constant asymptotically,
suggesting that they are not transient but correspond to local energy
minima. When the curvature is decreased, κ→ 0, at constant
stress Σe, the experimental system transitions into the labyrinth
phase (Fig. 1c,f), characterized by a network of connected ridges and
extended but disconnected valleys (Fig. 1f). Equation (1) shows that
this ridge–valley asymmetry is due to the small but non-vanishing
symmetry-breaking effect of curvature.

Moreover, in agreement with previous microscale experiments28
(Fig. 1g–i), equations (1) and (3) imply that the phase transition
from hexagons to labyrinths can also be triggered by increasing
the excess film stressΣe=(σ/σc)−1 at constant surface curvature.
Themorphological phase diagram constructed fromourmacroscale
data confirms this prediction (Fig. 3). In particular, by fixing just a
single fitting parameter c1= 0.0188± 0.0002, the analytical results
for the two critical curves in equation (3) are in good quantitative
agreement with the experimental data for a wide range of Young
modulus ratios η=3Es/Ef (Fig. 3). Strikingly, we find that the phase
boundaries are independent of η over the range 0.019<η< 0.328
realized in our experiments, suggesting that the parameter c1 may be
a universal numerical constant independent of material properties.

Predictions for future experiments
The good agreement between theory and available experimental
data encourages additional predictions that ought to be tested in

future experiments. The nonlinear stability analysis of equation (2)
suggests that, for sufficiently small overstress Σe, the hexagonal
phase continues to exist even for weakly curved substrates32
with κ� 1 (Fig. 3). Simulations of equation (1) for time-varying
overstress Σe(t) confirm that, owing to the presence of symmetry-
breaking terms for κ 6= 0, hexagonal patterns always appear first
after crossing the wrinkling threshold Σe = 0 from below. Once
the hexagons have been formed, they remain stable throughout
the bistable phase when the film stress is slowly increased. A
similar reverse effect is observed when the film stress is slowly
decreased in simulations that start from the labyrinth phase. In
this case, the labyrinths persist throughout the bistable region.
Equation (1) makes it possible to understand such memory effects
analytically (Fig. 4).

Specifically, the above bifurcation analysis of equations (1)–(3)
predicts two hysteresis cycles. The first cycle relates to the onset of
wrinkling at Σe=0 (Fig. 4b), whereas the second encompasses the
bistable phase (Fig. 4a). The amplitudeUH=maxuH−minuH of the
hexagonal solutions uH grows according to a square-root law, shifted
by the coefficient of the symmetry-breaking term in equation (2)
(Supplementary Information),

UH=
3
5

[
Bu∗+

√
(Bu∗)2+

45Σe

4

]
(4)

where Bu∗'3κ/(4c1) to leading order in κ , with B and u∗ as
defined in equation (2). Equation (4) implies that, for κ > 0, the
hexagonal phase is stable subcritically: on reducing the excess
film stress from the hexagonal phase, hexagons remain stable
even when the film stress is below the critical wrinkling stress σc
(Fig. 4b). The width of the subcritical region, δΣe = κ

2/(20c21 ),
and the amplitude at onset, δUH=UH(Σe=0)=9κ/(10c1), scale
with κ . The bifurcation atΣe=0 is transcritical, corresponding to a
Lifshitz point38. Such bifurcations are typical of Swift–Hohenberg-
type models, and have been predicted and observed in optics40 and
nonlinear biological and chemical systems41. For values of Σe in
the subcritical hysteresis region, the hexagonal and the flat state
are simultaneously stable in a narrow parameter range, potentially
allowing for localized hexagonal patterns as found for the standard
Swift–Hohenberg equation42,43.

The detailed analysis of the second hysteresis cycle (Fig. 4a)
shows that the amplitude UL of the labyrinth solutions follows a
square-root law (Supplementary Information). Starting from the
labyrinth phase, the system remains in a labyrinth state when the
film stress is lowered across the bistable region until one reaches the
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instability threshold, located at Σe≈ 1.75 in the depicted example
with R/h= 40 (red path in Fig. 4a). At that point, the system
transitions into a hexagonal state. AsΣe is increased again, the film
maintains the hexagonal configuration until the stress exceeds the
upper instability thresholdΣe≈7.5 (blue path in Fig. 4a).

