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These are the two lectures
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In short: In this course, we study the
Elastic stability of slender structures - Rakenteiden stabiilius
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CIV-E4100 - Stability of Structures D, 01.03.2021-18.04.2021

In short: In this course, we study the
Elastic stability of slender structures - Rakenteiden stabiilius

The content is conceptually very concise with only three fundamental

Many applications of structural stability of typical structural elements
commonly used in civil engineering will be studied. £
% %
2. 7
. . . . v %
e stable symmetric - always imperfection insensitive "oo /,o
& G
%, ©
. . . - . v 4
e unstable symmetric - imperfection sensitive & oéo
®

e unstable asymmetric - imperfection sensitive (more than in the sym-
metric unstable case)



Content of this 15t week two lectures: g O AR

» Literature & additional course material
*  Practicalities

* Introduction
 What equilibrium and stability mean?

These are the two lectures * The key questions
Content of the first week  How stability is investigated?
0. Basic concepts « Stability loss as a phenomenon

i Examples of loss of stability
. N : * Basic concepts of stability
The energy criterion of stability i Static & dynamic stability
i » Structural design and stability

 Methods of stability study

________________________________________________________________

:I * Energy criteria of stability
:  Lagrange-Dirichlet Stability theorem

: Equilibrium, Stability

& fl « Equilibrium paths
-\ ! e Critical equilibrium points, bifurcation, limit points
o i Stability of an equilibrium
"= w * Linear Buckling Analysis
E '\ « Non-Linear Buckling Analysis (GNA)
0 R L =
= ‘ * Types of bifurcation instabilities
« Effect of imperfections on the post-buckling
L\ behavior

______________________________________________________________

* [llustration examples

N

e —af



L i t e rat ure ® [1] CHAIH.YOO & SUNG C.LE. STABILITY OF STRUCTURES - Principles and Applications,2011 Elsevier e-textbook
(our course main textbook)

. 9_@1@ _I'_I'_t _______________________________ e [2] Lecturer (D. Baroudi) additional material: lectures-notes: (may be updated weekly or weakly)
M . i
& 0. Basic concepts ' Lectures slides: Week 1-2 topics  Fundaments of Stability:
v irer e - i
Eqmllbnum, Stab"lw : E h k [The PDF:] https://mycourses.aalto.fi/pluginfile.php/664842/course/sect
S L o ach week new
(1)) The energy criterion of stability ! . < (I provide the pdf | have written. This stability key topics are
('% i materlal missing in the textbook!)

Flexural buckling (nurjahdus) My notes on stability:
Lateral-torsional buckling (kiepahdus) 9) Version 27 FEB 2021: https://mycourses.aalto.fi/pluginfile.php/1260824/course/section/173429

. Buckling of thin plates

1
2
. e Not
3. Torsional buckling (vaantdnurjahdus)  /Main_book Structural Mechanics 2020 STAB. home Optimized 27FEV2021_PM.pdf Campu/sory
4
5

. Buckling of shells (lommahdus) Additinal reading:

® [3] S.P. Timoshenko & J.M. Gere. Theory of Elastic Stability. 2nd Ed., 1985. (Classical textbook) Not COmpU/S or
¢ [4] Juha Paavola. Structural Stability. Lecture note - 2018 (pdf in MyCourses) . https://mycourses.aalto.fi/pluginfile.php
/1260824/course/section/158920/Fundaments_in_Elastic_Stability_Energy method_by JPaavola_2018.pdf This is a must-

read for those interrested in general and systematic energetic approach for elastic stability.

Topics of the lectures and homework

e [5] Structural Stability (Lecture notes by Prof Markku Tuomala, in Finish). This is a complete textbook with plenty of solved

exercises https://mycourses.aalto.fi/pluginfile.php/1260824/course/section/158920

CIV-E4100 - Stability of Structures D, 01.03.2021-18.04.2021



%@@%éa@é%égg | sEowwesrz  First week - content

1
= Readlng ﬁ Week 1-2: [2] Chapter 4, from 4.1 till section 4.11.1: The fundaments of

I
I
I
H ' Elastic Stability
assignments
_______ g_ - (I provide the pdf | have written. This stability key topics are

e —

— A‘, MyCourses SCHOOLS

missing in the textbook!)

% CIV-E4100 - Stability of Structures Lecture Week 1-2 topics
litterature [PDF Slides] : https://mycourses.aalto fi/pluginfile.php/952895/course/section/133502
A B ~ augmentEd /Week_1_Lecture_Slides_DB.pdf
1 » g - 1
| Reading assignments and slides e Introduction |
: Lecture notes [2021] . What is stability? Phenomenon, elastic stability
e - . Structural design and stability — some standards
' » Homwork assignments : :
: Topi hedule & te : + Basic concepts
| Pl s AL T sk : . Equilibrium, equilibrium paths
. EXAM[2021] N 5 . Critical points: bifurcation, limit point
. . Stability of equilibrium (branches)
» HW & HW-solution for e Detailed
* Energy criteria of stability
lecturer 2020] content

* About post-buckling analysis
» Homework and course

points [2020] * Types of bifurcational instabilities
+ Sensitivity to imperfections

» Exams, grades & solutions

+ lllustrative examples
[2020]

» For the Lecturer only From etextbook — you can read also,

Week 1-2: [1] Chapter 1: Buckling of columns ...

» Material [old, 2018]

Reading
assignments

& especially, section 1.6: Introduction to calculus of variation

e ——

» Lecture Slides [old, 2018] (variaatiolaskenta)




Practicalities _ Assignment week 1 [2021] - Fundaments of Elas’ » Homwork assignments :

\
H k % Stability [Deadline 10 March < 23:55] Topics/Schedule & remote-
omewaor EXAM [2021]
|
? MyCourses SCHOOLS
. L
Fundaments of Elastiic Stability: ~Z HW_1_2021.pdf
%2 CIV-E4100 - Stability of Structures :
it ° . St
B Buckling load, Homework #1 (1% Week)
e energy criteria of stability Fundamental concepts
» Reading assignments and o
Lecture notes [2021] B e equilibrium paths,
:I, » Homwork assignments : 4:_[ ® post-critical analysis, February 28, 2021
: Topics/Schedule & remote- : e effect of imperfections
: EXAM 12021 : Topics: Buckling load, equilibrium paths, post-critical analysis, effect of imperfec-
[ [ ] - ® as t : _b k' I : tions and asymptotic post-buckling analysis.
---------------------------- ymptotic post-buckling analysis
» HW & HW-solution for Content
lecturer 2020] The next home work, we wil ontents
1 Exercise: Buckling load and corresponding mode 2
» Homework and course The key Consepts and methOd are invariant‘ 2 Exercise: buckling load and equilibrium paths 5
points [2020]
structure. 3 Exercise: sensitivity to imperfections 6
» Exams, grades & solutions . 2 ol 4 Exercise: effect of rigidity of horizontal elastic restraints on the
[2020] An introduction to the calculus of variations stability of columns 8
. 1 /[ WWW Why these simple exercises? Before tackling various modes of stability
» For the Lecturer only 1) httpS// .open.edu/openlearn/ocw/pl loss of different type of structures it is wise to get a bigger picture about

_ /3/Introduction%20t0%20the%20calct il 1<0290nfoLIMvariatinne me2D7 ndf |
» Material [old, 2013 ° Schedule for guided exercises and Homework 2021

» Lecture Slides [old, 2018] 2): http://courses.theophys.kth.se/5A Please notice this schedule:  has been sent to you through mycourses
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%2 CIV-E4100 - Stability of Structures

litterature

_____________________________

» Reading assignments and
Lecture notes [2021]

Topics/Schedule & remote-

EXAM [2021] \

_____________________________

» HW & HW-solution for
lecturer 2020]

*» Homework and course
points [2020]

» Exams, grades & solutions
[2020]

» For the Lecturer only
» Material [old, 2018]

» Lecture Slides [old, 2018]

Stability of Structures D, 01.03.2021-18.04.2021

Passing the course

s Having obtained from HW-assignements == 40% of compulsory points togather with passing
successfully the written exam.

» when the written exam is successfully passed, then the homework points rise the examination
grade (arvosana) at most by 1 grade if homework points >= 2/3 of homework compulsory
maximum points.

