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In short: In this course, we study the
Elastic stability of slender structures – Rakenteiden stabiilius

The content is conceptually very concise with only three fundamental 
and general concepts to study: 
1) Equilibrium - tasapaino
2) The stability properties (stable, neutral, unstable)– tasapainon laatu 
3) Sensitivity of an equilibrium to imperfections –herkkyys häiriöille

Many applications of structural stability of typical structural elements 
commonly used in civil engineering will be studied.
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The method:
two consecutive lectures & two 
cessions of guided exercises  for doing 
the weekly compulsory homework



In short: In this course, we study the
Elastic stability of slender structures – Rakenteiden stabiilius

The content is conceptually very concise with only three fundamental 
and general concepts to study: 
1) Equilibrium - tasapaino
2) The stability properties (stable, neutral, unstable)– tasapainon laatu 
3) Sensitivity of an equilibrium to imperfections –herkkyys häiriöille

Many applications of structural stability of typical structural elements 
commonly used in civil engineering will be studied.

Sensitivity of an equilibrium to imperfections 



• Content of this course
• Literature  &  additional course material
• Practicalities

• Introduction
• What equilibrium and stability mean?
• The key questions 
• How stability is investigated?

• Stability loss as a phenomenon
▪ Examples of loss of stability

• Basic concepts of stability
▪ Static & dynamic stability

• Structural design and stability
• Methods of stability study

• Energy criteria of stability
• Lagrange-Dirichlet Stability theorem

• Equilibrium paths  
• Critical equilibrium points, bifurcation, limit points
• Stability of an equilibrium
• Linear Buckling Analysis 
• Non-Linear Buckling Analysis (GNA)

• Types of bifurcation instabilities

• Effect of imperfections on the post-buckling 
behavior

• Illustration examples

Content of this 1st week two lectures:

These are the two lectures 
of the first week
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Literature

My notes on stability:

Lectures slides:
Each week new
material



First week - content

• Reading 
assignments

• Lecture 
augmented 
slides

• Detailed 
content

• Reading 
assignments

Practicalities



Practicalities
Homework

has been sent to you through mycourses





Some videos on stability of structures 
https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

(24.02.2010)

Cross-section 
motion: compined 
bending and torsion

https://www.youtube.com/watch?feature=youtu.be&v=cYRicTk-Q08&app=desktop

1:  Lateral torsional buckling of I-beam      (kiepahdus)
Comment: Good experiment with load-displacement curves
The student can clearly see the transition from bending in the vertical plane 
to bending in the horizontal plane and torsion

2: Torsional buckling of L-shape cross-section (angle) 
column     (vääntönurjahdus)
Comment: Good experiment with a funny professor. 
Note that, the apparent  (torsional) rigidity gets dramatically reduced 
close to the buckling load

no load 
yet

buckled

loaded
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Hohohoh, it buckles
https://www.youtube.com/watch?v=0WN8RP7Bz6Q

buckled

(
2
4
.
0
2
.
2
0
1
0
)

3: buckling of upper cord of a truss
Comment: Note the FAST and DYNAMICAL transition from the primary equilibrium  (unbuckled) to the secondary equilibrium state (buckled)

Lateral torsional 
buckling

https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop


Some videos on stability of structures 
https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

Lateral torsional buckling of 
I-beam
(kiepahdus)

(24.02.2010)

1. Starts loading
Elastic linear response

2. Bucklig occurred  
Continue loading
Geometrically non-linear

3. unloading
Elastic linear response

Experimental load-
displacement curves
= equilibrium pathsw - Measured horizontal displ. (mm)

v - Measured vertical displ. (mm)

Buckling  load Limit  load
(limit point)

Cross-section 
motion: compined 
bending and torsion

https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop


equilibrium state

Snap-through of shallow arch

Case without dissipation

Shallow arch
Model in our coffe-room

Snap-through

Systems  with multiple equilibrium states • In such systems,  the structure can move 
from one equilibrium state to another if 
enough perturbed 

• For structural engineers such motion is 
not desired and is  called loss of stability

Equilibrium 
state  #1

Equilibrium 
state #2
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Soil material instability

The key stability question in 

structural design
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Soil material instability

The key stability question in 

structural design



What are the key question in stability investigation?

