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Introduction

Introduction

In Book 1, we introduced various types of dynamical systems. These
systems could be classified as:

e conservative, where the total energy of the system is constant
(i.e. conserved) throughout the motion

e non-conservative, where energy is not conserved, as for example in the
presence of forcing or damping

o deterministic, where the equations describing the motion have no
randomness in them

e non-deterministic (or random or stochastic), where the equations
describing the motion have randomness built in, as for example in a
random walk.

In Book 2, we explore some aspects of conservative and non-conservative
deterministic systems in more detail, before moving on to discuss random
systems in Book 3.

In earlier modules, you may have seen how to derive the equations of
motion of simple mechanical systems using Newton’s laws of motion. In
Unit 6, we will introduce you to another method called Lagrangian
mechanics, which applies to conservative systems, and is arguably much
easier to use and more powerful than Newtonian mechanics — although
perhaps less intuitive since it is based on energies rather than forces.
However, before we get to Unit 6, we first need to set up some important
mathematical apparatus called the calculus of variations: this is the main
purpose of this unit.

In ordinary calculus, we often work with real functions, which are rules for
mapping real numbers to real numbers; for example, the function sin x
maps the whole of the real line to the interval [—1, 1]. Functions can have
various properties: for instance, they can be continuous and differentiable,
and they can have stationary points and local maxima and minima.

In the calculus of variations, we work with functionals: these are objects
that map functions to the real line. For example,

1
SIf) = /0 (' (2))? da

is a functional, which for any sufficiently well-behaved real function f gives
us a real number S[f]. (Here and throughout this unit and the next, f’(zx)
denotes the derivative df /dx evaluated at z.) The square bracket notation
S[f] is used to emphasise the fact that the functional S depends on the
choice of function.
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Functionals share many of the same properties as functions. In particular,
the notion of a stationary point of a function has an important analogue in
the theory of functionals, which gives rise to the calculus of variations, as
you will see. The calculus of variations is a hugely important topic in the
natural sciences. It leads naturally to the Lagrangian formulation of
mechanics, mentioned above, from which most dynamical equations of
mathematical physics can be derived. It is also a powerful mathematical
tool, finding applications in subjects as diverse as statics, optics,
differential geometry, approximate solutions of differential equations and
control theory. In addition to this, the calculus of variations is an active
topic of study in its own right.

The structure of this unit is as follows. In Section 1 we introduce many of
the key ingredients of the calculus of variations, by solving a seemingly
simple problem — finding the shortest distance between two points in a
plane. In particular, this section introduces the notion of a functional and
that of a stationary path. In Section 2 we briefly describe a few basic
problems that can be formulated in terms of functionals, in order to give
you a feel for the range of problems that can be solved using the calculus
of variations; this section will not be assessed. Section 3 is a short interlude
about partial and total derivatives, which are used extensively throughout
the rest of the unit. Section 4 is the most important section of this unit. It
contains a derivation of the Fuler—Lagrange equation, which will be used
throughout the rest of this unit and the next. Finally, in Section 5 we
apply the Euler-Lagrange equation to solve some of the problems
discussed in Section 2, as well as a problem arising from a new topic, called
Fermat’s principle, which serves as a bridge to the next unit.

1 Shortest distance between two
points

In this section we take a swift tour through variational principles by
considering perhaps the simplest physical example possible — the shortest
distance between two points in a plane.

You may think that this is a somewhat trivial example, since the shortest
path between two points in a plane is the straight line joining them.
However, it is almost always easiest to understand a new idea by applying
it to a simple familiar problem, so here we introduce the ideas of the
calculus of variations by proving this trivial fact. The algebra involved may
seem over-complicated for such a basic problem, but far more complicated
problems (like the problem of finding the shortest distance between two
points on a curved surface) can be solved using the same principles.



1 Shortest distance between two points

We begin in Subsection 1.1 by showing that the distance between two
points can be expressed as a functional. Then in Subsection 1.2 we show
that the shortest distance between two points in a plane is a straight line.

1.1 Distance between two points on a given curve

First, we need an expression for the length of a curve between two given
points in a plane.

Suppose that we are given two points P, and P, with Cartesian
coordinates (a, A) and (b, B), respectively. Furthermore, suppose that

y = y(z), where a <z < b, is a smooth curve that joins P, at x = a to P,
at © = b, so that y(a) = A and y(b) = B, as shown in Figure 1.

Yy
P,

a b z

Figure 1 Graph of the curve y = y(x) passing through points P, and P,

You may have derived a formula for the length of this curve in earlier
modules. It is obtained by dividing the interval a < x < b into IV intervals
of length 6z = (b —a)/N. Let us denote the endpoints of these intervals by
xo,T1,-..,ZN, in that order, so that x9 = a, xxy = b and xp 1 — 2 = 0z
for k=0,1,...,N — 1, as shown in Figure 2.
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P
Bl--mmmmmmmmm »
e O N
930 951 352 353 354 935 €T
a b

Figure 2 Subdivision of the interval [a,b] into N equal intervals; in this
case N =5
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The curve is now approximated by a sequence of N straight-line segments.
Let dsy be the length of the segment above the interval [z, zx11]. This
segment is illustrated in Figure 3.