+ There will be organised only two examinations

Assignments

» readings from textbook and the additional lecturer's pdf-material
» doing weekly homework (probably five topics) student delivery. solutions

« one computer analysis: linear buckling and post-buckling analysis: sfudent delivery. solutions
and report

The purpose of assignments is fo train and deepen active learning. All the cession of exercises are
guided.

Axial buckling fail-
ure in service.



Some videos on stab

ility of structures

https://www.youtube.com/watch?v=000Ri 2Vkcgé&app=desktop

f: Lateral torsional buckling of I-beam  (kiepahdus)
Conmrent: Good experiment with load-displacement curves

The student can clearly see the transition frombending in the vertical plane
to bending in the horizontal plane and torsion

<oroz-zowyz>\l

x « w0 "
Horizontal diuplacement in mm

https://www.youtube.com/watch?feature=youtu.be&v=cYRicTk-Q08sapp=desktop ?

4 2: Torsional buckling of L-shape cross-section (angle) e
= column ([vddnténurjahdus)
S Conmment: Good experiment with a funny professor
S Note that, the apparent (torsional) rigidity gets drantically reduced
= close to the buckling load
Uhttps //www youtube com/watch'>v OWN8RP7Bz6Q Q =

\
\ \\‘.

3: buckling of upper cord of a truss '
Conmrent: Note the FAST and DINAMCAL transition fromthe primary equilibrium (Lnbuckled) to the secondary eqilibriumstate (budkied)s



https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

Progress of the test

—
https://www.youtube.com/watch?v=000Ri 2Vkcgé&app=desktop
(24.02.2010) T

Progress of the te
Cross-seetion-

. . motion: compined
Lateral torsional buckling of _Sresse ﬂh torsion

i-beam B
(kiepahdus) N

2. Bucklig oceuged
Continud loading

Geometrically-non-

Progress of the test

] i T L o s,

v - Measured vertical displ. (mm)

i. Starts loading ~' s ! Experimental load-
Elastic lineanresponse s displacement curves
- DILAKSHANTMAYADUNN: equilibrium paths

]

1]
w - Measured horizontal displ. (mm)


https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

?@m states * Insuch systems, the structure can move
from one equilibrium state to another if
enough perturbed

* For structural engineers such motion is

Shallow arch not desired and is called loss of stability

systems

Open: equilibrium position #1
Equilibrium

>, state #1 —
Closed: equilibrium position #2 ‘ Z "y \
Simple bi-stable system | - T ANl

____
__________
S

with multiple equilib

Model in our coffe-room

Equilibrium
state #2

Case without dissipation

Snap-through of shallow arch -



The key stability question in
structural design

\

Lecture slides
D. Baroudi, Dr.

All right reserved Version: 16.2.2020



The key stability question in

structural design

BASIC CONCEPTS

Equilibrium? Yes.
But, is it stable? No.

Figure 3.32: Equilibrium and Stability - the key concept.

Lecture slides
D. Baroudi, PhD

All right reserved

Soil material instability

Version:

25.2.2019



What are the key question in stability investigation?

\ \
(o )

hid

Here the content of this course in four points through questions that will

be addressed:
or limit load

1. can we predict the buckling (critical) load?

2. what happens at the bifurcation (or limit) point?
(i.e., after the buckling) Post-buckling behavior

3. can we determine the post-critical branches? NS

H What would be their shape? Nature of stability? S
OW much

\
4. what imperfection-sensitive is the structure under study? S
3

Cable-stayed
tower

}vy -

A model




Stability of an equilibrium Bquilibrium and Stability § ™ Prurbet
e Static stability: N

» Consider a structure which is initially in

equilibrium
» Introduce an arbitrary tiny perturbation;
> |
» Then what happens? ¢S The equilibrium
N
¥ stable
DOES The structure sustains or
comes back to its initial Np. The equilibrium
equilibrium configuration or very N’ unstable

CLUSET LU 1L

Straight primary equilibrium
Is this position stable?

e Dynamic stability:

» Dynamic stability considers time history of
the motion after an arbitrary tiny perturbation

= Then what happens? X

DOES the change in amplitude keep not
enhanced in time, after such perturbation?

stable



In our course, we will systematically

the energy approach.

Methods Of Stability StUdy In our course, we will systematically

the energy approach.

There exits three (analytical) methods for studying the stability of an
equilibrium:

1) Bifurcation approach - write the equilibrium equations in a deformed
configuration and determine the onset of buckling

N
~

Energy approach - the change of total potential energy of the system
between two neighboring equilibrium states is used to derive the equations of
equilibrium and to study its stability

w
)

Dynamic approach - the equations of motion of the system are established.
i) natural frequencies decreasing to zero, correspond to the onset of instability or
ii) investigate how an initial perturbation develops with time (full dynamics)

1) For design purposes, detailed stability behaviour of structures can be

analysed numerically by performing a geometrical and material non-linear
(GNMA) analysis on the real structure with the inherent real and possible
imperfections using capability of the Finite Element technology. Such analysis
provides full load-displacement curves which are used to identify bifurcations
or/and limit points for determining the limit loads

5) Experimental approach is needed since models are only approximations and very often, they
are a very incomplete approximations. For some structures, experiments are of primary importance

Experimental: stability of concrete
structures under seismic loading

|

>

Experiment: NASA NESC Shell Buckling

‘ § p ‘ O .9 ] .
PCwEE R e y /
ial K J ‘ ) E . |
t I 1\ “ i . 0 ‘l" !\ - -
htt ';:/ijiv.na,sa.gov/offices/ne'sq/home/Feature_!\?E.S _Shell_Bu
t

ckling_Inv igation_Continu%s_to_Make_Ga ins_Feb! 2014.html

Buckling of thin-walled cylinders



Conservative systems

N.B. the stability loss is nothing else than the motion during transition of

BaSic Conce pts ITWO types’ Of Sta b| I Ity the structure from one equilibrium state to another one and therefore

stability loss is dynamical by nature. Despite, that, under certain conditions
one can treats the problem of stability loss in statics framework. Naturally,

many other problems of stability must be set as dynamical problems to be
correctly solved. i
/ this cOUrse S Not rreated "

Static Stability (SS): Treated I Dynamic Stability (DS): . cours®

Stability of static equilibrium configurations Stability of the motion of dynamic systems
of a mechanical system (Euler 1707-1783) (Lyapunov 1857-1918)

ex. structures: columns, beam-columns, frames, (e.g., a train trajectory, system with following
plates, shells ... forces: reaction propulsion rackets,

korkeushyppaajan sauva, aerodynamic forces

on structures: flutter bridges, ...)
Assumptions for static stability criteria: Ex_non-conservative forces:

. . / = .
* Elastic* material g2y atils lance st B Conservative and non-
conservative systems

ouvrons les vannes.

displacements and rotations, not necessarily small

* Loads are conservative®** (= derivable from a
potential)

Examples of conservative forces: gravity and hydrostatic
loads, elastic force, ...
Examples of non-conservative forces: friction, (drag) hydro- &
aerodynamic and jet-propulsion loads, gyroscopic forces,
following forces...

Jet propulsion force




Stability loss as we see its ... consequences

Some typical loss of stability in structures

’y Nur"al‘(us 'l[
1) Kiepalbdas 'H
f
3) Vidutimanjab des |
Y Lemmal, dur
P l// 9_) Lateral torsional
" buckling
\ I
Pholes Hannu !
Hirsi, 2006 :
Germany \ .
N
Loss of stability of P
a column. Original Torsional ~
te arv renforce- 3/ buckling P N,
emporary reniorce 47 Buckling-of plates 4 ] Buckling of shells

ment method. : :
Drawings by: prof. M. Mikkola




What is stability as a phenomenon?

Stability is a fundamental property of
systems having more than one equilibrium states where
the system can rest in one or in the other states

* These equilibrium states correspond to local minima in
potential energy of the system

* Between two local minima a local maximum should exist.

The state at this critical point is unstable. This local maxima is
termed as potential barrier.