A modelCable-stayed 
tower

Stability?

or limit load

Post-buckling behavior



➢ Consider a structure  which is initially in 
equilibrium

➢ Introduce an arbitrary tiny perturbation ; 

➢ Remove the perturbation

➢ Dynamic stability considers time history of 
the motion after an arbitrary tiny perturbation

The equilibrium 
stable

The equilibrium  
unstable

DOES The structure sustains or 
comes back to its initial 
equilibrium configuration or very 
close to it?

▪ Then  what happens?

YES: dynamically  
stable

▪ Then  what happens?

DOES the change in amplitude keep not 
enhanced in time,  after such perturbation?

Dynamical instability 
(flutter)

Stability of an equilibrium



Methods of stability study

There exits three (analytical) methods for studying the stability of an 

equilibrium: 

1) Bifurcation approach   - write the equilibrium equations in  a deformed 
configuration and determine the onset of buckling

2) Energy approach - the change of total potential energy of the system 
between two neighboring equilibrium states is used to derive the equations of 
equilibrium and to study its stability 

3) Dynamic approach - the equations of motion of the system are established.  
i) natural frequencies decreasing to zero, correspond to the onset of instability or 
ii) investigate how an initial perturbation develops with time (full dynamics)

1) For design purposes,  detailed stability behaviour of structures  can be 

analysed numerically by performing  a geometrical and material non-linear 
(GNMA) analysis on the real structure with the inherent  real  and possible 
imperfections using capability of the Finite Element technology.     Such analysis 
provides full  load-displacement curves which are used to identify bifurcations 
or/and limit points for determining the limit loads

5)  Experimental approach is needed since  models are only approximations and very  often, they 
are a very incomplete approximations.  For some structures,  experiments are of primary importance
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https://www.nasa.gov/offices/nesc/home/Feature_NESC_Shell_Bu
ckling_Investigation_Continues_to_Make_Gains_Feb_2014.html

Experiment: NASA NESC Shell Buckling

Buckling of thin-walled cylinders

Experimental: stability of concrete 
structures under seismic loading 

In our course, we will  systematically 
the energy approach.



Stability of static equilibrium configurations
of a mechanical system (Euler 1707-1783)

ex. structures: columns, beam-columns, frames, 
plates, shells … 

‘Two types’ of stability 

Static Stability (SS): Dynamic Stability (DS):

Assumptions for static stability criteria:

• Elastic* material  (strain energy exists)
displacements and rotations,  not necessarily small

• Loads are conservative** (= derivable from a 
potential)

Examples of  conservative forces: gravity and hydrostatic
loads, elastic force, …
Examples of  non-conservative forces: friction, (drag) hydro- &
aerodynamic and jet-propulsion loads, gyroscopic forces, 
following forces…

Basic Concepts

Stability of the motion of  dynamic systems 
(Lyapunov 1857-1918)

(e.g., a train trajectory, system with following 
forces: reaction propulsion rackets, 
korkeushyppääjän sauva,  aerodynamic forces 
on structures: flutter bridges, …) 

Ex. non-conservative forces: 

Jet propulsion force

N.B. the stability loss is nothing else than  the  motion during transition of 
the structure  from one equilibrium state to another one  and therefore  
stability loss is dynamical by nature. Despite, that, under certain conditions 
one can treats the problem of stability loss in statics framework. Naturally, 
many  other problems of stability must be set as dynamical problems to be 
correctly solved.  

C
o

n
se

rv
at

iv
e

 s
ys

te
m

s

Conservative and non-
conservative systems



Stability loss  as we see its … consequences



Stability is a fundamental property  of (dynamical systems) 

systems having more than one equilibrium states where 
the system can rest in one or in the other states

• These equilibrium states correspond to local minima in 
potential energy of the system

• Between two local minima a local maximum should exist. 
The state at this critical point is unstable. This local maxima is 
termed as potential barrier.