Yy
Y(Tg+1)

Yy(wk)

ox “:
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Figure 3 Segment of the curve y = y(x) between zj and x4

The length of each segment can be determined using Pythagoras’ theorem:

2
0s = /022 + 6y? = dx /1 + (g—y> )
x

However, dy/dx is just the gradient of the segment, which in the limit as
N — oo is given by dy/dx = y/(xy) (i.e. the derivative dy/dz of y evaluated
at x = x). Therefore

dsp = dx /1 + 3y (xg)2. (1)

The approximate distance from (a, A) to (b, B) along the curve y = y(z) is
given by the sum of all the segment lengths:

N—-1 N—1
Sly] ~ Z 0sy = Z dx /14y (xp)?.
k=0 k=0

In the limit as N — oo, this sum becomes the integral

b
Sl = | I+

The above expression gives the length of the curve y = y(z) between the
points P, and P,. The length changes for different functions y(z). For
instance, if P, = (—1,0) and P, = (1,0), then the distance from P, to B,
along the straight line joining these points is 2, whereas the distance is m
along the semicircle of which this straight line is a diameter.

We denote the numerical value of the length of the curve by S|y], which
emphasises the fact that the length depends on the function y(z). We do
not write S(y), because we wish to distinguish S[y] from the real-valued
function y(z). The quantity S[y| is our first example of a functional; it
maps functions y(z) that satisfy y(a) = A and y(b) = B to the length of
the curve y = y(x) between x = a and x = b. More generally, a functional
is any map from functions to real numbers. Sometimes the set of functions
on which a functional acts is restricted, as in the example that we have
just considered.



1 Shortest distance between two points

A functional S[f] is a map from functions f to the real numbers.

Distance along a curve

The distance between two points (a, A) and (b, B) along a curve
y = y(x) that passes between them is given by the functional

b
Swz/\ﬂ+yw%m y(a) = A, y(b) = B. (2)

Exercise 1
Let P, = (—1,0) and P, = (1,0). Verify the following statements. Yy

(a) If y = y(x) is the straight line joining P, to B, (i.e. the red line in
Figure 4), then the functional (2) has the value S[y] = 2.

(b) If y = y(x) is the upper semicircle with diameter the straight line from

P, to P, (i.e. the blue curve in Figure 4), so that 22 + 32 = 1, then vPa Pb_
Sly| = 7. -1 0 1%
(Hint: You may assume the following standard integral, given in the Figure 4 The two paths in
Handbook: Winaps dx = arcsinz.) Exercise 1
—x
Exercise 2

Determine the value of the functional
1
St = [ /(e ds
0
for the following functions.

(a) y(x) =
(b) y(=) = a*

1.2 Stationary paths

In this subsection we consider how the length of the path varies with y(x),
and we define the notion of a stationary path; we also show that the
straight line through the endpoints is a stationary path.

Recall that in ordinary calculus, a stationary point = of a function y(z) is
a point at which y/(x) = 0, that is, a point x for which the tangent to the
graph of y(z) at x is parallel to the z-axis. Once a stationary point has
been found, further work is required to determine whether the function has
a maximum, a minimum or a point of inflection there.



Unit 5 Introduction to the calculus of variations

Figure 5 A minimal length
path y(x) and a new path
y(z) = y(x) + e g(x), both
passing through the points
(a, A) and (b, B)
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We want to define something analogous to this for functionals. To do this,
let us think of a concrete problem — finding the path with shortest distance
between the points (a, A) and (b, B) in the plane. Our problem then is to
find y = y(x) that will make

b
Sly] = / VIt y@Pdr, ya)= A, y(b) =B,

as small as possible.

Suppose that y = y(x) is the desired ‘minimal path’. Then let g(z) be any
other (smooth) function that satisfies

g(a) = g(b) =0, but otherwise g(x) is an arbitrary function of z.
Then we can define a new path by
y(x,e) =y(z) +eg(x), where ¢ is a real number.

For each value of ¢, this defines a new path y that also passes through the
points (a, A) and (b, B), because y(a,c) = y(a) +cg(a) = A and

y(b,e) = y(b) +cg(b) = B. As g was defined arbitrarily (apart from its
endpoints), every sufficiently well-behaved curve from a to b can be written
in this way. The situation is illustrated in Figure 5.

Now, the length of the new path ¥ is given by

b
Sly + eg] =/ V1+ ((y+eg))?de

ab
~ [ Vit el (3)

and for fixed y and g, the functional S[y + eg] gives a different path length
for each value of . That is, for fixed y and g, S|y + £¢g] takes as input a
real number ¢ and outputs the length of y 4+ g, another real number, so
Sy + €g] is a real-valued function. Furthermore, since y is our desired
minimal path, S[y + £g] must take its minimum value at € = 0.
Mathematically, this translates to

d

—Sly+e =0,

225y +ed] .
and this must be true for all functions g(x) that satisty g(a) = g(b) = 0.
(The notation f(z)|,_, means evaluate f(z) at x = a; that is,
evaluate f(a).) It should be clear that this condition guarantees only that
Sy + €g] is stationary at € = 0, and further work is required to determine
whether this is a maximum, a minimum or a point of inflection. A function
y(z) that satisfies this equation is said to be a stationary path of S.