* Atiny external perturbation can make the system switch to
another equilibrium state if enough energy input is given to
jump the barrier separating the local minima

Loss of Stability = symmetry breaking

Open: equilibrium position #1

Closed: equilibrium position #2 » o) 0:10/1:00

Simple bi-stable system

Simple bi-stable simple mechanical system

__/FK
By P

L

a)

Water phase diagram  phase stability

Symmetricinitial state

' Cn'hcaipoin

Pressure

2

Bifurcation

 Rtatmadnimin

(gas)

| ﬂ ’ i n l ‘ ~610 Pa R Triple point
48 2B

r
h

Water vapor energy

Transverse
force F
;A

Vertical tip-position
>

b)

Total potential A

unstable
.

Vertical tip-position
>

stable stable

! Two F!OS.‘ilbl(f e‘equilibrium statesLand R ! ~0.01 °C Temperature Bi-stable states

=

c)

P>P
stable W)

stable

unstable

unstable

stable

Loss of stability of
a column. Original
temporary renforce-
ment method.

Dynamics of

snap-through with initial stable pre-
buckled shape

(Numerical simulation, Baroudi 2019)

lF
/‘-——9\- B

"“hu"":vr.,u
N e aee e anaeee s W 13 ms

(W 14 ms
(V e
e)



What is stability as a phenomenon?

Stability loss as a symmetry breaking phenomena

* In physics, loss of stability belongs to the
class of symmetry breaking phenomena ...

» where action of infinitely small
perturbations (fluctuations) on the
system being close to a critical point ...
» leads to sudden branching via
bifurcation (or limit point) to some
other neighboring state

* Loss of stability is dynamic by nature

v’ snap-through of a shallow arch

v’ resonance in parametric excitation of stay-
cables of a bridge or cable of guyed tower,

v" Flutter (a dynamic instability of an elastic
structure interacting with a fluid flow ...

Tacoma Bridge)

Examples

A tiny perturbation

9-Z-# -0002 QSSVIId I e

Straight primary equilibrium
|s this position stable?

Symmetry breaking

Symmetric initial state

/ .Crih(.:ai poin R
Bifu rcaFipn - ‘
— R

I Two possible equilibrium states Land R !

Theory of supersymmetry:

Physicists believe that just after the big
bang, all of the forces of nature were
identical and all elementary particles were
the same. But within an ‘instant’,
symmetry was broken ...and then...
we and the universe are here ...

|

It seems that we are the
consequence of a stability loss of the
primary universe!

| ask physicists what does /nstant means before our time even existed!



What is stability as a phenomenon?

Oscillation and subsequent collapse of the Tacoma Narrows Bridge.

-~t
—
-

Flutter e .

. . : Lyapunov dynamic stability criteria is
Coupling structure-fluid motion

naturally in use in structural dynamics



What is stability as a phenomenon?

Stability loss as a dynamical process 1_\'
f Z
(0)/ v |
« Dynamical systems are generally &(t) = f(x(t)), t >0 ( 71 > ¢
: N : : - d 8 )/
described by non-linear differential K
equation set 'L(O) = ZLo.
Equilibrium point xy
* The system posses equilibrium points
(states) x. defined by f(z.) = 0
. er s . : o Lyaponov stability: If at an equilibrium point x., two solu-
T is an equilibrium point, it f(z.) =0 tions (time series) having initial conditions close to each other
u remains close to each another for ever then the equilibrium point
e = 0 so, with zero velocity Ze 15 Lyaponov stable.

— the point is at rest

Lyapunov dynamic stability:

equilibrium point, B B
z. is Lyapunov stable, Ve > 0, 36 such that ||z(0) — z.|| < ¢ = ||z(t) — z.| <€, VE > 0.



What is stability as a phenomenon? (k) — el

* Dynamical systems are generally

described by non-linear differential T(t) =
T

equation set

(0)

* The system posses equilibrium points
(states)

T, defined by f(x.) = 0

4

i

* The discrete equation of motion of a
mechanical system, can be recast in terms of a
canonical non-linear dynamical problem

Mu + Cu + Ku = f, linear case
M = f(u(f),t), non-linear case.

velocity v = 11 as a change of variable

f
Y

l\

o = = =

T

= fla(t))

/

f(x(t)), t > 0 éfk 7%
() /ac \ _
.T-'(]- J\/’/ | . | 2 5 é

' Y

/

/58
¥

Lyapunov dynamic stability:

Lyaponov stability: If at an equilibrium point x., two solu-
tions (time series) having initial conditions close to each other
remains close to each another for ever then the equilibrium point
xe 18 Lyaponov stable.

A

Lyapunov dynamic stability criteria is naturally in
use in structural dynamics

For the linear case:
* f.=f - Cu—Ku



What is stability as a phenomenon?

* The discrete equation of motion of a
mechanical system, can be recast in terms of a
canonical non-linear dynamical problem

{Mﬁ + Cu + Ku = {, linear case

M = f(u(f),?), non-linear case. For the limear case:
f:=f—Cua-Ku
velocity v = 1 as a change of variable T _ . o
Lyapunov dynamic stability criteria is

\

[{1 _ lm—l 0] [fﬂ\ naturally in use in structural dynamics

I - - - I
0 " v . 0 — vJ Includes also aero-elastic forces from the
z fz(t)) interaction of the structure with flow

A E E B EEEEEEEEEEEE NN EEEEEEEEEEENEEEEEEEEEEEERNmEm




Lyapunov dynamic stability criteria

) — o |
Discrete equation of motion of mechanical systems (k) — el
{
Mii = f(u(t),t), non-linear — / T — \

Includes in forces f
[{r] _ [M‘l O] {f] < aero-elastic forces from

the interaction of the
structure with flow

Behavior becomes ’T@)ZZQ _
unstable \

B3 VTR Wy
-~

‘{ N

Do
oy
23plig ewoode] ™

g &
- .

- . '-'l':- '\' .
-‘ ‘: & S i

- o |




Structural design and stability

Standards: design of steel structures

* Local buckling .......cccoccneiiniinnnnn, EN 1993-1-5

= Flexural buckling ........ceeeoeeeeee. EN 1993-1-1 ot rolled columns
+ Lateral torsional buckling .......... EN 1993-1-1 beams
* Lateral

* Flexural torsional buckling ........

= Local-global ..o EN 1993-1-3
+ Distortional .. EN 235-1-2 a) loadingis symmetric b) loadingis antisymmetric
= Shear buckling o . . .
Example of initial shape imperfections in an

*  Shell buckling ...cccoviiiiiiinae, . EN 1993-1-6 arch (Standards: design of wood structures - EN 1995-1-1)

Linear elastic Bifurcation Analysis (LBA) (= linear buckling analysis|

Geometrically Non-linear Analysis [GNA) | Example of initial shape imperfections in wooden arches to be

*  Geometrically Non-linear Analysis with Imperfections | accounted in the structural analysis.
L&, LBA , GMA , GNIA, (= post-buckling analysis for
Wk pEI'fEL[ strscture and

Some typical loss of stability in structures |

structure with imperfections) :
J Uur"al‘(us

Standards: design of wood structures

7) Klepaldas

* Stability issues & imperfections ......... EN 1995-1-1 Y Vidusmanjabs dus

9 Lemmat dur
P

Standards: design of concrete structures

74
174 z) Lateral torsional
"“ buckling

+ Sect, 5.8 Second order effects with axial load..... EN 1992-1-1

/I\

Some standards related to stability issues in structural design.