• A tiny external perturbation can make the system switch to 
another equilibrium state if enough energy input is given to 
jump the barrier separating the local minima

Loss of Stability = symmetry breaking



Stability loss  as a symmetry breaking phenomena

• In physics, loss of stability belongs to the 
class of symmetry breaking phenomena …

➢ where action of infinitely small 
perturbations (fluctuations) on the 

system being close to a critical point …
➢ leads to sudden branching via

bifurcation (or limit point) to some 
other neighboring state

• Loss of stability is dynamic by nature

✓ snap-through of a shallow arch
✓ resonance in parametric excitation of stay-

cables of a bridge or cable of guyed tower,
✓ Flutter  (a dynamic instability of an elastic 

structure interacting with a fluid flow … 
Tacoma Bridge)

✓ … .. 

Ex
am

p
le

s
Symmetry breaking 

Theory of supersymmetry:  
Physicists believe that just after the big 
bang, all of the forces of nature were 
identical and all elementary particles were 
the same.    But within an ‘instant’, 
symmetry was broken   . . . and  then . . . 
we and the universe are here …

It seems that we are the 
consequence of a stability loss of the 
primary universe!

I ask physicists what does ‘instant’ means before our time even existed! 



Lyapunov dynamic stability criteria is 
naturally in use in structural dynamics

Flutter
Coupling structure-fluid motion
Bending and torsional modes … have same frequency

Bridge deck in a flow



Stability loss  as a dynamical process

• Dynamical systems are generally 
described by non-linear differential  
equation set

• The system posses equilibrium points 
(states)

Lyapunov dynamic stability:



• Dynamical systems are generally 
described by non-linear differential  
equation set

• The system posses equilibrium points 
(states)

Lyapunov dynamic stability:
• The discrete equation of motion of a 

mechanical system, can be recast in terms of a 
canonical non-linear dynamical problem 

Lyapunov dynamic stability criteria is naturally in 
use in structural dynamics

For the linear case:



• The discrete equation of motion of a 
mechanical system, can be recast in terms of a 
canonical non-linear dynamical problem 

Lyapunov dynamic stability criteria is 
naturally in use in structural dynamics

✓ Flutter - a dynamic instability of an elastic structure interacting with a fluid flow … Tacoma Bridge

Includes also  aero-elastic forces from the 
interaction of the structure with  flow

For the linear case:



Lyapunov dynamic stability criteria

Example of dynamic instability: Flutter : instability of an elastic structure resulting from structure-fluid interaction

Includes in forces f
aero-elastic forces from 
the interaction of the 
structure with  flow

Behavior becomes 
unstable

c

Discrete equation of motion of  mechanical systems
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Rakenteiden epästabiiliusilmiöitä:
• sauvojen nurjahdus (flexural buckling)
• vääntönurjahdus (torsional buckling)
• kiepahdus (lateral torsional buckling)
• levyjen ja kuorien lommahdus (buckling of plates/shells) 
• laakeiden kaarien ja kuorien läpilyönti (snap through)

Examples of loss of stability

Läpilyönti

Lommahdus

Avaruusnurjahdus Nurjahdus

Kiepahdus

Nurjahdus

Kiepahdus

Lommahdus

(Leikkaus-)lommahdus

(Leikkaus-)lommahdus

Slope stability



vrt. kiepahdukseen – vaikkakin alapaarre on vedossa

Rakenteiden stabiiliusilmiöitä  - sekalaista 

Lommahdus

Lommahdus

Lommahdus

Lommahdus

Kiepahdus

Kimmoton nurjahdus
Nurjahdus

Läpilyönti

Läpilyönti

Examples of loss of stability

Snap-through

Inelastic buckling

Lateral buckling



Maapohja petti ... maan leikkausmurto
Soil Foundation Bearing capacity Failure – China

You want to know more?  join the 
courses of Geotechnics and Soil and 
rock- mechanics
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China (Jiujiang) foot (or ramp) bridge collapse - buckling
Ref: https://www.youtube.com/watch?v=0WN8RP7Bz6Q

