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7. STRUCTURAL STABILITY

7.1. General rudiments for the stability analysis

In stability analyses traditionally, the equilibrium equations of the structure considered
will be written in its deformed configuration. This means that the influence of the
deformation has to be taken into account in the equilibrium conditions. We call it
geometrical non-linearity. Let’s consider at first the Green-Lagrange’s general non-
linear expressions of strain components in the Cartesian co-ordinate system x, Yy, z

with unit vectors i,j,k in accordance with the definitions given in equations (1.3),
(1.5), (1.8), (1.11)
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If we introduce for the linear parts of strains the notations
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and apply still the rotation components, defined by (1.17)
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all the strain components, ¢, for example, can be expressed by using the linear strains
and rotations in the form
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And the shear strain y,, correspondingly
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Thus, we see that the non-linear parts of the strains can be expressed by the linear
strain and rotation components only. Correspondingly, the rest of strain components
can be derived similarly, resulting finally in the form
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In stability analyses, the strain components e,,e,,€,,€,,,€,,,€, are assumed to be
small as compared to rotation components @,,w,,®, . Thus, in non-linear terms the

quadratic terms of rotations only will be included in the analysis. The quadratic terms
of strains and the terms of ‘rotation times strain’ are dropped, yielding for strains the

expressions
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7.2.Flexural Buckling of a straight plane beam

We consider now a column, in which the axial co-ordinate x coincides with the column
axis, i.e. goes through the centroid of each cross-section plane. Co-ordinates y and z are
the principal axes of the cross-section. Central axial forces load the column at the
initial state, only — neither bending, nor torsion exists. In buckling analyses, these loads
are compressive. When defining the kinematics for the analysis, an additional degree
of freedom to the initial state has to be adopted. This will lead to the homogeneous
system of equations with respect to this additional degree of freedom, of which the
critical load, as a solution of an eigenvalue problem will be determined. The
kinematics adopted for a straight plane beam including in addition to compression
(stretching) also bending, in accordance with the Euler-Bernoulli beam theory is

u:(u—y%)i+vj (7.8)
dx

in which u=u(x) and v=v(x) are the displacement components in x- and y-direction,

and the rotation of each normal follows the slope of the beam axis. Calculating now the
strains, using (7.2) and (7.3), gives just two non-zero components, while
e, =€, =6y =€,=¢€,=0,=0,=0
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In the continuation to simplify the notations, a prime (-)" will be used for different-
iation with respect to the axial co-ordinate x. The non-zero strain components are
g =€, +1(0?+w2)=u— W +1(V)?
o 2h 2 (7.10)
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At the initial loading state, consisting only of axial compression, the normal stress is
oy =N°/ A, while all the other stress components are zero.
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Figure 1. Strain energy by the Euler method.

The procedure we apply follows the linearised theory, called also Euler method (see
Figure 1), presented for example by Novozhilov’s and Washizu’s famous text-books
according to which the incremental strain energy of the beam is

U=U°+U"= I (opey +%U:6‘X +%G;gy)dv
v
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Here, 0'3 =0. This can further be split to give

(7.11)
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The last term can be neglected because incorporating the linear elastic material model

into it gives higher (third) order terms of displacement functions. The equation can be
written in the form



in which the first term, U, , is the traditional strain energy expression due to linearized
strains and the two following ones, U, and U, , take into account both the non-

linear terms of strain components and the initial stresses.

When we take into account the linearly elastic material law in (7.12)
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the strain energy takes the form
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in which
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Here, we have split the volume integral to be evaluated separately over the cross-

section, and along the axis of the column, and taken into account that
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The potential due to the external loads at the initial stage, the distributed axial load

pg(x) and the concentrated loads at the ends of the column P?, is
L L
_ 0 _ 0
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Now, the total potential energy is composed of terms

H:U +V :UL +UNL1+UNL2 +V

If we consider at first the term
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and find for the stationary value of it. By taking the first variation it is obtained
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While N°(x) =o¢ A, integrating the first term by parts gives
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which results in the equilibrium equation of the initial state with boundary conditions
dN°

dx
N®=P? orsu=0 atx=0and x=L

+py (X) =0, (7.23)

This part of equation considers the initial state of the column, and it disappears when
the initial state is in equilibrium.

So, we have still the expression
L L
M=U, +Uy, =%j( (EAU")? + EI (v”)z)dx+%j( N°(v')2)dx (7.24)
0 0
Taking here the first variation gives
L
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and integrating by parts finally
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Since 6u and Sv are arbitrary, we get as a result the system of homogeneous
differential equations



(EAU) =0

. (7.27)
(EN") =(N%) =0
with the boundary conditions
EAU'=N=0 or 6u=0
ElvV'=M, =0 or o6Vv'=0 (7.28)

(ENV)-N°V'=Q, =0 or &v=0

The first one of the equations (7.27) likewise of boundary conditions (7.28) concerns
only the initial state of the beam and is thus meaningless. If the cross section of the
beam is constant, and we have at the ends as a load a compressive force only, i.e.

N° =—P, the equation simplifies to the well-known form
ElV""+PVv" =0 (7.29)

which is the homogeneous ordinary differential equation to define the critical
compressive load of a beam. Its general solution is

v(Xx) =C; sinkx+C, coskx+C3x+C, (7.30)

where k> =P/El. A homogeneous system of equations will be obtained by applying
the relevant boundary conditions at the ends of the column.

An alternative formulation for the differential equation (7.27) with boundary

conditions (7.28) can be obtained directly by applying the energy integral formulation
(7.24), which simplifies among the kinematically admissible functions v(x) to the

minimization problem of the functional

I =%i( El(v")2 + N°(v')2)dx (7.31)

When considering a column in three-dimensional space where the buckling can take
place in any one of the directions of the principal axes, the differential equation system
(7.27) will be provided with an additional equation

(EAu’) =0
(E1v) ~(Nov) =0 (7.32)

(Elyw")" —(N°w')' ~0

with szdA = |, and corresponding additional boundary conditions
A



EAU'=N =0 or ou=0
El,v'=M, =0 or ov'=0
El,w'=M, =0 or ow=0 (7.33)

(EI,V"Y=N%'=Q,=0 or 6v=0
(El,w")-N°w'=Q,=0 or éw=0

The minimization problem takes the form

L
1= (B0 Bl W)+ NO()? + (1)) o (7.3)
24
Here, both v(x) and w(x) have to fulfil the requirements due to kinematics.

Illustrative example. Let’s consider a beam which is fixed at both ends, and loaded by
a centric compressive load P at each end. The length of the beam is L and the bending
stiffness EIl. We establish the origin of the global coordinate system at the mid-span of
the beam so, that it is moving with the deflection of the beam. The homogeneous
boundary conditions are thus

v(0) =0
V'(0) =0

Q(0) = —EI"(0) =0
V(£L/2)=0

From the conditions v'(0) = Q(0) =0, the coefficients of the antisymmetric functions,
i.e. C; =C5=0. And, from the condition v(0)=0 = C, +C, =0. Then, we end up in
the condition v'(£L/2) =0 giving

2 2
Czsin(k—L):O = k—LGn:> P:—4n 7°El
2 2 L2

If we consider instead, a beam with simply supported ends, the final condition will be
replaced by v"'(+L/2) =0 yielding

KL KL nz n?72El 72El
C,co8(—)=0» —=—— = P=— """ =P . ="—
2 (2) > = o o=

7.3.Torsional buckling of a straight beam

Torsional buckling is characteristic for the behaviour of beams with thin-walled cross-
section. In the torsional buckling, a beam loaded at the initial stage by an axial load
only, buckles through mechanisms of torsion and bending, Figure 2. We consider a
thin-walled beam, in which the axial co-ordinate x coincides with the beam axis, i.e.



goes through the centroid of each cross-section plane. The loading at the initial state
consists of centric compression (stretching). Co-ordinates y and z are the principal axes

Torsional buckling

Figure 2. Torsional buckling of a column

of the cross-section. As an additional degree of freedom, the two deflections (y- and z-
directions) and torsion, including the effects of both Saint-Venant’s torsion and of
Vlasov’s warping (sectorial) torsion, is adopted. The kinematics will be defined for the
displacement vector of the centre-line of the wall in the cross-section, denoted by u, .