)
Torsional

5‘/ buckling

Drawings by: prof. M. Mikkola

P ~,
47" Buckling-of plates 4] Buckling of shells



Examples of loss of stability

* vaantonurjahdus (torsional buckling)
» kiepahdus (lateral torsional buckling)
* levyjen ja kuorien lommahdus (buckling of plates/shells) |
laakeiden kaarien ja kuorien lapilyonti (snap through)

Lommahdus
compress cylinder with a uniform axial strain

Load L(J'pl'lyb'nti

\

$

Vertical Deflection

Avaruusnurjahdus




Examples of loss of stability

Rakenteiden stabiiliusilmioita - sekalaista

F/A  Inelastic

Load
\|, Snap-through

~ -
h“ -—-

l -
-

L Lc‘ipi/ydnt//

‘ Vertical Deflection

[sF § ﬁ&

Figure 6 Post-buckling behaviour of an imperfect
axially compressed cylindrical shell

Inelastic buckling

Lommahdus

C-Joist

Euler's Formula
(Elastic Sabiity Limit)

Stabifty!
Oy
(Strength Limg)
/%/;
[0 [{ )-
|

b Limit \'
Nurjahdus ¢ wr

Intermedate

AN
Short

-

Long

SN PORNONG T
NN PSR NRGEN
A RN

" [ ™,

Construction Materials

Plywood

Lommahdus

. Unbraced compression
Kiepahdus gange P

Lateral buckling

vedossa



Material instabilities

Maapohja petti ... maan leikkausmurto
Soil Foundation Bearing capacity Failure — China

rs accumulation ’
An anthology of erro
on the south an underground garage was being dug 4.6 m depth
n:::nxn :-::':::::: on ehdot.toma

framan / A pa\\(\(a

\Ii ‘-as’io.\da
daivaukse®

rEarE. nassa,..

kamwwml@\;ﬂnnmﬂ i ' \ope -

You want to know more? join the
courses of Geotechnics and Soil and
rock- mechanics

St

Static: Transcosna Grain Elevator
Canada (Oct. 18, 1913) %

Soil after slope
failure

Then the rains came

nﬁ&dhal‘uﬂmd!ﬂblmn&nﬁdﬂmmm
what the un-reinforced pilings coud tolerate. Thus, the building
toppied completely over in a souther

= 3 e 5 /)
. —

.. V/
R - ] s
:. ARLRLIR ;£ 23
RO NN %

—

=+ West side of foundation sank 24-ft

Todennakdinen leikkauspinnat

= concrete pilings with NO steel reinforcing. (Where have all the true engineers gone?)

CONUIETE PRINES WM IVU STEel TemTOrang. |VWilere Nove G INE [TUe engimeers goner

SUMMARY: 13 stories built on the surface of the ground . .. withlno basement and attached to hollow

Shear-slip surface



China (Jiujiang) foot (or ramp) bridge collapse - buckling

T Ref https //wwwyoutube com/watch?v=0WN8RP7Bz6Q,
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%;‘l Buckling failure happens — watch it, you’ll see how fast & unpredictablé

* At once and global (in the whole structure or its member)
* Unpredictable (you do not have time to see the signs that is too late
already) ... happens between 7t s and 9t s!



mples of
@%? failure

Why instability is
an unwanted
event in desing of
structures?

Foot bridge (ramp) collapse in Jiujiang City Railway bridge collapse, Russia ~1890
(China's Jiangxi)

) 0:10/1:00

fig. 8.3, - Flambement d’ emcmbae de la membrrl.re supérienre des ponfres en freiilis

buckling d'nn pont de chemin de fer (Russie, vers 1890)

Flambement d'ensemble de la membrire supértenre des poufres en fretilis
d ‘un pont de chemin de fer (Russie, vers 1890)
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. coIIapse is of the same type: i

El ' flexural buckling of compressed :
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bility failure

Why instability is an unwanted eve
desing of structures?

Consequences of stability loss

Rt in

Good engineering final result should always provide the product itself together
with a quantified safety margin of it operation.

Non-linear analysis Joints Stability loss of

Joints primary structure

—
‘.
Joints

nce
con‘ie““e T

Post-buckling can resultin
excessive displacements and/or
rotations from stability loss can
lead to failure of jointsor
components and of subsequent
structures resulting in overall
collapse

s

Figure 3.26: Illustration of possible consequence of too large rotations or
displacements after stability loss.



Structural design and stability

AR

N ‘. ~ - f .
Buckling of a wine steel
container, California, 1979

Lateral torsional
' buckling

Radar domes [Nws|
Buckling of a spherical shell  Buckling of a container

Local Buckling of

plates ‘—"( —

| T B — =
| , “ "2 "es » ¥
1 'AI l‘ : - &< - . s
Vo — L o
Buckling of rails
Due to a heatwave in country Victorla ‘.
Buckling of columns e

Figure 3.23: Examples of various types of loss of stability in simple struc-
tures. From left to right: lateral-torsional buckling, buckling of spherical
and cylindrical shells, buckling of slender columns, buckling of a rail-road
rail bonded to a support and plate buckling represented by shear buckling
of the flanges and compressive buckling of web.

Flexural buckling



Pieter van Musschenbroek

(1692 — 1761) He did pioneering studies on the buckling

of compressed struts

P o 1//¢°

failure

» Performed experiments on column
buckling (1729)

» Observed that the maximum
compressive load a column can
sustain prior to failure is
proportional to 1/ ¢2

A Dutch scientist

Physics, mathematics,

) o Compare with Euler’s buckling load:
philosophy, medicine, astronomy Feis.

(obtained theoretically, 1744) or =

theory

L

experiment

5
-

!

2 =L~ 102
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L)

@’% facja Djebar Baroudi, PhD |
)

A BB A A B L A el

g |
6 A0 Comsite .0

SRS NOWONW W R RN RN

Leonhard EuIer

Jo: Dtructural j‘ZZc/;anical z ‘j’ j’ E|F T

Beams and frame structures T

Writin _F _ ©TE
&by Euler i elf: ca A @
— N yoy ldent,fy the f He derived the
Modern El Eit or theoretical
writing Lz 1k Y. —‘-‘-, critical load for
‘ '
SUR buckling of a
LA FORCE DES COLONNES. column already
rar M. EULER. } ;
. in 1774! At that
T i adll© time no one
cette colonne eft capable de foutenir fans fe plier,icft = =7 Ei—j,: .underStOOd the
aa "1 importance of such 34

S n— = 1 T Leonard Euler result



101pjeter van Musschenbroek (1692 — 1761: A Dutch scientist Physics, mathematics,
philosophy, medicine, astronomy) did, about 30 years before Fuler, pioneering experimen-
tal studies on the buckling of compressed struts. He Performed experiments on column
buckling (1729) and he observed that the maximum compressive load a column can sus-
tain prior to failure is proportional to 1/¢? Compare with Euler’s buckling load formula,
P, = n2EI/¢? obtained theoretically and about 30 years later in 1774. At that time no-
body has understood the importance of such result. Even Coulomb was saying that these
results,including experimental ones are wrong because many experiments show that the
compressive strength of columns was proportional to the cross-section area and not to
the square of its length. These last experiments were done with short iron and wooden
columns where the failure mode was the crashing or material failure and not buckling.
At that time the concept of slenderness was not understood yet. At the end, they were
all right but each one on the opposite side of the slenderness axis. This critical slender-
ness point divides the failure mode into material failure and elastic buckling, for axially
compressed members.

(1692 — 1761)

Leonard Euler

He derived the
theoretical
critical load for
buckling of a
column already
in 1774! At that

time no one
understood the
importance of such
result.

a 1/10°

ailure

Py

» Performed experiments on column
buckling (1729)

» Observed that the maximum

compressive load a column can

A Dutch scientist

Physics, mathematics, S u Stai n p ri O r to fa i | u re i s Tm
philosophy, medicine, astronomy

proportionalto 1/ /* LY _|_02

theory



Effects of boundary conditions — experimental evidence for Euler’s buckling formulas
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Stability analysis investigates Photo: . Baroud,

J 2016

e Equilibrium configurations existence of multiples
equilibriums or limit points
e Stability of these equilibriums with respect to
small perturbations
* Sensitivity with respect to imperfections
= shape
= geometry
= Loads (eccentricity)
= Material imperfections

In addition to the above points, following questions will
be answered:

e Can we predict the critical load?
* What happens at the bifurcation (or limit) point? Equilibrium? Yes. < d[u]=0

e Can we describe or determine the post-critical .
But, is it stable? No. 2
branches? What would be their shape? Their nature? <o Mu] <0



Fundamental Concepts

 Stable equilibrium state

= Let’s perturb a bit a structure Initially resting at an
initial equilibrium state away from this equilibrium
state. If after removal of all disturbing factors the
structure returns to its initial equilibrium state then
the initial equilibrium state is stable (for elastic
structures)

= Even when the structure tends only to return to its
initial equilibrium state one can assume that this
initial equilibrium state is stable.

Such behaviour occurs when material behaviour is plastic
or elasto-plastic. In such cases the structure returns only
incompletely to its initial configuration because of
residual deformations.

* In case of rigid bodies the stability of position is
considered

* When the above listed behaviour is not fulfilled we say
that the equilibrium is unstable

Undeformed shape

Applied pressure

S S T
<

“Snapped through™

shape k
¥
Snap-through

N

F Snap-
B
h
%ﬂmw 5
.
3
*
b
Snap- ‘..
A %
<2k %,
[

Photo: D. Barotidi
stablllty of

2016

Small p€rturbation away. from thl',.