Buckling failure happens – watch it, you’ll see how fast & unpredictable
• At once and global (in the whole structure or its member)
• Unpredictable (you do not have time to see the signs that is too late 

already) … happens between 7th s and 9th s!
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Russia, about 1890

2

2

L

EI
Pcr =

crPcrP

buckling

Foot bridge (ramp) collapse in Jiujiang City 
(China's Jiangxi)

Railway bridge collapse, Russia ~1890

The mechanical cause of the 
collapse is of the same type: 
flexural buckling of compressed 
upper chord of the truss  
(yläpaarteen nurjahdus)

Examples of 
stability failure

Why instability is 
an  unwanted 
event in  desing of 
structures?



Consequences of stability loss

Ex
am

p
le

s 
of

 s
ta

bi
lit

y 
fa

ilu
re

Why instability is an  unwanted event in  
desing of structures?



Flexural buckling



Compare with Euler’s buckling load:
(obtained theoretically, 1744)

Pieter van Musschenbroek 

(1692 – 1761)

A Dutch scientist
Physics, mathematics, 
philosophy, medicine, astronomy

➢ Performed experiments on column
buckling (1729)

➢ Observed that the maximum 
compressive load a column can 
sustain prior to failure is 
proportional to

2/1 failureP

2/1 

He did pioneering studies on the buckling 
of compressed struts

A bit of history 

2/1 
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To: Structural Mechanics:
Beams and frame structures

34

Leonhard Euler

2..71828182845904523536028747135266249775724709369995...

Find me?

STATIC STABILITY OF STRUCTURES

Exp:    Djebar Baroudi, PhD

Djebar BAROUDI, PhD.
Short-version, state: 7.10.2016

Modern 
writing







Equilibrium?  Yes.
But, is it stable? No.

Photo: D. Baroudi, 
2016

0][Π = u

0][Π2  u

• Equilibrium configurations existence of multiples 
equilibriums or limit points

• Stability of these equilibriums with respect to 
small perturbations

• Sensitivity with respect to imperfections
▪ shape
▪ geometry
▪ Loads (eccentricity)
▪ Material imperfections 

Stability analysis investigates

In addition to the above points, following questions will 
be answered:

• Can we predict the critical load?
• What happens at the bifurcation (or limit) point?
• Can we describe or determine the post-critical 

branches? What would be their shape? Their nature?



• Stable equilibrium state  

▪ Let’s perturb a bit a structure Initially resting at an 
initial equilibrium state away from this equilibrium 
state. If after removal of all disturbing factors the 
structure returns to its initial equilibrium state then 

the initial equilibrium state is stable (for elastic 
structures)

▪ Even when the structure tends only to return to its 
initial equilibrium state one can assume that this 

initial equilibrium state is stable.    
Such behaviour occurs when material behaviour is plastic   
or elasto-plastic. In such cases the structure returns only   
incompletely to its initial configuration because of 

residual deformations.  

• In case of rigid bodies the stability of position is 
considered

• When the above listed behaviour is not fulfilled we say 

that the equilibrium is unstable

Fundamental Concepts

Small perturbation away from this 
equilibrium state

Flexural 
buckling

stability of 
position 

Is it stable?



Method for Study of Stability

The stability theorem

For conservative systems we consider stability of static equilibrium



• Is a global energy criterion for stability

• will be used systematically to derive the 
all the equations of stability (loss) we 
need for all elastic structure s

Stability theorem of  Lagrange-Dirichlet

(More general than Trefftz)
Trefftz is a particular case where the total potential 

energy increment is expanded only up-to its quadratic 

terms between the initial and perturbed states



Stability theorem of  Lagrange-Dirichlet

(More general than Trefftz)

Buckling or instability or neutral equilibrium condition:



The 3nergy approach permits a 
geometrical visualization of 
equilibrium and its stability as 
topographical maps where it is 
easy to recognize equilibrium 
paths and their stability 
properties



Stable

Unstable

Indifferent



Equilibrium?  Yes.

But, is it stable? No.