For a straight beam in stretching, bending and torsion the kinematics is defined by
U= (U=W'—2W ~@g)i+(V—(2-2,)4)j+(W+(y -y, )$)Kk (7.35)

in which u=u(x), v=v(x), w=w(x) and ¢ = ¢(x) are the three translation
components in the directions of the co-ordinate axes, and the angle of twist, and @ is
the sectorial co-ordinate. Co-ordinates (y,,z,) define the location of the shear centre
of the cross-section. Calculating now the strain and rotation components by applying
(7.2) and (7.3) gives, e, =e, =e,, =0 and

AV



Figure 3. Thin-walled cross-section.
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Substituting these into the expressions of strains gives

£ =U — W' —2W — g + L[~ —(y—y, )¢ + L[V~ (2-2,)¢]
&y :%[[v’—(z—zv)¢’]2+¢ }

& =%[[—W'—(Y—YV)¢']Z+¢2} (7.37)
i <[+ (- 98]0

Wy )Y - 2,06
Vo =[V'+(2-12,)¢']¢

The linear strain components e,, =e,, =0, according to the assumptions of the

vanishing shear strain components in the warping torsion theory by Vlasov. It can be
seen directly of the definition (3.68) of the sectorial co-ordinate

do=—(z-z,)dy+(y-y,)dz
of which we get

oo
oy
o

= _(Z - Zv)

52 (y_yv)



However, these shear strain components do not vanish outside the mid surface of each
wall of the cross-section. Thus, the displacement vector defined for the mid surface u,,

(7.35) has to be provided with a component covering the material points outside it. The
additional component in the axial direction applies the Euler-Bernoulli beam theory (or
Kirchhoff’s plate theory), while on the cross-section plane, the rotation of the whole
cross-section defines the tangential displacement to the mid surface. In the direction of
the thickness of the wall, the wall is assumed to be incompressible. The displacement
vector is thus

s
U= U, — NV, —Nge

where n is the normal co-ordinate to the mid surface of the wall (see Figure 3), and v,,
the displacement in this direction, i.e.

vy =—(V—(z2-2,)d)sina + (W (y - ¥, )¢) cosx

Inserting this into the definitions of strains gives additional components

ou . ,

SX:&‘|:—nVn
ou ou . ov;,
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V'xs x ¢ os (¢ 58)

The first one is connected to the flexure of each plate locally, and will be dropped out,
while the second one is meaningful, leading to Saint-Venant’s torsion rigidity of the
cross-section. Substituting v,, into it gives

, oz ,, . oy
=—ng'—n| —=¢'sina +—=
Vxs ¢ (58¢ 55

¢’cosaj
= —n¢' —n(¢'sin? & + ¢’ cos? &) = —2ng’

To combine the shear strain terms, we transform the global shear components
¥xy @nd y,in (7.37) onto the components y,s and y,, . The transformation is derived

when taking into account the transformation between the co-ordinate systems y,z and
s,n, derived in example 2 (Chapter 4, page 29)
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and y,, correspondingly, yielding
Yxs =Vxy COSa+ 7 SiN

Yx =—Vxy SiNa + 7y, COScx

we get the final expressions of strains

£ =U— W —2W — g + 1 [-W ~ (y -y )¢ +1[V - (2-2,)¢T
gy :%[[v'—(z—z\,)gzﬁ']2 +¢2}

& =3[[W-(- 0T + 4]
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(7.38)

At the initial loading state, consisting only of centric axial compression, the normal
stress is oy = N°/ A, while all the other stress components are zero. Following the
same procedure as before, the incremental strain energy of the beam takes the form

_ 0 1> 1> 1= 1..* 1> 1..*
U —j (oxéx T50xEx T50yEy 50,8, 5 TxsVxs T 5Tyl yz +§Txn7xn)dv
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(7.39)
When we take into account the linearly elastic material law

* ! 14 " 4 ! ’ 2 ’ ’ 2
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this will be
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This is a sum of three parts as

U :UL +UNL1+UNL2

with taking into account that % = N°/ A, when

UL :%J' E(U,_yV”—ZW”—CO¢”)2dV +%J.G(2n¢r)2dv
v Vv

1

0

Uy, :I oy (U — W' —z2W' — wg")dV :T(Nou')dx
v 0
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L
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0

Here in addition to (7.17), the notations

[2dA=0, [2%dA=1,, [wdA=0, [w’dA=1,, [4n*dA=1,
A A A A A

are used, and r? =(ly+1,)/ A+ y2 +122.

The potential due to the external loads in the axial direction is
L L
__[no [ po
V= J;px(x)udx [PX u}o

Now, the total potential energy is composed of terms

H:U +V :UL +UNL1+UNL2 +V

If we consider at first the part

L
:EI( EA(U')? + El, (v')® +El, (W) + El,, (¢") + Gl (¢)* Jix

(7.41)
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Uny +V = T( N°u’)dx—T pf(’(x)udx—[Pxou}; (7.47)
0 0

It is exactly the same as in the case of pure flexural buckling, and disappears when the
initial structure is in equilibrium fulfilling the equation of equilibrium with boundary
conditions

dN®
T pe(x)=0,

(7.48)
N°=P2 orsu=0 atx=0and x=L

This part of equation disappears when the beam in the initial state is in equilibrium.

So, we have still the equation

M=U, +Uy, :% | EAW)? + E1(v") + El, (W)? +El,(4") + Gl (¢)° Jix

O t—r

(7.49)
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+
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Taking at first the first variation of the first term U results in
L
oU, = J[(EAu'&u’ +EI,V'oV" + El W'oW" + El ,¢"6¢" + Glt¢’5¢']dx (7.50)
0
and integrating this by parts gives

L
UL =—[| (EAU)Su—(ElV")"sv—(El, W) sw—((El ,4")" - (Gl¢")) 3¢ fdx
0

+[EAu'§u +EIL V"6V = (EILV")'ov+ElyW'ow — (El,W") 6w + (7.51)

" i AV ' =L
+El,¢"0¢" - (El ,0") 64 +Gl,¢ §¢]§:0
The first variation of the second term Uy, in (7.49) is

L
SUny, = J'[ N° (W’éw' +V'OV' =y, (W@ +¢'oW) + 2, (V'Op'+ ¢'oV') + r2¢'5¢'ﬂdx
0
(7.52)
which takes after integrating by parts the form



SUy, = —IJ:[((N W) =¥, (N°¢) ) ow+((N°V) +2, (N | ov
0
~(vo(N°wy - zv(Nov’)’—(N°r2¢')')§¢}dx (7.53)

+N° [(W' —yy@)ow+ (V' +z,4)ov— (YW —z,V' — r2¢’)5¢}

X=
x=0
Combining finally (7.51) and (7.53) results in a homogeneous system of ordinary

differential equations with boundary conditions, which are obtained since
ou, oV, ow and o¢ are arbitrary. We get

(EAU’) =0
(E1V) = (NV) =2, (N°§) =0

7.54
(EIyW”)"—(NOW')"FyV(NO¢’)':0 ( )
(El,g") = (Gl) + Y, (N°W) = 2,(NV') = (N°') =0
with corresponding boundary conditions

EAU'=N=0 or ou=0
—El,v' =M, =0 or ov'=0
—-El,w"=M =0 or ow'=0

—-El _¢"=B=0 or o¢'=0 (7.55)

—(EI,V")+N°(V'+2,4)=Q, =0 or &v=0
—(El,wW")'+N°(W - y,¢)=Q, =0 or  5w=0
—(El,¢")' +Glg' = N°(y,W —z,V' - r2¢') = M,+M;=0 or 6¢$=0
at each end of the beam. The first equation of (7.54) and (7.55) describe the initial state

and are not of interest in this context. If the cross section of the beam is not changing in
the axial direction of the beam, and we have at the ends as a load a compressive force

only, i.e. N° =—P, the system of equations simplifies to the well-known form
El,vV""+PV'+2,P¢"=0
El W+ Pw"—y,Pg"=0 (7.56)
El ¢" —Glg"— y,PW' +2,PV" + r?Pg" = 0

which is the homogeneous system of equations to define the critical compressive load
of the beam.