Although we have derived this result for functionals that are path lengths,
the definition of stationary paths generalises to all functionals that we
consider in this module.
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Stationary path of a functional

Let S[y] be a functional that maps functions y that satisfy y(a) = A
and y(b) = B to the real numbers. Any such function y(z) for which

d

—S5 =0, 4

ot (4)
for all functions g(x) that satisfy g(a) = g(b) = 0, is said to be a
stationary path of S, or alternatively a stationary curve or a
stationary function of S.

Also, if S and y(x) satisfy (4), then we say that S is stationary at
y(z), and sometimes we abbreviate this by merely saying that S[y]| is
stationary.

Let us now use equation (4) to find the path between two points in a plane
with shortest length. From equation (3) we have

d

— Sy + 9]

d [* 7 "2
5 = (%/a V1I+(y +¢d) d:c>

The integration limits a and b are independent of ¢, and the order of
integration and differentiation can be interchanged using Leibniz’s integral
rule, which we state (slightly informally) here.

e=0 e=0

Leibniz’s integral rule

For any sufficiently well-behaved function f(x,¢), we have

<(/ ’ fae) @)= | "L ey,

where a and b are fixed constants (that do not depend on ¢).

Applying this rule gives
dx

e
= — 1+ + 5g’)2>
e=0 a de e=0

b /+5 APV
L (AL
e=0
_ b y/g/ "

If y(x) is a stationary path of S, then it follows, by definition, that

d
%S[y + eg]

b / T
/a %g'm dr =0 (5)

for all functions g(x) for which g(a) = ¢g(b) = 0.

11
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To solve this equation, we integrate by parts:

b b
[ o) g @) o = {u<x>g<x>]2 - [ @

with u = y/(x)/y/1 + y/(x)2. The first term on the right-hand side vanishes
because g(a) = g(b) = 0 so we get

b b
/ ug’dx:—/ uw'gdx,
a a

and hence equation (5) becomes

b /(1‘) !
/a (#/(@2) g(x)dz = 0.

Because ¢ is arbitrary (apart from the restriction g(a) = ¢g(b) = 0), this
integral can vanish only if

@ Y _0
1+ y/(x)? '

(In Section 4 we will give a more careful explanation of why this is so.)
Integrating both sides with respect to x gives

/
1+y'(x)?
for some constant . We could do some algebra here to solve for ¢/ in

terms of «, but this is not necessary as the left-hand side of equation (6)
can be constant only if

y'(z) =m,
where m is some function of o — another constant.
Integration now gives the general solution

y(z) = mx + ¢,

for yet another constant c; this is the equation of a straight line, as
expected. The constants m and c are determined by the condition that the
straight line passes through P, and Fy; that is, y(a) = A and y(b) = B. It
is straightforward to show that this gives m = (B — A)/(b — a) and

= (Ab — Ba)/(b— a), so
B-A Ab — Ba

. 7

b—a v b—a (M
This analysis shows that the functional S defined in equation (2) is
stationary along the straight line joining P, to P.

y(z) =

Let us summarise what we have just learned.



1 Shortest distance between two points

Stationary path of the curve-length functional

The functional

b
Slyl = / VI y@)ds, ) =4, y(b) = B. ®)

gives the length of the curve y = y(x) that passes between the points
P, = (a,A) and P, = (b, B). The stationary path y of this functional
satisfies

y/(x) = constant.

Solving this differential equation and applying the boundary
conditions y(a) = A and y(b) = B gives the equation of a straight line
through P, and P, which is the stationary path.

The main features of the procedure that you have just seen for finding the
stationary path between two points are common to all variational problems
in this module. That is, we start with some functional and some boundary
conditions on the functions that it maps; we use equation (4) to find the
functions y(z) that make it stationary; this leads to a differential equation
for the stationary function; then we solve the differential equation subject
to the boundary conditions to find the stationary function.

Classification of stationary paths

We have not shown that a solution y(x) of equation (4) is a path of
minimum distance between P, and P,. To do this, we must proceed
in the usual manner of ordinary calculus; that is, we must show that

d2

—Sly+e > 0.

225 +ed] »

We omit the algebra involved as it is tedious, and in any case, it is
physically obvious that a straight line gives the shortest distance.

More generally, our ultimate goal is in applying variational principles
to dynamics where one is interested only in finding functions that
make the functional stationary, not in finding maxima or minima. So
we concentrate on the former task.

In the next example and exercise we find the stationary paths of two more
functionals, in the same way that we found the stationary path of the path
length functional. In practice we rarely use this method to determine
stationary paths. Instead, we use the powerful Euler-Lagrange equation,
which is discussed in Section 4. To appreciate the derivation of the
Euler-Lagrange equation, however, you first need to understand the
method used in this section. This method will not be assessed in TMAs or
the examination.

13
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Example 1
Let B > —1. Consider the functional

1
Sty = /0 VITy@ds, y(0) =0, y(1) = B.

(a) Show that on a stationary path y(z) of S, we have y/'(z) = constant.
(b) Hence show that the stationary path is the straight line y(x) = Buz.

(c) Also show that the value of the functional on this line is

Syl =v1+ B.