6 tat 7
edw rium state = It stab\’

motion

Lateral torsional
buckling

Flexural
buckling



Method for Study of Stability

HI

The stability theorem oI1

0
0

Lagrange-Dirichlet Theorem: Assuming the continuity of the to-
tal potential energy, the equilibrium of a system containing only con-
servative and dissipative forces is stable if the total potential energy
of the system has a strict minimum (i.e., is positive-definite).

1" >0

62II(u) > 0

([1” > 0, stable,
s II" =0, neutral, S(AIT) = 0
1" <0, unstable.

Figure 3.36: Generic illustration of the adjacent-equilibrium criterion in its
variational version (up). (Au is an infinitesimal perturbation corresponds

to w on the lowest plot).

Finite element post-buckling analysis (Lower

figure). Note the initiation of combined lateral and torsional motion of the

For conservative systems we consider stability of static equilibrium

Adjacent-equilibrium criterion
Requiring perturbed state to be an equilibrium state —> §(AS) =0

-

. 5

( J S- total potential energy (or action )
[
]
|
i
|
|

|
N f

AS=5*-5°

|

—

§8* =0 i
Slightly perturbed state-

L 65°=0
Initial equilibrium state

Post-buckling analysis Lateral Torsional buckling, force control [Baroudi, 2019]

1.5F ' Lateral-torsional | ’/‘{'ﬂ Post-buckled T
buckling just === equilibriu
starts i e
1
5
=
R,
I
a ";;\_‘\ﬁ*‘ Clamped
0.5+ == cantilever
Primary
equilibrium /
P
0 1 1 L L I L 1 1
05 04 03 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
w(f)/h h =10 cm.



Stability theorem of Lagrange-Dirichlet

I =0 Trefftz condition
oll =0 for stability of an equilibrium:
Lagrange-Dirichlet Theorem: Assuming the continuity of the to- (52T0(u) > 0, stable,

tal potential energy, the equilibrium of a system containing only con- — ! 82T1(u) = 0
servative and dissipative forces 1s stable if the total potential energy | ’
of the system has a strict minimum (i.e., is positive-definite).

1" >0 &) >0 u /

* Isaglobal energy criterion for stability rH” <~ 0. stable ( I )

neutral,

kSQH(u) < 0, unstable.

* will be used systematically to derive the

-

II" =0, neutral,

Lagrange-Dirichlet theorem and investigate the sign of the

> |
all the equations of stability (loss) we ; 2 o Skable. |
d for all elastic structure s hH < (0, unstable. §  stable

©

8 HII s Oz‘; - ,P
o) neutral ¢

Q.

o

o

unstable

increment = ATT = 811 + 6211 + 6211 + 611 + . ..

" < 0 I (u; P) = 0

(More general than Trefftz) . . .
Trefftz is a particular case where the total potential

energy increment is expanded only up-to its quadratic
terms between the initial and perturbed states



Stability theorem of Lagrange-Dirichlet

T =0 Trefftz condition
oll =0 for stability of an equilibrium:
Lagrange-Dirichlet Theorem: Assuming the continuity of the to-

tal potential energy, the equilibrium of a system containing only con- —
servative and dissipative forces is stable if the total potential enerqgy
of the system has a strict minimum (i.e., is positive-definite).

" >0 &0(u) >0 “ /

Buckling or instability or neutral equilibrium condition:

(5°II(u) > 0, stable,
§%II(u) = 0, neutral,
hc‘i?H(u) < 0, unstable.

oIl = oIl +4(AIT) = 0, V perturbation dv
S~

=0, initial equilibrium

—> J(AIl) =0 at buckling, Vév

Consequently, the condition

At buckling §(AIl) =0, Vv

(More general than Trefftz)




) The geometry of equilibrium
The 3nergy approach permits a and stability

geometrical visualization of
equilibrium and its stability as
topographical maps where it is

Il = %c02 — P£(1 — cos¥)

Total potential energy [D. Baroudi, 2018] e
~equilibrium paths

4 /
. el ] " | bifurcation 10 : ; A
easy to recognize equilibrium L symmetric ,
. - I1: bifurcation PL i
paths and their stability P | Sele | ?
) T I
. z 0 |
properties £ ible 6 S
B stable P 5 %
# i 2 & a4k +
IT" > 0, stable, * - Al =
A "';:"f’/f’//”/// !
{I” =0, neutral, . 2/ 7 |
’ o L I s s e e g S
II” < 0, unstable. L sawd B
\ -180 -150 -100 -50 0A 50 100 150 180

L(1—s6)




stable,

Energy approach —the MAP
neutral, W
Total potential gy [D. Baroudi, 2018) '

unstable. _ Equilibrium paths
e e AIl > 0 Stable

il —

1lie-line 28ro
S A 4 O e N v o
-

..
b
N >

i W ’

“:AH < 0 Unstable

L B\

- 3 Al =0  |ndifferent

) |

Figure 3.24: Map of total potential energy AII of an elastic structure. Equi-
librium paths corresponds to locations where §(All) = 0 while keeping P
constant. Stable equilibrium is achieved there where §%(AII) > 0 . Note
the analogy with the topographical map of piece of Chamonix (Alpes).



Application of Lagrange-Dirichlet Stability theorem

Testing stability of an equilibrium:
* a static equilibrium configuration
+ plus

- a small perturbation
'

7/ 4 Equilibrium? Yes.
% aal [ iS— A .b. - =
Y/ “o&‘e But, is it stable? No.
./ / 4 X\
71y <
& /i
o — =5y e |
ol -infin.itesimal. perturbation é'i;_ﬂ_?_g__?_-_ ‘Q‘Sjaplff_'___?@f
keeping loading parameter 24 g =0 => Neutrally stable Q&
unchanged g e




Equilibrium Path for Deformed Systems

Illustration example: the simplest systems with one DOF

Equilibrium equation:

Two independent
solutions:

A key behavior of a
loaded structure
can be studied
through:

measuring or deriving or
the relation between the
load and the
displacement at some
characteristic point(s)

Graphical
representations of such
relations
are called equilibrium paths
[or.eauilibrium.curyves)

1 lu’
Plsinyp = ky,
” y
¢ =0 for any P #—primary path
rimary equilibri
b E © (pri ydquu rlur;) )
- : ‘ <«1— secondary pat 3
[ sinyp . /
Equilibrium paths: are graphs of equilibrium solutions (= load-displacement curves)
Primary branches = pre-buckled behaviour
_ 2 = =
4= 37| — 7 g
2
5t X 15k 15|
Secondary 4 7 " — 10
branches
Post- ast a5} 05k
buckled . L i . |
behaviour — -x -Z s £ & 10 -05 0 05 P=x 0 10 =%
(a) (b) (c)
Rotation

Horizontal displacement

Vertical displacement




Equilibrium paths
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Critical Equilibrium Points

Generic equilibrium path
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5 { «——— Bifurcjon point
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Linear Buckling Analysis
Non-Linear Buckling Analysis (GNA)

* Linear buckling analysis = solving an
eigenvalue problem. Provides the
smallest eigenvalue (buckling load)
for ideally perfect structure

Buckling load of

Force A l \

Linear Buckling analysis
|deally perfect (For ideally perfect structure)
structure Provides the Buckling Load

smallest Eigen-value

bifurcation point (critical)

b
: "4
* A non-linear buckling analysis = a ideally perfect » Ner
geometrically nonlinear analysis Structuze J 53
- . 4 33 Non-Linear Buckling Analysis (GNA)
which is not anymore an eigenvalue- Buckling (or limit) | = (F . ; :
: ‘i & or structure with imperfections
problem provides limit-load (or : 5
I I ” d b kI | d) f th Ioad Of ImperfeCt ¥ ___N_u ________ T ------------ >
oosely called buckling load) for the | structure  mi = /‘ Postertiical
imperfect structure and the i ok . [ £/ | /
displacement-load curve L “/ T N\
, : ideal —
* How to do GNA? Non-linear static + . ‘structure pre-critical

gradually increasing the loads +
accounts for initial geometrical
imperfections

* In real problems, all other relevant
sources of non-linearity can be

£,/400

introduced: material non-linearity,

contact, etc... GMNA  Example of initial shape imperfections in an
X arch (Standards: design of wood structures - EN 1995-1-1)

b) loadingis antisymmetric

: \ s geometric imperfection
0
,f \ I

Struct actual
ructure structure

with imperfections

-
Displacement

«—— Introduce the imperfections
GNA = geometrically Non-linear Analysis



|deal

FOfCGT StTUCtUre  inear Buckling analysis

(Ideal structure)