An alternative formulation for the differential equation (7.54) with boundary
conditions (7.55) can be obtained directly of the energy integral formulation (7.49),
which simplifies to the minimization problem of the functional



L
= %j[az (V") + Ely (W) + El, (#")% + Gl () [ox
0 (7.57)

L
+%£ v’ [(W')Z +(V)? - 2y,Wg'+ 22,V + r2(¢')2}dx

7.4.Combined flexural and torsional buckling

The beam considered in this context is loaded at the initial state by an eccentric
compressive load yielding two mutually equal bending moments at each end of the
beam. Thus, the bending moment distributions over the beam length are constant. The
loading at the initial state is a combination of axial force and bending. For stability
analysis, the additional degree of freedom is then torsion. The initial normal stress
distribution takes the form

Pe 0
xSy B, (7.58)
, Iy A, Iy

)
0 NO+M§ +MYZZP_XO

O
A

All the other initial stress components disappear. The latter part of the presentation
(7.58) concerns the eccentric axial load, in which co-ordinates e, e, define its location

on the cross-section plane. The consideration deviates from the one of the previous
section only in the terms Uy and Uy in (7.43) through the initial normal stress
distribution o, and in V in (7.45), in which the end moments have to be included. The
terms in (7.43) will get supplements AUy and AUy,

! 4 " 14 MO MO ! 4 " 14
AU, :J. op (U — W' — 2w — wg")dV :I (I—Zy+|—yz)(u —W'—zw" — w¢")dV
v v o2z y

= JIZ( -MV'-M gw”)dx
0

My, = [ o8| [-w= (- +[v-@-2)¢ T |av
\Y

o M
=%f [ M y+—VZ)[[—w'— Y-y )P +[v'—(z- zv)¢']2ﬂdv (7.59)
Y

L, 7
=T[MS(w’¢'+ﬁy(¢'>2)—M;’(v'¢'—ﬁz #)?) ox
0

Here, we have utilised the definitions



j yaodA =0, j Z0dA =0 (7.60)
A A

In these equations, the notations S, and 3, i.e. Wagner’s coefficients,

1
By = [ vty +2%)dA-y,
ZA

(7.61)
_ 1 2, 2\qA
L, =—|2(y"+2°)dA-z,
21y
are used. The potential of the external load V in (7.45) takes a supplement AV
L
AV = —[Pxoeyv’ + Pxoezw'}0 (7.62)

Evaluating the sum Uy, +AUy, +V +AV and taking the first variation of it gives

L L
SUp, +AUy, +V +AV) = j( N°Su'—M2sv" — M §5w")dx - [ 2 (x)5udx
0 0

-P? [5u +eyoV'+ ez6w'];

(7.63)
and integrating by parts
L " n
SUpy, +AUy, +V +AV) =_j{( (NOY + pg(x))éu +(|v|§’) 5v+(|v|§) 5W}dx
0 (7.64)

L
+[(N° —R2)SU+ (M2 — P, )V — (M2)5v+(MS - POe,) 5w — (M ;’)'5w}0

results in the equilibrium equations of the beam at the initial state with corresponding
boundary conditions

0 210 d?m©
dx dx dx
(7.65)
N° =P or su=0
M7 =Ple, or 6v'=0
My =Ple, or éw=0 atx=0and x=L

(M7)'=Q, =0 or 6v=0
(MJ)'=Q, =0 or sw=0

Taking the variation of the term AU gives



L
S(AUy,) = J[M CPSW —M g5V’ +(|v| oW —MOV +2(B,M + M §)¢')5¢’}dx
0

(7.66)
This will be reformulated after integrating by parts as

L
5(AUNL,) =] (M2g) ow—(MJg) ov-+
0

+((MowY —(M§v)y +28, (Mg +25,(M§g) ) 3¢ |dx  (7.67)
+[|v| 0P SW—MOFSV +28,M2g54+28,M §¢'5¢}X:

x=0
Combining this finally with (7.51) and (7.53) gives the homogeneous system of ordinary
differential equations with boundary conditions describing the flexural-torsional buckling

(EAU') =0
(ELV') = (NV) =2, (N°) +(M{) =0
(Elyw)" = (NW)'+y, (N°¢)' = (M7¢)' =0 (7.68)

(El,8") —(Glg) +yy (N°W) = 2, (NOV) —r? ( N°¢')'
—(MW)' +(MyV') =28, (M7¢) -2,(Myg') =0

and boundary conditions

EAU'=N =0 or Su=0

—El,V'=M, =0 or ov'=0

—El,w'=M, =0 or ow'=0

—El,¢"=B=0 or  84'=0

—(ELV"Y +N°(V'+2,4)-Myg'=Q, =0 or 6v=0 (7.69)

—(EL,W")' +N°(W - y,¢') +M7¢'=Q, =0 or 6w=0
—(El ,¢")' +Glyg' = N°(y,W — z,V' —r?¢") +
F2B,M0F +2B,M% =M, +M =0 or Sp=0

When keeping in the mind, that initial bending moment distributions M? and M;’ are
constant with respect to the axial co-ordinate, the system (7.68) simplifies to the form



(EAU') =0
(EIZVN)”_ (N Ovr)r_ ZV(N 0¢r)r+ M )(/)¢0 — 0
(E1Lyw'Y = (N°W) + ¥, (N°¢) =M 3¢ =0 (7.70)

"

(El,g") = (Glig) + yy (N°w) =z, (N°V) = (N°)
~Mw" + M?v"—Z,ByM?W—ZﬂZM)%” =0
The energy method formulation will be obtained again by combining the equations

(7.57) and (7.59). This results in the minimising problem: Find the minimum for the
functional

1L 14 " " !
H=§£[Elz(v )2+ Ely (W) + El, (¢")% + Gl () [ox
1 0 ! ’ »y 1 ’
2 N LW)? (V)7 -2y, W'+ 22,0'6'+ 12(¢)? [ (7.72)

T
0
L
[ M2 (wg gy (@)7)- M5 (v - (82

0

among kinematically admissible functions v(x), w(x), #(x) . This formulation will yield
an approximate solution for the problem of flexural-torsional buckling.

7.5. Lateral buckling

Lateral buckling is a phenomenon, in which a beam, loaded by an arbitrary bending
including transverse distributed or concentrated loads along the beam axis, buckles by
torsion and transverse deflection, Figure 4. In a more general case, also axial loads can
be present. The problem of non-distortional lateral buckling of a straight beam with a
thin-walled cross-section is investigated. The same principle as above is applied in
deriving the equilibrium equations.