Solution

(a) In this case, the endpoints of the paths are (a, A) and (b, B), where
a=0,A=0and b = 1. In order to find the stationary function, we
need to compute equation (4):

d
%S[y + £g]

Here

1
S[y+€g]=/0 V14 (y+eg) de
1
:/ V14+y +eg dx,
0

=0, where g(0) =g(1) =0.
e=0

SO

¢ Sy +eg] d/1 Tty tegd
Lereql = (L[ ityieda
2ol +eg i J, Y +eg
The integration limits 0 and 1 are independent of e, so the order of
integration and differentiation can be interchanged using Leibniz’s
integral rule. This gives

e=0 e=0

dS[ + g /1<d\/1+ ’+5’> d
Py g = - Y g £
de =0 0 de e=0
1 1 /
-5/ (*) dr
2Jo \V1+y' +ed" /.-

1 1 g/
= - / dx
2Jo V1+Y
If S[y] is stationary, then it follows, by definition, that

0

/1 g@ . _
0 V1+y(z)

for all functions g(z) for which ¢(0) = g(1) = 0. To solve this equation,

we integrate by parts:
1 , 1 1 ,
/0 u(x) ¢ (z) dz = [u(z) g(z)]} — /0 o (z) g(x) d,
with u = 1/yTF 7.
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However, the first term on the right-hand side vanishes because
g(0) = g(1) =0, so we get

1 1 !
/0 (m) g(x)dz = 0.

Because of the freedom in choosing g, this integral can vanish only if
(1/y/14y/(z)) = 0. Integrating both sides with respect to x gives
1 j—
1+y'(x)

where « is a constant. Rearranging this equation, we obtain ¢y = m,
for some constant m.

(b) Integrating the equation 3y’ = m gives y = mx + ¢, for some constant c.
The boundary conditions y(0) = 0 and y(1) = B then give y = Bz,
which is the equation of the stationary path.

(c) With this value for y(x), the functional is

Sly] :/01\/1+y’(:c)d:c:/01\/1+de:\/1+3.

This is real if B > —1.

Exercise 3

Consider the functional

(a) Show that the stationary path satisfies xy/(x) = constant.
(b) Hence show that the stationary function is y(z) = Inz/In 2.

2 Some examples of functionals

In this section we briefly describe a few problems that can be formulated
in terms of functionals (some of which are derived later), and which have
solutions that are stationary paths of the functionals. The list of problems
illustrates some of the types of question for which variational principles are
useful, and exposes you to the sorts of functionals that are commonly used.
The examples have been chosen because they require no specialist scientific
knowledge to understand them. As such, the list is by no means
exhaustive, and you should be aware that variational principles are applied
to a much wider class of problems than those considered here.

15
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Figure 6 A bead sliding
from point P, to point P,

16

There are no exercises for this section as it will not be assessed, but it is
important for you to read it in order to understand the sections that follow.

2.1 Brachistochrone

The problem here is to find the shape of a wire joining two given points, so
that a bead will slide down the wire under gravity from one point to the
other (without friction) in the shortest time (see Figure 6).

The name given to this curve is the brachistochrone, which comes from
the Greek brachystos, meaning shortest, and chronos, meaning time. If the
y-axis is vertical, and the two given points at the ends of the wire are

P, =(0,0) and P, = (b, B), and the particle starts from rest, then it can
be shown that the time taken along the curve y(x) is

B 1 b 14 (yl)Q B B
T = = /0 e y0) =0, y(b) = B (9)

where ¢ is the magnitude of the acceleration due to gravity. The map T is
a functional of the wire shape y(z): it maps functions y(x) to the times
taken for beads to descend them. The problem then is to find the function
y(z) that minimises 7'

In Subsection 5.2 we will derive the functional T" and obtain the equations
for the brachistochrone, the curve that minimises 7'. The curve turns out

to be a segment of a cycloid, which is the curve traced out by a point on
the rim of a circular wheel rolling in a straight line (see Figure 8).

—

Figure 7 A cycloid: the path of a point P on the rim of a wheel

History of the brachistochrone

The problem discussed in this subsection was first considered by
Galileo Galilei (1564-1642) in 1638, but, lacking the necessary
mathematical techniques, he concluded erroneously that the solution
is the arc of a circle passing vertically through P,.

It was Johann Bernoulli (1667-1748) who made the problem famous
when in June 1696 he challenged readers of the scientific journal Acta
Eruditorum to solve it, reassuring them that the curve was well
known to geometers. He also stated that he would demonstrate the
solution at the end of the year, provided that no one else had.



2 Some examples of functionals

In December 1696, Bernoulli extended the time limit to Easter 1697,
though by this time he was in possession of the solution by Gottfried
Wilhelm Leibniz (1646-1716), sent in a letter dated 16 June 1696 —
Leibniz having received notification of the problem on 9 June. Isaac
Newton (1642-1727) also solved the problem quickly, apparently on
the day of receipt, and published his solution anonymously.

2.2 Minimal surfaces of revolution

Here the problem is to find the surface of minimal area that is generated
by revolving a curve y(x) about the z-axis, where y(z) passes through two
given points P, = (a, A) and P, = (b, B), as shown in Figure 8.

Y (b, B)
(a, A)

Figure 8 Cylindrical-type shape produced when a curve y(x) is rotated
about the z-axis

The area of this surface is shown in Subsection 5.3 to be

b
ﬂMz%/yMLHwML y(a) = A, y(b) = B. (10)

The map S[y] is a functional: it maps curves y(x) between P, and P, to
the areas of the surfaces formed by rotating such curves about the x-axis.
The problem is to find the curve that minimises S.

We will see that this problem has solutions that can be expressed in terms
of differentiable functions only for certain combinations of A, B and b — a.