: b o e

Buckling load

l

Non-Linear Buckling Analysis

Limit-load </
‘ post-critical
o,
ideal .
structure " S ——
Structure

with imperfections

o
geometric imperfection Displacement

:
1

Introduce the imperfections



Types of bifurcational instabilities

 The nature of post-buckling behavior determines
to a large extend safety and the robustness of

the structural design

Basic types of bifurcations Hzarautumine

» Stable symmetric
v’ Structures having this type of behavior are

always imperfection insensitive and have
consequently a reserve of resistance

* Unstable symmetric
v’ This gives imperfection sensitive structures

* Asymmetric or unsymmetrical
v This gives much more imperfection sensitive

structures than above

* Snap-through
v" Such dynamic behavior is pathological not

I

desired behavior and is locally like an
asymmetric branching on equilibrium path

D
e -

\\ /
)

Neutral

y)

o
Stable

Unsymmetric
perfect | l
1 L =

—-—-—— imperfect

d A

Bifurcation points

1+b(

\\ /X 4
\ i
\ AR
d \l7l 7
T > W T e A
i Symmetrig
‘ Symmetrlc unstable | Sy Stable
<A,
Thin shell &I
Snap-through P - L
Shallow arch ! P ﬁ
A‘TV sz i unstable m
LN SNAR THeasaH  \y .'
| [P A il IBAL L '\UV
E mostable 7 \/\l ?; ?M —— Ll‘mlt load v
Skalble ‘ ™ i TH IMPERF ECTIONS

Axial shortening
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deflection/thickness

Limit point
Rajapiste
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Types of bifurcational instabilities

* The nature of post-buckling behavior determines
to a large extend safety and the robustness of

the structural design

Neﬁtral
Roorda’s experimental yerif}qati‘;rg

e| P r
L 1.\0‘- Fer
—~Lg 4 2 .
Experiment J
4
&

0.2

- Roorda’s (1971) experimental verification
of calculated postcritical response in asymmetric
bifurcation of a I'-frame.

Bifurcation diagrams
are not only

theoretical concepts

but they really exists

Roorda, 1971, An experience in equilibrium and
stability, Techn. Note No. 3, Solid Mech. Div.,
University of Waterloo, Canada.

Unsymmetric

——
A

*rfprf

———— ifperfect
s -

— Limit load Y
™ wiTH IMPERF ECTIONS

-

Axial shortening




Example 1: Buckling of beam-column under self-weight
___________ Starts to moves to adjacent ‘equilibrium Equilibrium

I state’

Equilibrium : .
1 New flexural configuration

Straight configuration

I No more stretching, only flexion, in the beginning

(almost)

Post-buckling behaviour Both
curvature and stretch changes are present

only stretching l I

-l -

TIME (ms) s>

* Here one observes ‘small’ quasi-static
equilibrium configuration change going from
straight to adjacent flexural sate (the green box)

* Such small changes are what we study in this
course

* The minimum load neads to move from straight
to the adjacent (flexural) equilibrium configuration
is called buckling (critical) load

* The flexural new equilibrium configuration is
called the buckling mode

Buckling under self-weight

) UH—

El
Critical load = P9AL = 784— (N)

L
Figure 1.38 — Buckling dynamics of a column under self-weight under a tiny
horizontal perturbation. The first configuration is stressless (¢ = 0) then at
t = 0", the column is let to fall freely under its self-weight. The last shown
configuration is close to the equilibrium configuration (Fig. 1.36). The colourful
lines are trajectories covered during the same laps of time At.

Ref: D. Baroudi, 2018 — full-nonlinear modelling — systematic use
of virtual work principle with D’Alembert principle

Equilibrium path

Axial load

Critical load

Only stretching——! - (bifurcation)

equilibrium L | Flexural tip deflection




go Ref: D. Baroudi, 2018 — full-nonlinear modelling — dynamics
S \
x Initial Pt s g g
; L t-frict A L t-frict
S configurstion  SNap-through buckling " = Snap-through buckling """
Q  onlymembrane T tme[msj=0 < '
Ss o @t : — T
3 P
‘equilibri e o T v
QA s(:g:;llrlum .9:g:200 0000 0.0 9 10 §§ gg
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Example 2: Snap-through of shallow arch (symmetric mode)

F
Self-weight and linearly l
increasing external nodal load
at node 10 are acting
In the simulation, the system is

to dissipative. Stable

Stable

Painovirhe: These are coordinate of the

tip point (not displacements)

" Equilibrium path

jh arch: symm. mode

N ’
Vertical dlsplace?rmnt gu\mfe 10

20 -15 -10 -5 0 5 10 15 20

Geometry of the shallow arch
[ T T T T \
| Wm ]
0 50 100 150 200 250 300

X, or )(‘:l (mm)

1, ‘snap-through’ like
' motion with
- - resisting friction

There is no critical point visible

too much dissipation; so friction wo
nd resists at joints. So this numeric
example is not 100%-elastic as here

(in this numerical example, | have put

, Case without dissipation

Snap-through

! 4
st -, Snap-through
Q \\\\
O 3 X2
O Limit-point
rks o -T
al > - a
J limit-point
)5 Noeq-de
0 5




Fundamental questions

Here the content of this course in four points through questions that will

be addressed:

1. can we predict the buckling (critical) load?

2. what happens at the bifurcation (or limit) point?
(i.e., after the buckling)

can we determine the post-critical branches?
What would be their shape? Nature of stability?

what imperfection-sensitive is the structure under study?




Equilibrium paths for simple rigid bar systems
with springs

e Such simplified models (rigid bars-spring discrete systems)
allow to grasp the fundaments or invariants of stability

equilibrium paths

critical points (bifurcation, limit-points)

nature of stability on primary and secondary branches
the principle difference between full-non-linear
equations describing the post-critical state and their
linearized homogeneous versions in the vicinity of
critical points

ANANENRN

* With rigid bars, all the strain energy concentrate in the
springs (makes the formulation tractable by hand)

Rigid bars-spring
discrete systems

7

2L cosa u

Rigid bar ——

Elastic
rotational
spring

TN

Straight equilib-
rium configuration
(yellow), perturbed
(blue).



Equilibrium paths for simple rigid bar systems Rigid bars-spring

with springs discrete systems
Rigid bar
’ 5 -+ Elastic
e o . L rotationa
Why study rigid-springs systems? 2Leosa 7 eine

Straight equilib-
rium configuration
(yellow), perturbed
(blue).

* Such simplified models allow to apprehend (=grasp) the key
invariant concepts without being distracted by irrelevant for
the task details rising from accounting for more complexity

* These concepts are general and independent on the level of
complexity of the structure

S0

: (’9 ()
E-,)"' 2016x Hotfix 5 Fri Feb 08 15:14:32 FLE Standard Time

* The concept is general and the example is a particular mean
for passing the concept



Equilibrium paths for simple rigid bar systems

with springs B
Equilibrium paths T
— . I
Stable-symmetric bifurcation Rigid bar |
Tasks: L
* determine all the equilibrium configurations: |
v" Bifurcation point |
. . Sl Elastic
v’ pre-buckling primary or fundamental equilibrium rotational
v post-buckling configurations or secondary spring T

equilibrium branches

A
Straight equilib-
rium configuration

(vellow), perturbed
(blue).

between initial and perturbed

Increment of total potential energy P
equilibrium configurations l

)—-‘, * Stable symmetric
v" Structures having this type of behavior are
always imperfection insensitive and have
consequently a reserve of resistance

1
II = ECQQ — P{(1 — cos ).




Equilibrium paths

Ati=1 [ Eraz - p [ _ A,
2 Jo
Conpare ?Ztimmsanddiscret models
1

Increment of total potential energy [[ = 5(392 — Pf(l — COS 9),

Note the non-linearity of this problem

Equilibrium dII ,
(stationarity) ol =0 = a9 - =1II' = cf — Plsinf = 0.
solutions
c 0
9 — 0 or P = Q 0
{ sing’ 7

fundamental equilibrium branch
(= pre-buckling branch)

post-buckling equilibrium branch

Rigid bar —

Elastic

—_—
rotational

spring

P [®
I )i 6’ﬂ 5
} \‘w{\ ==
l
| |
Ll &
1 1 3
: I
<
A
Straight equilib-

rium configuration

(vellow),
(blue).

notation

perturbed

c
-=P.,
/



Equilibrium paths

equation

Increment of total 1

_ 1= —c#* — P{(1 — cosf).
potential energy 2

Note the non-linearity of this problem

dH v

Equilibrium .
(stationarity) ol =0 = a9 = Hl |_ c) — Plsinf = 0.