At the initial state, the external loading yields in the beam the normal stress distribution
oy, and shear stress distribution 2, . The consideration deviates from that of the
flexural-torsional buckling problem in shear stresses and in corresponding shear force
resultants Qy,Q; . The additional shear stresses bring to the analysis additional terms
into the expressions of Uy, , and also in V. The initial shear stress distribution is of the
form

o QS0 _Q85,@) 772
It It




L ateral buckling

Figure 4. Lateral buckling of a beam

Here, S,(y) and S, (z) are the first moments of the cross-section, and are defined by

s,0= [ YA S,@)= [ «s)dA, (7.73)
A(y) A(2)
At first, V takes the form

L
_ oL
V= —g[ px (U + py (X)V + p?(x)w} dx—[Pxou + PV +PPW+ MoV + M jw }0 (7.74)

Here to avoid confusion, the notations M7 and My are used for external bending
moments at the ends of the beam. This as combined with U NL, in (7.43) and (7.59)

takes the form
L L
SUp, +V) = j( NoSu' — MoV — M §5w")dx —J.[ px (X)SU + py (X)6V + p?(x)&w] dx
0 0

_ _ L
- R2SU+ PYSV+ PPSW+ M 26V + M §5W'}0
(7.75)

Performing the integration by parts results in



SWUn, +V) =—T[( (N + P () u+((M2)"+ P30 ov+((M§)"+ pS () sw o
0

+[ (N°=B)Su+ (M ~M2)ov' — (M)~ P)v

_ L
H(MS-MO)sw — (M) - Pf)&w}o

(7.76)
Disappearance of this leads to the equilibrium equations and boundary conditions of
the initial state

N© d2m? d*m?
L p2(0=0, ¥+ () =0,
dx X2
(7.77)
N° =P? or su=0
M?=M? or 6v'=0
M§=M§ or oW =0 atx=0and x=L

(M7)=Q, =Py or 6v=0

(My)=Q, =P, or sw=0

The stability analysis is based again on the term U_+U,_ of which U has no change

as compared to the corresponding one derived in the case of torsional buckling in
(7.50). Instead, the latter term U, will take an additional component due to the shear

stresses at the initial configuration

AUy, = [rssdV jrxs {[W+(y= )¢ ]gcosa—[v'—(z—2,)¢ |¢sinadv
\'%

I{st () Q8,(2)

T ]{[W'+ (y-yy)¢'|gcosa—[V = (z—z,)¢'] #sin a}dV

(7.78)

\Y

in which )/)'(\;L is the non-linear part of strain component defined in (7.38). Inserting

(7.72) into (7.78) requires certain integrals to be calculated over the cross-sectional
area of the beam. These integrals are of the type

jS (2)sing dA= [sy(z)tz]z—jzszz—ly (7.79)
Wids s A

and further,



[S,(y)cosadA=—
A
/{Sz(y)sin adA= £Sy(Z)COSadA= l, =0

[S,(z)zsinadA=—-]17%A
A A

jSz(y)yCOSadA:—j%y3dA (7.80)
A A
[S,(z)ycosadA=— j%zy
A A
[S,(y)zsinadA=—[1yz*dA
A A
Thus (7.78) takes the form
L L
AUy, =[Q) (8,49 +we)dx+ Q7 (B ~v'9)dx (7.81)
with g, and g, defined in (7.61). Taking the variation of (7.81) gives
L
S(AUy,) = [ Q) ( By@'Sp+ B, g9 +WSp+pow' ) dx
0
] (7.82)
+ (I) Q) (8,459 + B,45¢' —V'5¢ — goV') dx
and integration by parts yields further
5(AU,) =] (ﬂy P36 + QYW — (Q54) 5w dx
L
+1(B.P2gop —Qov'ap-+ (QPg) v ox (7.83)

+ (5,08 + 5021909 + Qgow+ Q2gov |

Combining this now with (7.51), (7.53) and (7.67) results in a homogeneous ordinary
differential equation system

(EAU")' =0

(E1,V")" = (N°V') =2, (N°¢) + (MJg)" =0

(Elyw")" = (N°W) +y,(N°g") = (M{g)" =0

(E1,8")" = (Gli#) +y, (N°W) =2, (N°V') = r?(N°gy
—MOW + MV =28, (MJ§) = 2,(MJ¢') +
+ B, Pyd+ B, p9=0

(7.84)



with the boundary conditions

EAU'=N=0 or du=0

-El,v'=M, =0 or ov'=0

—-El,w'=M =0 or ow'=0

-El ¢"=B=0 or o¢'=0

—(EIV") +N°(V'+2,4) - (Myg) =Q, =0 or 5v=0 (7.85)

—(El,w")"+ NO(W —y,4)+(M7g) =Q, =0 or Sw=0
—(E|w¢")'+G|t¢'— NO(yVW’_ ZVV'— r2¢;)+
+M7 (W +28,¢")-MJ (V' -21,4) +
+QyByp+Q7Bp =M, + M, =0 or 5p=0

the first ones of equations (7.84) and (7.85) concern the initial state only, and are

consequently meaningless in the stability analysis. When deriving system (7.84), the
facts

(M7)'=Qy (My)'=Q7
(Qy) =-py Q) =-p;

have been utilised. The energy principle formulation can be built up by combining the
integrals (7.57), (7.59) and (7.81) to give

i :%I[E'Z(V")z +EL (W) +EL () + Gl (#)? Jix
+%T N® [(W')Z +(V)? =2y, W' +2z,V'¢ + r2(¢')2}dx

S (7.86)
+I[M?(W'¢'+ﬂy(¢')2)—M;(V'¢'—ﬁ’z(¢’)2)}dx

0

5 L
+J.Q>(/) (ﬁy¢¢'+W'¢)dX+J‘Q§’ (ﬂz¢¢’—v'¢)dx

0 0

The two last lines can still be combined, when the final expression for the total
potential energy to be minimised is



l L " " " r
szi[Elz(v )2 +El, (W")? +El, (¢ )2+G|t(¢)2}dx
+% N© [(w’)2 + (V)2 =2y, W' + 22V + r2(¢’)2}dx (7.87)

—+

[((M %)W + B, (M ?¢)'¢') —((M SOV~ B, (M §,’¢)’¢')}dx

Ot—r O—a

In pure lateral buckling without the compressive axial load, these equations will
obviously be simpler.

In final equations (7.84) and (7.87), the position of the external load in y- and z-co-
ordinate directions has no role. It is however obvious and easy to understand that this
position plays an important role in the lateral buckling phenomenon. Taking this into
account means actually a step outside the traditional one-dimensional beam theory,
towards two- or three-dimensional analysis. It can be done by improving the
kinematics due to the rigid body rotation, to include also the second order terms — to
correspond to the second order theory used elsewhere. By considering Figure 5, we can
deduce more generally the co-ordinates of a point A when undergoing rigid body
rotation. A simple calculation gives

7 -1z, =r(cos(0—¢)—cosb)
=r(cosdcos ¢ +singsin ¢ —cosd)

=r(cosO(Ll-1¢* +O(4*)-1) +sin0(p + O (4°)) (7.88)
~rcosf(-3¢%) +rsind(¢) =—3(2-2,)¢° + (Y- y,)¢
and correspondingly
Y-y, =r(sin(@—¢)—sing)
=r(sin@cos¢—cosdsing—sin g
(7.89)

=r(sin01-1¢° + (") -1)—cosO(g+ O(4°))
~rsinf(-1¢%)—rcos(g) =—1(y-y,)4° —(2-2,)¢
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Figure 5. Rotation of a fiber

Adopting these in the definition of the kinematics applied yields the displacement
vector

Uo = U=y —2w ~0f)i+(v=(2-2,)¢-3 (= )¢’

(7.90)
+(wr (- w)e-2z-2)¢ )k

The additional underlined terms in (7.90) will produce terms of same order in the shear
strains only. They are denoted by a superscript ()", and are

V;y = 2exy =-2(y -y, )99’

. (7.91)
Yox =285 =—2(2—2,)p¢’

These can be combined into the shear in the mid plane of each wall of the cross-section

*

Vxs =—[(y=Y)cosa+(z-z,)sina]g¢’ (7.92)

This shear strain component results in an additional term in U, which includes
exceptionally terms of second order in /7.