Soap films

Many of us will have created soap film bubbles by dipping a loop of wire
into soap solution and blowing on it. It transpires that there is a close
connection between soap film surfaces and problems in the calculus of
variations.

To a good approximation, a soap film will try to minimise its surface area,
consistent with any wire boundary that contains it; it does this because it
wants to minimise its energy, which is proportional to its surface area.

17
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Figure 9 Minimal surface of

revolution formed by a soap
film

(0,0) T

Figure 10 Path of a boat
across a flowing river

—a 0 a

Figure 11 The catenary
formed by a uniform chain
hanging between two points
at the same height
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For example, a soap film supported by a circular loop of wire will be a flat
circular disc.

The minimal surface of revolution can be created by dipping a pair of wire
hoops into a soap solution, and gently pulling them apart. The soap film
will be suspended between the two hoops, and the surface that it forms
will be the ‘minimal surface of revolution’; as shown in Figure 9.

2.3 A problem in navigation

Consider a river with straight, parallel banks a distance a apart, and a
boat that can travel with constant speed c in still water. The problem is to
cross the river in the shortest time, starting and landing at given points,
when there is a current.

We choose the y-axis to be the left bank, the line = a to be the right
bank, and the starting point to be the origin. The water is assumed to be
moving parallel to the banks with speed v(x), a known function of the
distance from the left bank. Then the time of passage along the path y(z)
from the point (0,0) on the left bank to the point (a, A) on the right bank,
assuming that ¢ > max(v(x)), can be shown to be

- [ VETT WP 0GP —v@y ) oo A

2 —ov(x)?

(11)

The map 7T is a functional: it maps paths y(z) to the times to cross the
river, and the problem is to find paths that minimise 7'[y]. Notice that T’
also depends explicitly on the speed profile v(x). This problem is
illustrated in Figure 10.

2.4 Catenary

A catenary is the shape assumed by an inextensible chain of uniform
density hanging between supports at both ends. In Figure 11 we show an
example of such a curve when the points of support, (—a, A) and (a, A),
have the same height.

If the shape of the chain is described by the function y(z), then it can be
shown that the potential energy E of the chain is proportional to the
functional

St = [ s/THWRds, y(-a) = 4, y(a) = A (12)
which you encountered earlier, in equation (10).

The function y that minimises this functional, subject to the length of the
curve

L= V1+ (y)?dx

remaining constant, is the shape assumed by the hanging chain.



3 Reminder about partial and total derivatives

It turns out that the shape of the catenary is given by y = ccosh(z/c) + d,
where ¢ and d are constants determined by the length of the chain and the
values of a and A. Proving this, however, requires minimisation of
functionals subject to constraints, which is beyond the scope of this
module.

3 Reminder about partial and total
derivatives

In the next section we will extend the kind of analysis that we performed
in Subsection 1.2 to more general types of functionals. To do this, we must
consider functions of an independent variable x, and of dependent
variables y(z) and y/(x) = dy/dx, for example F(z,y,vy') = zy? + 3y/, and
we will have to differentiate such functions with respect to all three
variables. Although differentiating such functions is straightforward, there
are aspects of the process that can cause confusion at first. In this short
section we explain what is required.

Consider a function F'(z,u,v) of three variables; for instance,
F(x,u,v) = zu’® + 3v.

Remember that each of the partial derivatives of a function of several
variables is obtained by differentiating with respect to one variable while
holding the others constant. The partial derivatives of F'(x,u,v) are

oF 9 OF oF
— = — =2 and — =
9r " du T ane T,
If we make the simple substitutions u — y(z) and v — y/(x), and treat y
and vy’ as independent variables, then we obtain the function

F(z,y,y') = xy* + 3y,
and the partial derivatives

oF 5 OF OF

— =y, — =2y and — =3.

or 7 oy 4
Next, remember that the total derivative dF/dx is the rate of change of F’
with respect to x, without holding the other variables constant. Because y
and y’ depend on z, we must use the chain rule to find the total derivative

3.

of F(z,y,y):
d OF OF dy OF dyf
—F N — 2= = 29 = 29
dx (@y.y) Ox + Oy dv Oy dx

or oy Toy?
So in this case we obtain
dF

2 / "
B 2 3y 13
T =Y 2ayy’ 4 3y (13)

_OF OF , OF ,
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We can check that this expression gives the right result for particular
choices of y(x). For example, suppose that y = 2?; then it follows that
y' = 322 and y” = 6. Substituting these values into the formula
F(z,y,y') = zy? + 3y gives

dF
F(x,23,32%) = 2" + 92, so o= 728 + 18z.
x
On the other hand, equation (13) gives
dF
o= (2%)? + 22(2%)(32?) + 18z = 725 + 18z,
x

so the two methods for finding the total derivative agree.

Here are a few exercises for you to try.

Exercise 4

Let F = z+/y? + (v')?, where y and y’ are functions of x.
F OF F F
g—x, 88— g—y/, and hence find Ccll_
dF
(b) If y = sin, then find T by

(i) substituting y = sinz into the formula for F' and differentiating

(ii) wusing the result from part (a).