L

Equilibrium solutions

P—C 7,
T ¢ sin@’

=20 or 6 +£ 0.

fundamental equilibrium branch

or pre-buckled branch post-buckling equilibrium branch

The buckling load (bifurcation point) and the
nature of stability of all branches will be
discussed in next slides ..

. H . t
sign 11" |p—07 sign 11 \chmﬂ;sma?

full non-linear equilibrium

10 T T T * T T T
ol Symmetric
bifurcation P
81 post-buckling [?r
71 equilibrium
branches |
6 |
|
ryo\/ "\
fLr .l i fundamental
| equilibrium
3+ | branch
2t |
|
|
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Bifurcation p01nt o

0 1 | |

180 150 1 5(&1 100

The number of &l 0 degs]
solutions changes

from one (primary)
to two (secondary
branch)

C
notation ; =P,




Stability of Equilibrium

Lagrange-Dirichlet Theorem: Assuming the continuity of the to-
tal potential energy, the equilibrium of a system containing only con-
servalive and dissipative forces 1s stable if the total potential energy
of the system has a strict minimum (i.e., is positive-definite).

sign 1" |g—o? " > 0,
HH — ﬁ:'

. I
sign 11 \ch/.e-e/sina?
" <0,

Stability of equilibrium
Let’s study the sign of the second derivative I1"(€) = ¢— Pfcos @ (Eq. 1.31)

e trivial case: # = ( (branches AB and BC)
1.1) "M@ =0) =c— Pl =0 = P, = c/{ (we have a bifurcation
point at B since the second derivative II” changes sign) (P, is called
the buckling load).

e 1.2) AB,0=0: I"(0) =c— P{ >0 = P < P,.. (AB stable)
e 1.3) BC,0=0:1I"(0) =c— Pl <0 = P > P, (BC unstable)

» post-bucked case: # # 0 (branches BD and BD')
— so, the second derivative should be evaluated on the secondary
branch P = § - #/sin 6:
Eq. (1.31) —» II"(f) = ¢ — Pfcosf > 07 = the sign of II" =
c—{cosf = ¢(l —fcos/sinf) > 0, where ¢ > 0, so we have always
I1” > 0 for #[€ 0, 7] (see Fig. 1.31)

So — BD and BD' stable). I1” > 0, stable,

stable,
neutral,

unstable.

v

Ccr

Equilibrium paths
Stable-symmetric bifurcation

?

Symmetric bifurcation

9— —_—

Bifurcation point

notation

C

g= e




HH(&)

= c¢— Plcosf > 0

Stability of Equilibrium on the
secondary path: sign II"| p—c/s.0/sin6?

. "
sign II |P=c/e-o/sin9?
l l l

I1” > 0, stable,
| 1

ey
- Direction of increase of the
rotation angle from 0 to pi when
. theloadP increase
monotonically
02 04 06 08 1

[MI"=¢—{€cosf =¢(1 —0Ocosf/sinf) > 0, where ¢ > 0

« post-bucked case: # # () (branches BD and BD')
— s0, the second derivative should be evaluated on the secondary
branch P = 7 - #/sin 6:

Eq. (1.31) — II"(f) = ¢ — Pfcos® > 07 = the sign of 11" =
c—{lcosf = c(l —fcosf/sinf) > 0, where ¢ > 0, so we have always
1" > 0 for O] 0, 7] (see Fig. 1.31)

So — BD and BD' stable).



Stability of Equilibrium
Equilibrium paths
Stable-symmetric bifurcation

Bifurcation point

Stability of Equilibrium on the 0 | | !
secondary path: sign I1"|p_./0.0/sin6? . Symmetric bifurcation
[ —
E 15
1" > 0,
i “1°T Direction of increase of the | |
E 45 | rotation angle from O to pi | ) (dogs] 50

c
notation - = P,

4




Equilibrium paths for simple rigid bar systems

with springs

Equilibrium paths
Stable-symmetric bifurcation

Increment of total potential energy

Total potential energy [D. Baroudi, 2018] W

1= %ng — P{(1 — cosB).

II= %c02 — P{(1 — cosf)

il
4&%0:
il
il
Vs '1,"/ y
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Rigid bar

Elastic |
rotational
spring

A

Straight equilib-
rium configuration

(vellow), perturbed
(blue).




Sim p|e exam p|es of a Example of use of stability criteria in the form §(AIl)

Linear buckling analysis

=0
assuming moderate rotations or bars (cosf; ~ 1 — 62/2)

All

Determin
| 2ete = / EI(v")*dx - P/ 2] fl;r
* the buckling load
* buckling modes
— 112 . £1 ;2
Perturbed Primary e @ E(QH[U]) - O'.l \?‘(S'U. = 5( f[} Elv"dx Pf[} dfﬂ) 0;.
state equilibrium
= [ EIv"6v"dx — P [ v'6v'dx = 0
P > 0 0
€IA | Results in the eigenvalue problem:
of
-
(EIV"Y' + Pv" =0 & 4 BC
| o o
i JT W/W? ‘LT o:§|§ o &
Addittenal——work Tip  displacement
AWyt = P - A increment after
(Flexural buckling) buckling.

Wm;w

x2E1 4m?El  2x2El =°El
Pe=—p— —p 2 a2

Linearised criterion



Simple examples of a Buckling analysis of side-sway frame

LI near b UucC kl | Ng dNa |VS I S Buckling of Frames, D.Baroudi, 2017: K(A)u=0,L, =L
T v - v T ,p
o Qo
Determine 10 - s
. ,\c'=24556\ . 2
* the buckling load of % %,
. ., L
* buckling modes _ o] % %
__B 2 20} ®
4
'8 30T

0 05 1 15 2 25
A=kL

[Am(f\) + ags —Ca1(A) ] [r;bz} B [0}

—C9 (/\) +2C91 (/\)1/) — }\2 Y 0

Equilibrium eqautions in the tiny
buckled configuration

M21 + Mgg — 07
(21 = 0,

Aer = min .sol.{det(K (X)) = 0}.

Linearised criterion

P, = M\2.EI/? -



Simple examples of a

1 1
. . . All(vy,v9) = —kvi + =kvs — Pu(0).
Linear buckling analysis l (v1,v2) = Skvt + kv, (0)

Linear buckling analysis: We want to determine the Euler buckling

Determine load.
* the buckling load Requiring the neutral equilibrium condition 6(AIT) = 0 (for loss of stability)
* buckling modes one obtains the eigenvalue-problem

1

o A—2P P
Linearised model P \A— 2P

T C— ST A
L Pp=kt
N1 = V2
il _
A simple system having two degrees of freedom, i i A, E= 55)/2 .

Buckling modes.



Simple examples of a
Linear buckling analysis

1 &

&H(iﬁl:m?:* . 1$N) — izktmzz + V(P;$1:$2:* : *ﬂmﬂ.’)}
i=1

Determine
* the buckling load
* buckling modes

assuming moderate rotations of bars (cosf; ~ 1 — 67/2)

1 (2 — x21)?
V(P):—P-EZ(T Ti)” 0 i=1.2.....N
i=1

height (x / L)

5 T ] 0s 05 b 0
A =0.059 0.503 1.291

(ks O 0 ... 0 0] (2 -1 0 ... 0 0\ [a ] [0
L N A ]

¢ : B
0 0 ... 0 kﬁ-_l 0 0 0 oo —1 2 —1 Iy_1 0
“\oo .0 0 k] |0 0 ... 0 -1 1|)|ay]| [0]

!