AUy, = j 0y sdV = — j 75 {[(Y = V) cosa +(z-2,)sina]¢¢'jdV

v v
0 0 (7.93)
- j[leszt(y) W Isyt(z)]{[(y yy)cosa +(z—z,)sina]dp’}dv
vl 'z y



Comparing this with the expression of AU in (7.78) shows that (7.93) is a part of

the former provided with an opposite sign and cancels it. This can be verified further
by evaluating (7.93) to give

L

AU, =-[(Q) B, +Q25, ) dg'dx (7.94)

0

Taking the first variation an integrating by parts yields

L
S(AURL) =-[(Q) B, + QP8 ) (909" + ¢'5p)dx

0
= (2, @20y ~Q2) + 1, ((Q2Y ~Q29) g ~[ (,Q5 + £,Q¥ o |
L
0
- —T(ﬂy B + 5, n2 ) g (5,05 + ,Q2)9% | (7.95)

0

Now, it is easy to see the cancelling terms both in the integral and boundary terms as
compared to the underlined terms in (7.83). The potential of the external loads will
include also additional terms due to the improved kinematics taking the expression

L 0 0]
V== p§ (v=(y, - %)A—c05))+ p§ (W—(z, —2,)(1- cos ) ) ix
f (7.96)
=[] B (v=3(y, - Y)9%)+ pS (W= (z, - 2,)¢°) Jix
0
The part complementing this, denoted again by star, is
« L
V= (j)(% pde, +1 ple,)g’dx (7.97)

where e, =y, -y, and e, =z, —z, are the distances of the loading points from the
shear center. This will directly be included in the final differential equation system

(E1,V")" = (N°V) =2, (N°) +(M{g)" =0
(Elyw")" —(N°W)' +y,(N°3') —(M7g)" =0
(El,8")"—(Glig) + ¥, (N°W) =2, (N°V') = r?(N°gy

—MIW +MN" =28, (Mg =23, (MJF) + pJeyd+ pye, =0

(7.98)



providing the system with the position factor of the external transverse load. The
boundary conditions corresponding to these are

EAu'=N =0 or 6u=0

-El,v'=M, =0 or ov'=0

—-El,w"=M, =0 or ow'=0

-El ¢"=B=0 or o9’ =0

~(ELV) +N°(v' +2,4) ~ (M%)’ =Q, =0 or 6v=0 (7.99)

—(El,wW")' + N°(W - y,¢") +(M79)' =Q, =0 or Sw=0
—(El,8") +Glg' — N° (y,W' — z,v' —r?¢') +
FMO(W +25,4) - MOV ~2f,4) =M, +M =0 or =0

The corresponding modifications are also present in the expression of the total strain
energy

1% , , , ,
H:Eg[Elz(v )+ Ely (W) + El, (¢")% + Gl () [ox

+%T N° |:(W')2 +(V)? - 2y W' +2z,V'¢' + r2(¢’)2]dx

] 0 (7.100)
f (2w + B M2 )MV - M5 ()2 fix

150 o 2 o
+5£( PyeyP” + P, €, )dx

The final expressions derived, both the differential equation system and the energy
principle, form the basis to evaluate the critical load intensity for rather general
stability problem of any one-dimensional beam. They are compatible with the
equilibrium equations derived by using the fairly complicated tool of differential
geometry in the general literature of structural stability. The procedure presented here
is very systematic serving as an ideologically simple way to handle these problems.

7.6. Buckling of plates

Buckling of plates is as a problem very similar to the flexural buckling of beams, but
extended to two dimensions only. The procedure applied here follows rather exactly
the one used above in beam analyses. The structure considered is a two-dimensional
rectangular plate located in three-dimensional Cartesian space so, that x- and y-co-
ordinate axes coincide with the mid surface of the plate, and z is in the direction of the
normal of plate. Linearly elastic material model is adopted, with the parameters E,v,

the Young’s modulus and Poisson’s ratio, respectively. The thickness of the plate is h.



The kinematics of the plate is given by applying the Love-Kirchhoff plate model, in
which each normal is assumed to remain normal to the deformed mid surface of the
deformed geometry. The displacement vector is thus

R CL NS L
u=(u Z@x)H(V Zay)j—l-Wk (7.101)

Here, the displacement components are u =u(x, y), v=Vv(X,y) and w=w(x,y), and
the unit vectors in the direction of co-ordinate axesi, j,k . The linear strain and rotation
components are calculated again directly by applying the definitions (7.2) and (7.3)
with e, =e,, =g, =0

o _u_,0W
N S
v dw
Yo o
o v, U, w
Yoox ooy oxoy (7.102)
ow
wx—a
_ow
a)y——&
1,0v ou
w, = (———)~0
2 0X oy

resulting in the nonzero strains (y,, =, =0) according to (7.7)

£ _8_u_282_w+£(@)2
“ox o oxd 2 ox

=—-7—+=(=—)
N v oy 2y (7.103)
_1p owyp  OW\2
. 2{(ax) +(ay)}

N ou o°w  ow ow

A B g A

=—+
" o Toy T Caxay | ox oy

The simplification performed is based on the assumption that the rotation in the plane
of the plate is small as compared to the rotations out of the plate in buckling.

The expression of the strain energy

U=U°+U"= J[(GS +%(7:)8X + (63 +%G;)€y + (z'f(’y +%z';y)7xy +%G:EZ ]dV (7.104)
Y



can further be split to give

2

* au * OV ov
U 1 ST B
Jz{ ~ 82) et 2) (ay ~ axay)}
v azw ou v o*w
+ )+0°(——Z—) O (—+—-— —) dv (7.105)
V{ x az "oy Wy T oy
OW OW ow ow
[ _+° dv + ()% +(=)? |dv
\J/.z{ PRy o 8& [4o {ax) (ay)}
~0
This is composed of three parts following the practice above as

in which U is the traditional strain energy expression due to linearised strains and the
two following ones, Uy, and Uy, take into account both the non-linear terms of
strain components and the initial stresses, i.e.

~,0U azw azw « Ou oV
L \./[ 2 x( ox a 2) y(5 2) z-xy(a ox 5X8y)j|
I ou o%w ov o%w oV 82
Uy = O(=—z—)+ °——z— ——z—) |dV (7.107
NL J_Ux(ax aXZ) Uy(s )+ xy(5 o a 5 )} ( )

UNL2=I%[GQ(%\;\/)2+U§(%) Ty awg\;v}dV

Exy
v 3

When deriving the expression for U, the two dimensional linear elastic plane stress
state as a material model is adopted. Then

a: = 1—Ev2 (ex +vgy)
0'; = l—Ev2 (gy +vgx) (7.108)

R

Inserting this into the expression of the linearised strain energy gives

1 * * .
U, = E\{ (axex +OyEy + Ty Ty )dV

E

(7.109)
= 2(1_1/2)\{(55 +5§ +2veye, +%(1—v)7/fy )dV




Incorporating still the linearised strains from (7.103) or (7.102), and denoting the
bending stiffness of the plate by D = Eh®/12(1—v?) we get

h/2 -
1 E U, Vo, . dudv 1
== dz [| (H2 + #2r T ()G ) (i
1 21_1/2_,!,2 {_(ax) & 2 5ay 2t )(ay )} y
=h
- (7.110)
h/2 2 2 200 A2 22w
+l > j zzdzf (8_‘2’ 2+(8_\;v) Loy a_Wa_ +2(1- )(_) dxdy
21-v2 )" ] ex oy ox% oy
=D

- i h/2 . .
Here, it is assumed that the integral j—h/z zdz = 0. The non-linear parts of the potential

energy expression are simplifying to the form

[ jo0u ov
UNH—\{{GanJr Ny Xy(ay a)}dv

o N (7.111)
Ne Xy e N (M Yy gy
{[ ox oy Xy(ay ax)} y
where Ng =oyh, Ny =oyh and Ny, =7y h, and consequently
1 oW, OW, » OW oW
UNL2 253[03(&) +O'§,)(E) +T%,&E:|dv
1 ow BW.o 1o OWOW (112
= JINJ(=)?*+ NS (=)?+N dxd
2/{{ x(ﬁx) y(ay) xy8 ay} y

The potential of the external load V acting on the plane of the mid surface of plate and
including the volume forces and the loads on the edges of plate is