Exercise 5

For the function F' = y/x2 + y(y’)?, where y and 3y’ are functions of z, find
oF O0F OF dF
o2 7 o &
ox dy Yy’ dx

Exercise 6

For the function F = x%y3, where y is a function of z, find
oF  OF dF
Er 8_y and e

Also, show that

A (OFN _ 0 (dF
de\dy ) Oy\dx )’

The formula

A (OFN _ 0 (dF
de\ oy ) Oy \ dx

established in Exercise 6 is valid for any sufficiently well-behaved function
F(z,y), where y is a function of x.
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4 Euler—Lagrange equation

In this section we extend the analysis of Subsection 1.2 to find the
stationary paths of more general functionals. In particular, we derive the
Euler—Lagrange equation, which is the main result of this unit. The
importance of the Euler-Lagrange equation is that it can be used to find
stationary paths of a wide class of functionals without going through the
type of analysis that we performed in Subsection 1.2.

4.1 Derivation of the Euler—Lagrange equation

We have seen that the functionals given in equations (9)—(12) describe a
variety of physical situations. Furthermore, all of these functionals can be
written in a unified way:

b
Sly] = / Fla,yy/)de, ya) = A, y(b) = B, (14)

where F(x,y,y’) is an expression containing at least one of the functions y
and 3/, and possibly also the variable z. (In contrast, notice that only y
appears as an argument of the functional S; that is, we write S[y].)

For example, equation (10) for the area of a surface of revolution has

F =2my/1+ (y')?,

so F'is a function of y and ¢/, but not of z. Also, equation (11) for the
time of navigation has

EIT W =0 - @)y,
2 —v(r)? ’

F

so F' is a function of y and ¢, and also of x because of the additional
function v(z), which measures water speed (for example, we may know
that v(xz) = z(k — x), for some constant k).

With all these problems, we need to find a path y(z) that makes the
functional (14) stationary. To do this, we proceed in exactly the same
manner as in Subsection 1.2. That is, we start by assuming that y(z) is
the required stationary path. We then define a neighbouring path

y(z,e) = y(x) +eg(x), where g(a) = g(b) = 0.

Here € is a small real number, and g(x) is any sufficiently well-behaved
function that satisfies g(a) = g(b) = 0, so that the neighbouring path y
passes through the same endpoints as y.

Now, the value of the functional along the neighbouring path is given by

b d’yv
S[yﬂz/ F(x,y,y") dz, Wheregj’:?.

4 Euler-Lagrange equation

21



Unit 5

22

Introduction to the calculus of variations

For fixed y and g, different values of € give different values of

Sly] = S[y + eg], hence we can think of S[y| as just a function of e. But y
is defined to be a stationary path, so S[y] must be stationary at ¢ = 0; that
is,

d
—S =0.

de ] e=0

This is exactly the same argument as in Subsection 1.2, and it leads to the
same result, equation (4).

The rate of change of the functional is given by

o (& /abF (@.7.7") o)
_ /ab (%ﬂx,@,g@)

where we have used the fact that the integration limits a and b are
independent of e, so that the order of integration and differentiation can be
interchanged using Leibniz’s integral rule.

d
d—gs[?ﬂ

e=0

dz, (15)
e=0

Remember that ¥ and 3’ both depend on ¢, but x does not, so we can
apply the chain rule to give

d . OF dy OF dy’

—F ! =\ = — — .

de (@5.9") -0 (8y de * oy’ de )|._
However, y = y + €g, hence y' =y + ¢/, so

d OF oF

—F(z,5,9") = (—~g+—~g’) :

de ( ) e=0 8y ay/ e=0

Now, F = F(x,y,y’) depends on ¢, whereas g = g(z) is independent of ¢.
As e — 0, we have y — y and 3y’ — 3. Therefore

d _OF  OF ,

—F vl _ -
e (90,y,y)€:O ayg+ay,g,

where now on the right-hand side F' = F(z,y,y). The right-hand-side
expression is independent of ¢.

Substituting this expression into equation (15) gives
d b OF OF
iy = — + ¢ (2) =— | dz.
de [m e=0 /a (g(x) 63/ * g (x) 8y,> !

The second term in this integral can be rewritten using integration by
parts, to give

/ab g'(x) g—j, dx = [g(x) g—j,K - /ab g(z) % (%5/) do.




But g(a) = g(b) = 0, so the first term on the right-hand side vanishes, and
the rate of change of the functional becomes

LB ()
CfeltE) Se

If S[y] is stationary, then by definition this integral vanishes for all
functions g(z). Because g is arbitrary, this can occur only if

d [(OF oF
@(87/) - 8—y =0, yla)=A, yb)=1B. (17)

sy

Deriving the differential equation

You can see how (17) follows from (16) using a ‘proof by
contradiction’, as follows.

Suppose that the bracketed expression on the right of equation (16) is
not zero everywhere. Then because g(z) is chosen arbitrarily, we can
choose it to have the same sign as the bracketed expression for every
value z. Hence for this choice of g, the integrand is positive whenever
the bracketed expression is not zero. As a consequence, the integral is
positive too, which contradicts the fact that y is a stationary
function. Hence the bracketed expression must be zero everywhere,
which establishes equation (17).

Equation (17) is known as the Fuler—Lagrange equation, and is hugely
important in mathematical physics. Solutions of the Euler-Lagrange
equation are stationary paths of the functional S[y] in equation (14).
When applied to a variational problem, the Euler-Lagrange equation
usually produces a second-order differential equation, which must be solved
subject to the boundary conditions in equation (14) in order to obtain the
stationary path.