Testing stability of an equilibrium: 
• a static equilibrium configuration 

+  plus

• a small perturbation

-infinitesimal perturbation
keeping loading parameter 
unchanged 

u

u

Application of Lagrange-Dirichlet Stability theorem



Equilibrium Path for Deformed Systems

A key  behavior of a 

loaded structure  

can be studied 

through:

• measuring or deriving or 
the relation between the 
load and the 
displacement at some 
characteristic point(s)

• Graphical 
representations of such 
relations  

are called equilibrium paths 
(or equilibrium curves)

Illustration example: the simplest  systems with one DOF 

Equilibrium equation:

Two independent 

solutions:

Equilibrium paths: are graphs of equilibrium solutions (= load-displacement curves)

Rotation Vertical displacementHorizontal displacement
Ref: this example is from:
N. A. Alfutov 
Stability  of Elastic Structures 

primary path
(primary equilibrium)

secondary path

Primary branches = pre-buckled behaviour

Secondary 
branches
Post-
buckled 
behaviour



Bifurcation 
point
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Equilibrium path and 
stability loss
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Critical Equilibrium Points

rajapiste

Generic equilibrium path

Limit point

Bifurcation point

Critical points

Haarautumispiste

rajapiste

Ideally perfect 
structure

v

Structure
with imperfections

Drop in 
max.
load



material non-linearity

Linear Buckling Analysis 
Non-Linear Buckling Analysis (GNA)

Ideally perfect 
structure

Structure
with imperfections

Im
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Introduce the imperfections

Linear Buckling analysis
(For ideally perfect structure)

Provides the Buckling Load

Non-Linear Buckling Analysis (GNA)
(For structure with imperfections)

GNA  = geometrically Non-linear Analysis

Buckling load of 
ideally perfect
structure 

Buckling (or limit) 
load of imperfect 
structure 

• Linear buckling analysis = solving an 
eigenvalue problem.  Provides the 
smallest eigenvalue (buckling load) 
for ideally perfect structure

• A non-linear buckling analysis = a 
geometrically nonlinear analysis 
which is not anymore an eigenvalue-

problem provides limit-load (or 
loosely called buckling load) for the 
imperfect structure and the 
displacement-load curve

• How to do GNA? Non-linear static +
gradually increasing the loads +
accounts for initial geometrical 
imperfections

• In real problems, all other relevant 
sources of non-linearity can be 
introduced: material non-linearity, 

contact, etc… GMNA

smallest Eigen-value 

material non-linearity





• The nature of post-buckling behavior determines 
to a large extend safety and the robustness of 
the structural design

Basic types of bifurcations

• Stable symmetric
✓ Structures having this type of behavior are 

always imperfection insensitive and have 
consequently a reserve of resistance

• Unstable symmetric
✓ This gives  imperfection sensitive structures

• Asymmetric or unsymmetrical
✓ This gives much more imperfection sensitive 

structures than above

• Snap-through
✓ Such dynamic behavior is pathological not 

desired behavior and is locally like an 
asymmetric branching on equilibrium path

Limit point

Rajapiste
Limit point
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• The nature of post-buckling behavior determines 
to a large extend safety and the robustness of 
the structural design

Basic types bifurcations

• Stable symmetric
✓ Structures having this type of behavior are 

always imperfection insensitive and have 
consequently a reserve of resistance

• Unstable symmetric
✓ T his gives  imperfection sensitive structures

• Asymmetric or unsymmetrical
✓ This gives much more imperfection sensitive 

structures than above

Bifurcation diagrams  
are not only 
theoretical concepts 
but they really exists 

Roorda’s experimental verification

Axial shortening



TIME (ms)

Equilibrium 
Straight configuration
only stretching

Starts to moves to adjacent dynamic ‘equilibrium  
state’
New flexural configuration
No more stretching, only flexion, in the beginning

Post-buckling behaviour Both 

curvature and stretch changes are present

Equilibrium
(almost)

• Here one observes ‘small’ quasi-static 
equilibrium configuration change going from 
straight to adjacent flexural sate (the green box) 