= _\5 [ pou + p)‘;v] dv —csf[tf(’u +t§v] ds

(7.113)
=—] [Pxou + P;’v} dxdy —§ [Txou +T;’v] ds
A S
Here, S covers the area of boundary surfaces, and s is the co-ordinate, following the
boundary mid-line. The notations P = pgh, Py = pyh, T) =tgh, and T =tjh for
the loading components are adopted. When con5|der|ng the term



Uy, +V = j{ o U N°av N)‘(’y(a—u+ﬂ)—PX°u+Py°v}dxdy
AR Y oy ox (7.114)
—§| TJu+T)v |ds
i[TusTyv]
taking the first variation
SUpyL +V) = j{N"%u eNo DY o (20U, OOV pogy . pp cSv}dxdy
OX oy oy X (7.115)
[ Tesu+T oV |ds
S
and integrating by parts gives
AN Ny oy N Ny o
5(UNL1+V)——{ ™ +W+PX)5U+(—+ . +P))ov |dxdy

Sy

+ [I(Ny =T,")ou+(Ny, =T/)ov1dy + [ [(Ny —T)Sv+ (N =T, )Su]dx
SX
(7.116)

In the equilibrium this must vanish producing the equilibrium conditions of the initial
state of the plate as

Ny, Ny

5 +P2=0
X
; 6yo (7.117)
ON, ON
—L+—2 4P =0
oy OX
with initial boundary conditions
Ny =T, or 5u=0| on the boundaries
ny :T; or ov=0| parallell to y-axis
(7.118)
Ny, =T¢ or 6u=0| on the boundaries
N§’ =Ty° or sv=0| parallell to x-axis
The boundary conditions can be expressed on any boundary generally by
Nen, +Ngn, =T.
v (7.119)
NY yNy + nynX =T,

with n, and n, the direction cosines of the normal of the boundary surface. We have
still the terms



U +Uy, = ; Ehzf{(g—i)%(ay) +2v %% 2(1—v)(%u+%)2}dxdy
awa2
ow +20-ny W 120
I{aﬂ et 3 S e ok (7.120)
Ny @wo Ny owp, o Nig ow ow
' "0 %) D W}d dy

The first term in this equation concerns the initial state of the plate and will be
dropped. The rest of (7.120) takes after variation the form

o’w aow 02w 8%sw 0%SW OPwW  0°w B%Sw
> v a2 VU ot o2
X2 oX oy® oy oX~ oy® ox° oy
2
o'w o*sw (7.121)

SUL+Up,) = Dj{

Ny ow osw N OW OOW ny 0OW OW  OW OOW
TRL S\ e A ( —+——) |dxdy
D ox ox D oy oy D ox oy ox oy

Integrating twice by parts simplifies the expression to

4 2 NO 2 NO A2
SUL+UyL,) = Dj o'w_ ow _Nyotw Ny o'w XyaW]awdxdy

+2
xt  oxPoy? ay D ox2 D oy? D oxoy
(7.122)

without boundary conditions. The disappearance of the surface integral gives the final
homogeneous partial differential equation, which is

4 4 4 2 2 2
W,y OW +8W) no oW N;’a 2N;’ya (7.123)
ot oaxPey? oyt ox? oy? X

The boundary conditions on all edges of the plate appearing in integration by parts
follow the plate theory of Love-Kirchhoff and can be given in the form

2 2
Z\;VJ”’G\;V:MDX:O’ or 865W 0 on the
X
’ i o boundaries
3 3 M 0 N
a—+(2— V)2 oW _ 1+ Py Neow Ty W o sy _of  parallell
oc oxdy* D % D ox D o to y-axis
VX

(7.124)



2 200 M
2\;\I+V(Z\;V: Dyzo’ o 5§W 0 on the
y X ' 0 o boundaries
’ 3 M, N N
= +(2-v) a2W :i(Qny Y) = y oW Xy@, or sw=o| parallell
¥ ooy P s Do D ox to x-axis
Vy

with V, and V, the Kirchhoff shear forces. These can be combined in boundary
conditions in general form

M,n,+M,n, =0 or 6§_an+65_wny:0
x oo (7.125)

VXnX+Vyny:(NQnX+NQyny);ﬂ+(N§ny Xy X)ay or Ssw=0
X

Solving equation (7.123) with boundary restrictions (7.124) determines finally the
critical intensity for the loading of a plate due to lateral buckling.

The total potential energy formulation is actually in equation (7.120)

Dyl ,0%w,, d*w,, . d°wdtw
n_?£ ) +(ay2) r—g Py +2(1- )(—)

(7.126)
xy ow ow

0 N°©
GO cxy
x” D oy D ox oy

which has to be minimised in kinematically admissible deflection functions according
to the energy principle.

Example: The problem is to find out the critical compressive load T, for a plate
shown with dimensions (axb) and bending stiffness D. The plate is simply supported
along the boundaries.

T T,




The differential equation for the problem takes the form

w . o*'w otw T, %w
T P ]
oX ox“oyc oy D ox

and the boundary conditions

w(0,y) =w(a,y) =w(X, 0)=W(X b)=0
2 2 2
22( y) = az(ay)— 2( 0)= az( xb)=0

The Navier’s solution for a plate with all edges simply supported fulfils the boundary
conditions under consideration. It is

wx,y)=3 3 Amsm(—)sm(m”y)

n=1m=1

Inserting this into the differential equation yields a condition

n4 o4 2 2,22 4 4 2_2
/4 nN“z-m°z= mz" T, n°x m7ry
Z Z +2 + -2 sm( )sm( )=0
n=1m=1 Am { a’ b? b* D a?

This condition will be fulfilled when the expression in brackets disappears. From this
we can solve the value for the compressive load, which is

22’ (n®* m? ? ,[n mZa ?
T,=Drx —+— | =Dz | —+—
n?la? b2 a nb?

We have to find out the minimum value for the load with respect to m and n. The
minimum value for T, is obtained with respect to m, when m=1, but for n, it must be

calculated by differentiating. Thus it is obtained

dT, 2(1 a j(n a j o[ n a? a
Do _opg2[ 2o N, 2 l_ope2| -2 |_g = n-=2
dn "la 2 \a e T2 b

Because n is an integer variable, the minimum value is obtained, when it will be taken
as close to the value a/b as possible. If a/b is an integer, the minimum value is




The same problem can be handled by the potential energy formulation. Thus for
example, a kinematically admissible basic set of functions to be used is

w(x,y) =w,x(a-x)y(b-y)

This fulfils the boundary conditions w(0, y) = w(a, y) = w(x,0) = w(x,b) =0 for the

deflection of the plate. By incorporating this into the energy integral gives at first, the
derivatives

w, (X, y) =w,(a-2x)y(b—y)
W, (X y) =—-2w,y(b—y)
w, (X, y) = w,x(a—x)(b—2y)
W, (X, y) = —2w,x(a - x)
Wyxy(X, y)=w,(a-2x)(b—2y)

and then
_ D QW Py, L OPwotw Ny ow,,
H—E£ {(8—2) +(W +ov = o o +2(1- )(—) =) }dxdy
2~ ab
- ""02D”[4y2(b—y)2 +4x%(a—x)? +8vxy(a—x)(b—y) +2(1—v)(a-2x)%(b—2y)?
00

—3°(a—2x)2y2(b— y)z}dxdy

Taking the first variation and presuming it to disappear, gives

2 315
7 = DV {4ab(3a4 +5a2h2 +30%) —%} -

3,5
o1 =§w_H§W = Dw, {4ab(3a4 +5a%h? +3b*) —%} W, =0

0

This results in the critical value of the load parameter

T 4(3a* +5a%b? +3b*)D
o~ a2ph* [

If a=b, theresultis T, =44D/b*, which is 11.45% higher than above.