Note that it is usually much easier to use the Euler-Lagrange equation to
find stationary paths than it is to use the type of analysis that we
performed in Subsection 1.2.

The Euler—Lagrange equation is the main result of this unit, and it is
essential that you remember the equation and how to use it (although you
do not need to remember how it is derived).

4 Euler-Lagrange equation
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Euler-Lagrange equation

The functional

b
Sl = [ Flyy)ds, y(a)= A, y(b) = B, (18)

has stationary paths that are given by solving the Euler—Lagrange
equation

a (§—5> -5 =0 @) =4, yO) = B. (19)

Let us apply the Euler-Lagrange equation in an example and some
exercises.

Example 2
Find the stationary path of the distance functional

b
Sly] = / VIt y@Pde, yla)=A, y(b) = B, (20)

considered in Section 1 (equation (2)).
Solution

Comparing equations (18) and (20), we see that the integrand is given by

F(z,y,y) =1+ (x)2.
To use the Euler-Lagrange equation, we need to calculate F/dy and
OF/0y'. The first thing to notice is that the integrand depends explicitly
only on ¢/, not on x or y. Therefore

oF ! oF

5 = Y ad T =

dy 1+ (v')? dy

Hence the Euler-Lagrange equation (19) becomes

d y B
dzx < 1+ (?/)2) - 2

We could differentiate this to get a second-order differential equation for y,
which we could then solve by integration. However, equation (21) is
already in a convenient form to be integrated directly.

Integrating both sides of equation (21) with respect to x gives
/
¥ ____. (22)
L+ (y')
for some constant . This is identical to equation (6), which is the
equation that we derived in Subsection 1.2 for the stationary path. Its
solution (equation (7)), was shown to be

_B—A +Ab—Ba
T h—a " b—a

Y




Exercise 7

Consider the functional

b
Sl = [ (@) +)do. 9(0) =0, y(1) =2,
a
(a) Show that the stationary paths of this functional must satisfy
2" —1=0, y(0)=0, y(1)=2.
(b) Solve this differential equation to show that the stationary path is

2
y:ix —i—%x.

Exercise 8
(a) Show that the Euler-Lagrange equation for the functional

X
Sly] :/o () =y?)dx, y(0)=0, y(X) =1,
where 0 < X < 7, is
y" +y=0.

(b) Hence show that the stationary function is y = sinz/sin X.

Exercise 9
(a) Show that the Euler-Lagrange equation for the functional

1
Sly] = /0 () + % + 2zy) dz, y(0) =0, y(1) = a,
where « is a constant, is

y'—y=u.

(b) Hence show that the stationary function is

_ Oé+]_ (x_ fz)_
Yy = p—| e e x.

4.2 Alternative forms of the Euler—Lagrange
equation

In Example 2, you saw an example of an integrand
F(z,y,y") = V1+y'(z)

used to define a functional, which did not depend explicitly on y. In this
case, 0F /0y = 0, and the Euler-Lagrange equation (19) reduces to

A (OFN
de\oy' )

4 Euler-Lagrange equation
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After integrating with respect to x, we obtain

oF
— = constant.

oy’
(Compare these two equations with equations (21) and (22).) Thus we
arrive at the following result.

Special case of the Euler—Lagrange equation

If a functional has the form

b
ﬂm=/ﬁw@mm y(a) = A, y(b) = B, (23)

in which the integrand does not depend explicitly on g, then the
Euler-Lagrange equation can be integrated to give

—— = constant.

oy’

If, on the other hand, the integrand does not depend explicitly on x, so
that the functional has the form

b
ﬂMZ/F@w%m y(a) = A, y(b) = B,

then it can be shown that the Euler-Lagrange equation (19) reduces to
oF
' —F=c, a)=A, y(b) = B,
Y oy y(a) y(b)
where c¢ is a constant determined by the boundary conditions. We will
derive this equation in Exercise 12. The expression on the left-hand side of
the equation is called the first integral of the Euler-Lagrange equation.

First integral of the Euler—Lagrange equation

If a functional has the form

b
Sl = [ Fu/)de. yl@) =4, y0) = B, (24)

where the integrand does not depend explicitly on x, then the
first integral of the Euler—Lagrange equation is
oF
y, 8_3/ —F= Cy y(a) = Aa y(b) = Ba (25)
where c is a constant determined by the boundary conditions.
The stationary path of the functional S is determined by solving this
first-order differential equation.



Equations (23) and (25) are important because they both give rise to
first-order differential equations, whereas the most general form of the
Euler-Lagrange equation gives rise to a second-order differential equation
— and first-order equations are usually easier to solve than second-order
equations.

Exercise 10

Consider the functional
2
S[y]Z/ (Iny +y)dz, y(1) =In2, y(2)=1In3.
1

(a) Show that the first integral of the Euler—Lagrange equation is
dy _
dr

for some constant o.

ae™?, y(1)=In2, y(2) =1n3,

(b) Hence show that the stationary function is y = In(z + 1).

Exercise 11

Consider the functional

Sly] = / VAP e, y(=1) = y(1) = A

where A > 1.

(a) Show that the first integral of the Euler-Lagrange equation for this
functional is

Yy = %\/y — k2 y(=1) =y(1) = A.

(b) Hence show that the functional is stationary on the paths

Whereh:%(Aj:\/A2—1).