• Such small changes are what we study in this 
course

• The minimum load neads to move from straight 
to the adjacent (flexural) equilibrium configuration 
is called buckling (critical) load

• The flexural new equilibrium configuration is 
called the buckling mode

Ref: D. Baroudi, 2018 – full-nonlinear modelling – systematic use 
of virtual work principle with D’Alembert principle

Equilibrium path

Flexural tip deflection

Axial load

Only stretching 
equilibrium

Critical load 
(bifurcation)

Critical load =

Example 1: Buckling  of beam-column under self-weight



TIM
E

(m
s)

Example  2: Snap-through of shallow arch (symmetric mode)

Starts to moves 
to adjacent 
‘equilibrium  
state’
flexural 
configuration

Ref: D. Baroudi, 2018 – full-nonlinear modelling – dynamics

Initial 
configuration
only membrane 
state

Self-weight and linearly 
increasing external nodal load 
at node 10 are acting
In the simulation, the system is 
to dissipative.
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‘snap-through’ like 
motion with 
resisting frictionStable

Stable

There is no critical point visible
(in this numerical example, I have put 
too much dissipation; so friction works 
and resists at joints. So this numerical 
example is not 100%-elastic as here )

Equilibrium path

Painovirhe: These are coordinate of the 
tip point (not displacements)

Snap-through

Snap back

deflection

fo
rc

e

Does not belongs here

Case without dissipation

Shallow arch

Snap-through



Fundamental questions



• Such simplified models (rigid bars-spring discrete systems) 
allow to grasp the fundaments or invariants of stability 

✓ equilibrium paths
✓ critical points (bifurcation, limit-points)
✓ nature of stability on primary and secondary branches
✓ the principle difference  between full-non-linear 

equations describing the post-critical state and their 
linearized homogeneous versions in the vicinity of 
critical points

• With rigid bars, all the strain energy concentrate in the 
springs (makes the formulation tractable by hand)

Complex continuous structure

Rigid bars-spring 
discrete systems



Complex continuous structure

Rigid bars-spring 
discrete systems

Why study rigid-springs systems? I want to 

directly study stability of real structures?

• Such simplified models allow to apprehend (=grasp) the key  
invariant concepts without being distracted by irrelevant for 
the task details rising from accounting for more complexity

• These concepts are general and  independent on the level of 
complexity of the structure

• Do not mix general concepts and the examples used to 
illustrate them 

• The concept is general and the example is a particular mean 
for passing the concept



Tasks: 
• determine  all the equilibrium configurations:

✓ Bifurcation (or limit) point 
✓ pre-buckling primary or fundamental equilibrium
✓ post-buckling configurations or secondary 

equilibrium branches

Elastic 

rotational 

spring

Rigid bar

Equilibrium paths
Stable-symmetric bifurcation

Increment of total potential energy
between initial and perturbed

equilibrium configurations



Elastic 

rotational 

spring

Rigid bar

Increment of total potential energy

fundamental equilibrium branch
(= pre-buckling branch) post-buckling equilibrium branch

Equilibrium 
(stationarity)

solutions

Note the non-linearity of this problem

Equilibrium paths

Compare: continuous and discrete  models
h



Increment of total 
potential energy

fundamental equilibrium branch
or pre-buckled branch post-buckling equilibrium branch

Equilibrium 
(stationarity)

Equilibrium solutions

Symmetric 
bifurcation

fundamental 
equilibrium 
branch

Equilibrium paths

The buckling load (bifurcation point) and the 

nature of stability of all branches will be 

discussed in next slides …

post-buckling 
equilibrium 
branches

Bifurcation point

Note the non-linearity of this problem

The number of 

solutions changes 

from one (primary) 

to two (secondary 

branch)

full non-linear equilibrium 
equation



Bifurcation point

Stability of Equilibrium





Bifurcation point

Stability of Equilibrium

Stability of Equilibrium on the 
secondary path:

Direction of increase of the 
rotation angle from 0 to pi



Rigid bar

Equilibrium paths
Stable-symmetric bifurcation

Increment of total potential energy

Elastic 

rotational 

spring



Results in the eigenvalue problem:

Simple examples of a 
Linear buckling analysis
Determine
• the buckling load
• buckling modes



Simple examples of a 
Linear buckling analysis

Determine
• the buckling load
• buckling modes

Equilibrium eqautions in the tiny 
buckled configuration



Results in the eigenvalue problem:

Simple examples of a 
Linear buckling analysis

Determine
• the buckling load
• buckling modes



Results in the eigenvalue problem:

Simple examples of a 
Linear buckling analysis

Determine
• the buckling load
• buckling modes



• Expanding total potential energy in Taylor's series 
around the neutral equilibrium position                  and 
keep up-to quadratic terms

• What is the fundamental difference as regarded to the 
full non-linear analysis performed just above where all 
equilibrium branches were completely determined.

This is a set of homogeneous linear equations 
which forms an EIGENVALUE problem

• Criticality:

• Equilibrium:

?

Linear buckling analysis provides ONLY:
• the buckling load
• buckling modes up-to a multiplicative coefficient

= Linear buckling analysis
results in an eigenvalue problem

results in an eigenvalue problem



• Criticality:

• Equilibrium:

Linear buckling analysis provides ONLY:
• the buckling load
• buckling modes up-to a multiplicative coefficient

= Linear buckling analysis

• What is the nature of stability at the bifurcation point? 

• Can we answer with the linearized model? Answer:  NO



Asymptotic post-buckling analysis

• N.B.   Linearized buckling analysis cannot provide 
information about the post-buckling behavior

• So,  needs post-buckling analysis (full non-linear 
formulation)

Expand up-to fourth-order terms the total 
potential energy

pre-buckled 
branch

post-buckling 
branch

Note that now, for loading values greater than the buckling load, we obtain 
the corresponding value for the rotations



REF:   https://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html

= 0Π
)(Π2 

Pos.def?

Fundaments of Stability Theory:  Example on imperfections

The imperfection 
parameter is the 
initial tilt angle

NB. we can have 
also such ‘bassins’ 
if we can access 
them



Example of FE-based post-buckling analysis

For real problems, one should rely on computational
technology and experimental approach

• Validate computational models you are 
using before making predictions 

• There can be physics that computational 
models do not see (not or cannot be 
accounted for), which effects  can be 
accessed only experimentally

P

H



Effect of imperfections

All real structural systems are imperfect

✓ in form, 
✓ in material properties, 
✓ in the sense of residual stresses 
✓ in the way the loads are applied



Initial imperfection in horizontality

• Axially loaded structure with imperfections

✓ imperfection in horizontality (or verticality 
for a column)



• Axially loaded structure with imperfections

✓ imperfection in horizontality (or verticality 
for a column)

Sensitivity analysis

Non-elastic material
Elasto-plastic failure
(material instability)

Elastic 
material

Limit-point



Stability is determined by studying the sign



Stability is determined by studying the sign



Perfect structure

Imperfect structure



Imperfect structure



Limit-load,  raja-kuorma

Rigid-bar-spring-model

Simplified example to illustrate the concept of limit-
load

• Rigid truss:  two straight rigid bars of equal length 
connected to each other by a hinge.  One support allows 
free lateral movement restrained by a elastic spring k

• Load P is kept increasing  quasi-statically  and we want to 
solve the force-displacement curve (equilibrium paths)

= equilibrium paths

2) Stability of equilibrium

STABLE

UNSTABLE

2) Equilibrium paths





The following example illustrate the 
concept of limit-load

• Mises truss: two straight elastic bars of 
equal length connected to each other by 
a hinge to fixed supports allowing free 
rotations  only 

• Load P is kept increasing
quasi-statically  and we want to solve the 

force-displacement curve (equilibrium 
paths)

• The truss so  shallow that  no buckling 
of separate bars occurs: only snap-
through (consequently, only vertical 
component of the tip-displacement occurs. If 
truss enough high then one should consider 
the horizontal component as well.)

limit-load

limit-point

A shallow truss

truss

Limit-load,  raja-kuorma