If we still apply the set of functions

w(X,y) =W, sm(—)sm( )

and insert it into the energy equation, we will get
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ab
R I AV IZEY: 27X 2,y
+HL-vIWDE) () E[gcos (=) cos” (- ")ddly

0 ab
+%(1)2w§ [ [eos?(ysin? (“Yydxdy
a 00 a b

This will result in the equation

-} 2|y +<5)2j2 Ny
b 2 'a

By differentiating with respect to the displacement parameter, it is obtained

2.2 v 12 ?
T, =-N° = z%Da?| ()2 + (=
o x =7 ((a) +(b)j

which gives the exact solution to the problem.

7.7. Buckling of arches and rings

Buckling of beams curved in the plane, deviates from the previous ones through the
analysis in curvilinear coordinates. The procedure applied here follows rather exactly
the one used in beam analyses, but in the problem formulation, the derivatives of the
unit vectors will be included. It will result in the equilibrium equations where the axial
and bending analyses are coupled. Linearly elastic material model is adopted, with the
parameters E, v, the Young’s modulus and Poisson’s ratio, respectively. The height of
the arch is h, and it is assumed to be small as compared to the radius of the arch.

The kinematics of the plate is given by applying the Euler-Bernoulli beam model, in
which each normal is assumed to remain normal to the deformed mid surface of the
deformed geometry. The displacement vector is thus

u =(u—y:;|—v)es +ve (7.127)
s

y
Here, the displacement componentsu =u(s) andv = v(s), butalso e; =e,(s) and

ey =ey(s). Inthe continuation, the prime () denotes differentiation with respect to
the coordinate s. We have the rule for differentiation

S
o 0 (7.128)
oy oy



Here, (X, y) are the coordinates of the global Cartesian coordinate system. The
derivatives of the unit vectors are

deg 1
e Ry
ddes 1R (7.129)
®y 1o
ds R

The linear strain and rotation components are calculated again directly by applying the
definitions (7.2) and (7.3) with e, =e,s =e, =e,, =€,; =0. In addition, we restrict the

consideration to circular arches and rings when the radius R is constant. The only
nonzero strain component is &,

du yY v u dR d(dvj du v dv v
o=t 1+ L | Loyl =y S S Yy Yy (7.130
* s ( Rj {R y(RZ as Taslas)) T as TR e R )

The rotation components &, = o, =0, and

o0, =1 a_“.ey_a_“.es _1lfov_ou)_ov_u (7.131)
2\ 0s oy 2los oy) os R
So, we get for the strains
2
bo—e (@ rod) = Wa Yy @Y V) T Uy
ds R “'ds® R® 20s R (7.132)

1 .0v u
ey =€y +5(w; +y) 2(63 R)

At the initial loading state, consisting only of centric axial compression and bending
. N° 0 .
moment, the normal stress is o = T+ I 2y, while all the other stress components
z

are zero. Following the same procedure as before, the incremental strain energy of the
beam takes the form

* *
U= j (0565 +3 0565 +F0y8,)dV

2
\

X ) (7.133)
zj (oso+%as)(u'+%v—y(v"+év)+%(v’—%u) jdv
Vv
When we take into account the linearly elastic material law
c=Ee,=E[u+Liv-y[v+Lv +l(v'—lu)2
Os =E& = R y R2 2 R
(7.134)

~ ' 1 " 1
~ E(u +ﬁv—y(v +?v))



this will be

1 ' " 1 2 y
U :EJ E[u +%v—y(v +¥v)] (1+&)dAds +

+ [u +Liv— y(v”+ L v)}(1+ ¥)dAds (7.135)

[o

\Y
+[ o2 (v~ Lu) 1+ %)dAds
\Y

This is a sum of three parts as
U :UL +UNL1+UNL2 (7136)

with taking into account the initial stress distribution when

_2 v_ Y y-14Ad

I [ + y(v+Rﬂ(1+ ) "dAds
1 Y , u
zE-([( EA(u +E)2+Elz(v _E)Zjds

Un, :j [u +%—y(v + 2 ﬂ(1+ y)dAds (7.137)

\

HN (u’ +—) M ( %ﬂds

u 1% U M2 u)?
UL :jla)‘(’ V- (1+l)dAds=—J. NO(V'——j +—Z(v’——j ds
2 R R 23 R R R
The potential due to the external loads in the axial direction is

V= —I[ pe(u—yv')+ pgv}(l+%)dAds—J-[PS° (Uu—y)+ P;)VTO_ dA
Y A (7.138)

:_g[psu m,Vv' + zu+py }ds [ u+PV+M v}:

where m; :J' p.ydA and M :[I P"ydA]L
z \ S z A S 0
Now, the total potential energy is composed of terms

If we consider at first the part
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Uy, +V :I{No(u#%)—M?(v”+%ﬂdx—j{p;’u—mgv'+%?u+ pgv}ds
0

0 (7.140)

—~ [ Pou+PPv+ M zv']:

It is exactly the same as in the case of pure flexural buckling, and disappears when the
initial structure is in equilibrium fulfilling the equation of equilibrium with boundary
conditions

L 0 mP° )
5(UNL1+V)=—M(N y+ el prs Z}m (N?—(M e )—pyj5v}ds
—[(NO—PS°)5u+(M§’—I\7IZ)5V’+((M§’)’—P;)5V}:

(7.141)
The disappearance of this expression is equal to the equilibrium of the initial state of
the arch yielding in the differential equations and boundary conditions

dN®  1dM? o o om? dM? N°
+= +pg (8)+—=%=0, L ———+(m;))'+ 0
s TR g TG+ 2 R (M) +py =
N® =P or su=0 (7.142)

MO=M,orév'=0 ats=0ands=L
(M7)' =P} or 6v=0
This part of equation disappears when the beam in the initial state is in equilibrium.

So, we have still left the equation

L

1 ’ V 2 14 u, 2
Mm=U, +Uy.. ==|| EAU'+=) " +EIl, (V' ——
L +Uni, 2!( ( R) 2( R)
L ) . ) (7.143)
+1'[ No(v’—ij M, (v ——j ds
20 R R R
isTaking at first the first variation of the results in
L
orl :_[( EA(u’+%)(5u’+%)+ El,(v'— (5v”+—)}d
° (7.144)
u su, M? u ou
+ | NO(V =) (V' ——=) +—2 (V' = =)(6V' ——) [ds
ﬂ (V= 2OV =)+ (V=) R)}

By integrating by parts we get further
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L ’ m 0
u Y u M u
+ || EA(=+—) + El, (v"" ——) = (N° + —&)(v" ——=) [ovds 7.145
ﬂ (Rt T ElL (=) = (N® + 20 R)} (7.145)

L
' V" u' " ' m 0 MO ' u
J{(EAU + EIZ(E— R2)J5U+Elzv oV —[EIZV —(N +?Z)(v —E)J&}

0

The differential equations obtained are thus

2 3 2 0
_EA(d_u_Flﬂ)_Hz(lﬂ_id_u)_(No +&)(£ﬂ_i):0
ds? Rds Rds® R? ds? R "Rds R2 (7.146)
l1du v dv 1 d% MO d%v 1du '
EA(=—+—)+EL(—-=—7%)-(N°+—2)(—-=—)=0
(R dS RZ) Z(ds4 RdSS) ( R )(d52 Rds)
and corresponding boundary conditions at x =0, L
, V!! u!
EAuU +EIZ(E—¥):0 or ou=0
m 0 Mzo ' u
El,v"—(N +?)(v _E):O or 6v=0 (7.147)

El,v'=0 or 6v'=0

This system of equations can be solved for the critical compressive load generally. If
we multiply the equation by the factor R®/ El, introduce the notations A = N°R®/El,

and p =R*A/1,change the variable Rdd =ds and assume still that M? =0 we get

d?u dv d®v  d%

dv
—P(W"‘@)"‘( )—/1(@—“):0

46 402
Nl , (7.148)
dv d°u d°v du

7 ) A ) =0
de* do dgc dé

PG+~

By assuming now the displacements v= A cosné and u = B, sinné, the system of
equations take the form

[An(pn+n3+/1n)+ B, (,on2 —n? +/1)}sin nd =0
(7.149)
[AT](—p—n4+ﬁn2)— Bn(pn+n3—/1n)}cosn9:0
This gives for the loading parameter the value 4, corresponding to n =2 when the
critical load is N° =4El / R®.