The direct verification of the twopredicted hysteresis cycles poses
a substantial experimental challenge, requiring high accuracy in the
amplitude measurements and precise reversible tuningmechanisms
for the excess film stressΣe. For instance, the large stress variations
needed to trace out the hysteresis loops with a single sample
cannot be realized with the present depressurization set-up20. Some
preliminary experimental support for the hysteresis predictions
comes from a recent study32 of low-stress films, which pointed out
the frequent appearance of hexagonal patterns when the excess
stress is slowly varied from negative to positive values (see also
Fig. 1g–i). These findings are consistent with the results of the above
bifurcation analysis (Fig. 4a). We hope that our detailed theoretical
predictions will stimulate further experimental work.

In closing, we showed that a systematically derived effective
field theory provides a comprehensive quantitative description of
surface-pattern formation in non-planar elastic media (see Sup-
plementary Fig. 2 for additional examples with spatially varying
curvature). The observation of similar pattern transitions in systems
ranging from a few micrometres26,28,34 to several centimetres20,27,
combined with the fact that curvature-induced pattern selection
can now be understood in terms of a symmetry breaking in the
effective field equations, suggests that such processes form common
universality classes. The generic differential-geometric framework
developed here enables a systematic classification of wrinkling
phenomena in complex geometries, by examining the symmetry
properties of effective higher-order differential operators built from
the surface metric and film–substrate coupling forces. Moreover,
equation (1) and its generalization to arbitrary shapes (Supple-
mentary Information) provide a basis for studying weakly time-
dependent phenomena such as the nucleation of wrinkling patterns
under adiabatic (slow) increase of stress. Thus, in practice, the above
analytical approach can help us to predict and control wrinkling
processes under natural conditions, promising improved microfab-
rication techniques and, perhaps, even a better understanding of
tissue mechanics and developmental morphogenesis.

Methods
Algorithm. The fourth-order covariant derivatives in the metric-dependent
biharmonic operator 12 make it challenging to solve equation (1) numerically.
We simulate equation (1) by employing an extension of the finite-element
scheme, based on subdivision surface basis functions. Previous studies44,45 show
that this method yields high accuracy and excellent performance for related
problems in nonlinear elasticity. The underlying algorithm ensures the
C1-continuity of the basis functions, as required for the numerical integration of
fourth-order equations. The method also allows for a direct computation of the
various covariant derivatives. As in standard finite-element algorithms, we
discretize the spherical surface with a mesh consisting of up to 50,000 triangular
elements. A solution coefficient ui is assigned to each of the i=1, . . . ,N triangle
vertices, such that the system state is interpolated by u(r)=

∑N
i=1 uiNi(r), where

the Ni terms are the finite-element basis functions. For each time step [t , t+1t],
we solve the weak form of equation (1) as a sum over individual element-wise
contributions. Starting from random initial conditions with ‖ui‖

2<1−a, we
integrate the dynamics of the system in time using a standard explicit Euler
scheme, to obtain the system state {ui} at time t+1t . We determine steady-state
solutions by continuously monitoring the associated free energy. We consider the
system to be in a steady state if its relative change remains below 10−5 for more
than 10,000 successive time steps.

Experiments. Hemispherical samples were fabricated using rapid digital
prototyping techniques that allow flexibility in the choice of geometrical and
material parameters20. Samples were casted and coated using silicone-based
elastomers, such as PDMS (Sylgard 184, Dow Corning), Ecoflex (Smooth-on) and
vinylpolysiloxane (VPS, Zhermack), allowing us to examine a wide range of
elastic moduli for film (Ef) and substrate (Es), spanning 9≤Ef/Es≤162. Typical
sample parameters are: outer radius R=20 mm, radius of the inner cavity 9mm,

and film thickness 20µm≤h≤1,000µm. The inner cavity of the samples was
depressurized to create a state of homogeneous compression and to trigger
wrinkling of the stiff surface film. Surface profiles were measured using a
NextEngine 3D Laser scanner. The excess film stress Σe was estimated from
the pattern amplitude A determined in the 3D surface scans, using the
established amplitude versus stress relations A=k

√
Σe from classical

wrinkling theory32, with k=1 for labyrinths and k=2/
√
11+6ν−5ν2 for

hexagonal patterns.
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