2

X
= h _—
y(z) + o

Exercise 12

(a) Suppose that F(y,y") does not depend explicitly on z, so that
OF/0z = 0. Show that

A (O N (d (0P oF
oz \Y oy’ — Y\ oy’ oy )’

(Hint: Evaluate the derivative on the left-hand side.)

(b) Hence show that equation (25) is true if either (i) y(x) satisfies the
Euler-Lagrange equation, or (ii) y(x) is constant.

4 Euler-Lagrange equation
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5 Applications of the Euler—Lagrange
equation

In this section we consider some applications of the Euler—Lagrange
equation to physical problems. We begin with a discussion of Fermat’s
principle, which describes the trajectories of light rays. This topic is the
most important one of this section because it forms a useful stepping stone
to the next unit, on Lagrangian mechanics.

After Fermat’s principle, we revisit two of the examples of Section 2 — the
brachistochrone and the soap film. These are interesting applications that
expose you to the sorts of method used to construct functionals, and they
exhibit the type of behaviour that can be modelled using the calculus of
variations. However, solving the Euler-Lagrange equation for these two
problems is beyond what we would expect from you in assessment of this
module. So do not worry if some of the details of Subsections 5.2 and 5.3
seem more advanced than the rest of this unit. You will not be assessed on
the fine details of these topics. However, the examples and exercises
distributed throughout this section are typical of the sorts of question on
which you will be assessed. It is therefore very important that you follow
the examples and complete the exercises.

5.1 Fermat’s principle

In most circumstances, light can be considered to travel along lines from a
source (such as a light bulb) to an observer (such as a human eye); these
lines are called light rays, or just rays, and are often straight lines. This
is why most shadows have distinct edges, and why eclipses of the Sun are
so spectacular.

A simple experiment with light rays involves reflecting light in a plane
mirror, as shown in Figure 12. In the diagram there is a fixed point source
of light S, which emits light rays in all directions. One light ray is reflected
from the mirror at R and travels to an observer fixed at O, as shown in the
diagram. Labelled in the figure are the angle 6; between the line SR and
the vertical line through R, and the angle 0> between the line RO and the
vertical line through R. (The plane of the mirror is perpendicular to the
page, and it is assumed that the plane SRO is in the page.)

We wish to determine the location of R. The key to this, obtained from
experiment, is to observe that for light rays reflected in this way, the
incoming angle 1, called the angle of incidence, is equal to the outgoing
angle 6o, called the angle of reflection. Using the fact that 6, = 65, we
can determine the xz-coordinate of R using elementary geometry. (In brief,
because 6 = 0, the two right-angled triangles with hypotenuses SR and
OR are similar, from which it follows that x/hy = (d — x)/ha. Rearranging
this equation gives © = dhy/(h1 + h2). We will not use this exact formula
for = again.)
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Figure 12 A light ray emitted from S, reflected at R, and observed at O

This observation about the two angles has an interesting consequence.
Consider any path from S to R to O of the type shown in Figure 12 (not
necessarily the path of a light ray; 6; and 62 may differ). By applying
Pythagoras’ theorem to the triangles, we can see that the total length of
the path is

J(@) = \Ja? + 13+ \/(d - @) + 3.

It turns out (see Exercise 13) that this function of z has a minimum when
01 = 05; so the light ray that travels from S to O via reflection in the
mirror minimises the distance that it travels.

This result was generalised by the French mathematician Pierre de Fermat
(1601-1665) into what is now known as the principle of least time.

The principle of least time states that the path taken between two
points by a ray of light is the path that can be traversed in the least
time.

(Note that this principle is not quite correct; an amended statement
will be given shortly.)

This principle means that light will always travel in straight lines when it
passes through a single uniform medium like air, because it has a constant
speed, so the shortest distance is always the fastest time of passage.
However, light has different speeds in different media: for example, in a
vacuum the speed of light is ¢ ~ 2.9 x 108 ms™!, whereas in water it is
Cwater =~ 2.25 x 108 ms~L. (Note that the letter ¢ is conventionally used to
denote the speed of light in vacuum. Take care not to get this mixed up
with any constants of integration that you introduce!) Generally, if the
speed of light in a uniform medium is ¢, then we define the refractive
index of the medium to be the ratio n = ¢/cpy; so the refractive index of a
medium is just another way of characterising the speed of light that passes
through it.
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Figure 13 Sunset mirage

30

Consider now a general (possibly non-uniform) medium in the Cartesian
plane, with refractive index n(z,y) at the point (z,y). Then the speed of
light will vary in space according to the formula ¢, (x,y) = ¢/n(z,y), and
the time taken for light to travel along an infinitesimal line segment of
length Js is

0s 1

However, in Subsection 1.1 we showed that along a path y = y(z), we have

ds = /1 4+ y/(x)? 0z (see equation (1)). Therefore
1
ot = - n(z,y)vV1+y (x)?ox.

So for light moving in the Cartesian plane, in a medium with refractive
index n(z,y), with the source at the point (a, A) and observer at the point
(b, B), the time of passage T along a path y(z) joining these points is

b
Tyl = [ ne) VIF @R dn, yla) = A, ) = B. (26)

a
In the context of the calculus of variations, the principle of least time states
that the path taken will minimise this functional. In fact, this is not quite
correct: light rays actually take paths that make this functional stationary;
that is, light rays follow paths that are stationary paths of equation (26).
Normally, such pa