Another way to solve this system of differential equations is to use a symbolic notation
for the derivative operator D =d/dx when the system of equations can be written in
the form

Lv+Lu=0

(7.150)
Lv+Lu=0
in which
L, =pD-D3+4D L, = pD?-D?+ 1
1=F 2=FP (7.151)
L, =—p—D*-AD? L, =-pD+D*+ D

Then, we can utilize the commutativity property of linear differential operators

(LL,—LL)v=0

(7.152)
(LL, —LLgu=0
Thus we get a sixth order ordinary differential equation
(2—pIV® —(2p+ AN""+ pv" + Apv =0 (7.153)

It includes only even order of derivatives and results thus in a polynomial of third
order as the characteristic equation.

7.8. Buckling of shells of revolution

Buckling of shells of revolution is actually a one-dimensional problem. The procedure
applied here follows rather exactly the one used in beam analyses, but in the problem
formulation, the derivatives of the unit vectors will be included. It will result in the
equilibrium equations where the membrane and bending analyses are coupled. Linearly
elastic material model is adopted, with the parameters E, v, the Young’s modulus and

Poisson’s ratio, respectively. The thickness of the shell is h, and it is assumed to be
small as compared to the radii of the arch.

The kinematics of the shell is given by applying the Love-Kirchhoff shell or plate
model, in which each normal is assumed to remain normal to the deformed mid surface
of the deformed geometry. The displacement vector is thus

u(9,2) =[u(9) - 204(9)|e s (9) + (e, (9) (7.154)

Here, the displacement componentsu =u(s) andv = v(s), butalso e; =e4(s) and
es =€4(s). In the continuation, the prime () denotes differentiation with respect to
the coordinate s.

The linear nonzero strain components in a shell of revolution exposed to axial
symmetric loading are
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Ry | Rgd¥ Ryd3 Ryd9 Ryd3 Ry™ Ry
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Rd9 R, R, REdY R, d9 R,d9

e, =(1+ 25|n9)_1 Ecosl9+ﬂsinl9—5(d—w—i)cos&l
r r r r Rgd% Ry

_Yos g+ Wing_ 20088) _dw Y a—sing) + Ysingtan 8 |+ O(22)
r r Ryd3 Ry Ry

These will be simplified in the case of cylindrical shell to the form with the relations
R,d9=ds, 1/ Ry =0, cos$=0, sin%=1

du _ d*w
&=~ 2(—)
ds ds
o — W
Ty
In addition, the rotation term w, is the only nonzero, while @, =, =0
dw
w, =——
ds

The total expressions for the strains are
du _ d®w, 1 dw

2 ' no,o1 "2
Es=——-I—7F)+=(—) =u—-zw" +3(W
> ds (d52 2(ds) 2 (W)
w o 1ldwo, w ;.
Ey=—+—(——)" =—+5(W
Ty 2(ds) r 2 (W)
The expression of the strain energy
U=U°+U"= j[(ag +100)e, +(%J;)g¢]dv (7.155)
v

can further be split to give

v ds
du d2w
+ S(=—-z—) |dV 7.156
JI:GS(dS o2 } ( )
dw
+14 0—Z}dv
Jz{ o)

This is composed of three parts following the practice above as

U :UL +UNL1+UNL2 (7157)



in which U is the traditional strain energy expression due to linearised strains and the
two following ones, Uy, and Uy, take into account both the non-linear terms of

strain components and the initial stresses.

When we take into account the linearly elastic material law

o} = (s +vey)

(7.158)

*

1-v
Inserting this into the expression of the linearised strain energy gives

T * ___E 2, .2
U, _EVJ (022, + 06, AV _mvj (82 +65 +2vege, v (7.159)
Incorporating still the linearized strains from (7.103) or (7.102), and denoting the
bending stiffness of the plate by D = Eh®/12(1—v?) we get

hf2 [ du w du w
j dz j () +(—= )2+2v——}rdsd¢
PR r ds r
—

=h (7.160)
h/2

2
5 | 2%z (d—‘év)z}rdsw
2 AL Os
=D
The non-linear parts of the potential energy expression are simplifying to the form

1 E
UL:_ 2
21-v

1 E
+_
2112

du du
U dV = || NJ— |rdsd 7.161
NL = I[ast} £[ ds } ¢ ( )
where Ny =ogh, Ny =oyh and Ny, =7y h, and consequently
=—J{ }dv = j[Ng’(d—W)z}rdsM (7.162)
2 A ds

The potential of the external load V acting on the plane of the mid surface of plate and
including the volume forces and the loads on the edges of plate is

V= —VJ [ pou Jav —qss[t;’u]ds = —{\[Pfu}dxdy—f[Tsou}ds (7.163)

Here, S covers the area of boundary surfaces. The notations P = pgh, and T,) =t¢h
for the loading components are adopted. When considering the term



du
Uy, +V = {[NS w7 P;’U} rdsd¢—<_sﬁ[Ts°u]ds (7.164)

taking the first variation
SUp +V) = j[Noddﬂw §u}rdsd¢ gﬁ[ Lou |ds (7.165)
s
and integrating by parts gives
dN0 o
SUn +V)=—j 5 —X +P2)su |rdsdg+ [[(NJ -T>)sulrdg  (7.166)
X 5,

In the equilibrium this must vanish producing the equilibrium conditions of the initial

state of the plate as
0]
dN; +P2=0 (7.167)
ds

with initial boundary conditions
NS =TS or su=0 (7.168)

We have still the terms

UL +Uy, =220 I[(?T:) G r2v d——}rdsd¢
(7.169)

_J-{(dwz Ny dw)}dsdqﬁ

The first term in this equation concerns the initial state of the plate and will be
dropped. The rest of (7.120) takes after variation the form

{d_udﬂﬂﬁ_w yasuw, d_u5_w)}rd dg
ds r ds r

Eh
SU, +Up ) =——
(UL +Up,) 1_V2£
200 42 0
D d\;vd52w+Ns deé‘W}l’de¢
A ds® ds D ds ds

(7.170)

Integrating twice by parts simplifies the expression to
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j{Dd—— no W (ﬂ+d—u)}5wrdsd¢ (7.171)
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Su

The disappearance of the surface integral gives the final system of two homogeneous
ordinary differential equations

d%u
0
(7.172)
Dd4W 0d2W w du
4 s 2 (_ _)_
ds ds r(l v) r ds

By utilizing the first equation, the final formulation for the buckling of a cylindrical
shell will be obtained

d4_w T0 d’w Eh

x 2t 7

D
ds* dx? r

w=0 (7.173)

Here, the negative sign of the compressive load is taken into account.
The principle of minimum potential energy is obtained from the expression

U +Up, = 1 Ehzj‘[(z_l;) (_) VE—}rdS(Mﬁ

. (7.174)
_J-{(d Wy Ny dw) } rdsdg



(EAU') =0

(E1V) = (NV)' =2,(N°¢) + (M gy =0

(E1yW)" = (N°W)'+ ¥, (N°¢) = (M2g) =0

(El#") ~(Glg) + Yo (N°WY — 2, (N°V) ~r2(N°)

—(MZW)" +(MyV) =28, (M;¢) -28,(Myg') =0



	in which   are the displacement components in x- and y-direction, and the rotation of each normal follows the slope of the beam axis. Calculating now the strains, using  and , gives just two non-zero components, while
	in which   are the three translation components in the directions of the co-ordinate axes, and the angle of twist, and  is the sectorial co-ordinate. Co-ordinates  define the location of the shear centre of the cross-section. Calculating now the strai...