Asking for stationarity at the critical equilibrium point

O(All) =0, Vz;,0=1,2,..., = d(aﬁﬂ) :Djl
L

Results in the eigenvalue problem:

.50 the full eigenvalue problem to solve now is:




= Linear buckling analysis

Linearised model

results in an eigenvalue problem 1
~— * Expanding total potential energy in Taylor's series 1‘[(9; P) — —cf? — Pf(l — COS 9)
around the neutral equilibrium position § = () and 2
keep up-to quadratic terms 1 2
~ —cf* — Pl —
¢« What is the fundamental difference as regarded to the 2 2
full non-linear analysis performed just above where all
equilibrium branches were completely determined.
g results in an eigenvalue problem
* Equilibrium: stability loss problem:
Q2
O(AIl) =0 —> |II'=cd—Plh=(c—Pl)-6=0 £ -0
. Conin I 5 §T=D
Criticality: This is a set of homogeneous linear equations | | F11=0
" =c— Pf{ =0. which forms an EIGENVALUE problem ;I' (?_0
e no buckling: § = 0, is a solution (trivial initial straight A — B — C) cr ,) 1T=0
e buckling: 6 #0 = ¢— P{ =0 = P, = ¢/{ (buckling load) L } ‘i_ :
A S N

Linear buckling analysis provides ONLY:

:} . Ehe buckling load <« i . ) )
* Ybuckling modes up-to a multiplicative coefficient Linearised criterion




Linearised model = Linear buckling analysis - P an
1 P
I1(0; P) = 5692 — P{(1 —cosb) | | | f
VA
Lo _pp.® [/ ]
A

* What is the nature of stability at the bifurcation point? <
e Can we answer with the linearized model? Answer: NO

C

nm"e=0,P=~P.,)=c— P, l=c— )

4

One may wrongly or too fast, conclude that the equilibrium is indifferent. %
However, this is not true and this result is an artefact of the linearisation.

We should take higher order*! (than quadratic) terms in the expansion of :\,
Wezt (0; P) = —P{(1 — cosf) with respect to #, in order to decide (the

sign) of the stability at the bifurcation point. For instance, the expansion

cosfl ~ 1—6%/2+6*/4! can solve the sign problem. This, physically, means

that we use a asymptotic expansion of non-linear equations and capture the
moderate rotations and displacements around § = (.42

Linearised criterion



Post-buckling analysis - asymptotic non-linear approach

 N.B. Linearized buckling analysis cannot provide | P
information about the post-buckling behavior I1(6; P) = 569 — P(1 — cos )
* So, needs post-buckling analysis (full non-linear
formulation) Equilibrium paths
e ] gt T T TP &
——> Asymptotic post-buckling analysis 91 P, sinf R Py sint
8 : .
Expand up-to fourth-order terms the total 7l Asymptotic | —
potential energy cos =~ 1—0%/2+0%/4! E non-lingar J/ e </
) e ° Py ('1—{)%3?)_ = | Linearized
Weee.(0; P) = —Pl(1 — cosf) & el L e e=Pp-0=0
o ' g
— 11 =1/2c0? — PLO*/2 + PLo* /4! ;
3 oy
dH/dBZ (C—Pﬁ)Q—I—Pfﬁ' /3! = 0. , :T_ “c-PO)-6=0
. . - 0 | 5 100150 180
l l 0 [degs]
P cr Figure 3.47: Equilibrium paths. Full non-linear model (black), asymptotic
6=0,vP P = 1 — 92 / 3!’ For = E/ ¢, ?{; 0. non-linear model (orange) and the linearised model (right side).
pre-buckled post-buckling Note that now, for loading values greater than the buckling load, we obtain

branch branch the corresponding value for the rotations



Fundaments of Stability Theory: Example on imperfections

The imperfection
parameter is the
initial tilt angle

REF: https://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html|

Frzune 34.1. The imp 1tilt angle €.

One key difficulty is that
We begin the study of the effect of imperfections through several simple yet instructive one-degree-
of-freedom (DOF) examples.

§34.3. The Imperfect Hinged Cantilever

We take up again the critical-point analysis of the hinged cantilever already studied in the previous Chapter.
But we assume that this system is geometrically imperfect in the sense that the rotational spring 15 unstrained
when the rigid bar “tilts” by a small angle ¢ with the vertical. By varying € we effectively gencrate a family
of imperfect systems that degenerate to the perfect system when e — 0.

Denoting again the total rotation from the vertical by & as shown in Figure 34.1, the strain energy of the
imperfect system can be written

Uig. e) = L8 — e)*. (34.1)
The potential encrgy of the imperfect system 1s
Mid. b.ey =L — W= 1k{f — e — FL{l — cosf) = k[;m —e) =l - cosm]_ (34.2)
in which as before we take 4 = FL /K as dimensionless control parameter.
§34.3.1. Equilibrium Analysis
The equilibrium equation in terms of the angle & as degree of freedom is
r= o =kid — e — Asnf) =0 (34.3)
a8
Therefore, the equilibrium path equation of an imperfect system 15

no - 344
.i.—s.mH. 1344}

$34.3 THE IMPERFECT HINGED CANTILEVER

Uhstab

Sy
leig <
/

0 1 2

T ar ar .
R’=E=l‘(l—lmﬂ}_ q=ﬁ=l‘sm&_ (34.6)
We have stability if K = 0, that is
| —hoos# = 0, (34.7)
and instability if K < 0, that is
1 —icosd < 0. (34.8)

Critical points are characterized by K (4} = 1 — i cosé =0, 01

her = - (34.9)
cosfl
On equating this value of & with that given by the equilibrium solution (32.4) we obtain
#—¢e=1tand. (34.10)

Thas relation charactenzes the locus of critical poinis as  1s vaned. It 1s not difficult to show that these cnitical
points are limit points 1f € 7 0 (imperfect systems) and a bifurcation point ifand only if € = 0 (perfect system).

£34.3.3. Discussion

The response of this family of imperfect systems is displayed in Figure 34.2.

In this Figure heavy lines represent the response of the peerfect system whereas light lines represent the
responses of imperfect systems for fixed values of «. Furthermore continuous lines identify stable equilibrium

0,1, €) =U—W =31k(0 —e€)’ — fL(1 —cos) = k[5(6 —€)’ —A(1 —cos)], 97

oIl

A =0= :¥=k(9—e—ksin9)=0. - )=

— = ksin6
, 90

0 —¢ o°11(0) =
Sin o Pos.def? | 91
06

NB. we can have

also such ‘bassins
/\L‘ if we can access
them

» 0 (rad)

= k(1 — Acos®),

)



Example of FE-based post-buckling analysis

For real problems, one should rely on computational
technology and experimental approach

T T T

1.5

= P/P,
,_ !
4 1
W

i s
‘ - i

i I

- |
05+ ——

b
y
y
b
b
b
| P
i

0w I i i i i i

0.5 -0.4 -0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

w(f)/h h =10 em,

Figure 3.122: Equilibrinm paths. FE-post-buckling analysis of an alu-

mininm I-beam cantilever. The transversal tip-load is at the centroid.

Validate computational models you are
using before making predictions

There can be physics that computational
models do not see (not or cannot be
accounted for), which effects can be
accessed only experimentally

ti
InV pertUrbation



Effect of imperfections “nzgizab o 22antzudos

All real structural systems are imperfect

v" in form,

v in material properties,

v in the sense of residual stresses
v in the way the loads are applied

121t may be safely said that all real structural systems are imperfect in form, imperfect

in material properties, imperfect in the sense of residual stresses and imperfect in the
way the loads are applied. Roorda (1980)



Effects of imperfections

Symmetric Stable bifurcation Initial imperfection in horizontality

e Axially loaded structure with imperfections

v imperfection in horizontality (or verticality
for a column)

1 i
= - c[2(0 — 6y)]* — 2Ply(cos O — cos bp)

;.—‘, * Stable symmetric
v" Structures having this type of behavior are

4TI P 7 0 2c always imperfection insensitive and have
— by 5

consequently a reserve of resistance

de P.. sinf ’ a



Effects of imperfections

Symmetric Stable bifurcation

* Axially loaded structure with imperfections

v" imperfection in horizontality (or verticality
for a column)

1 *
[T = 5 c[2(0 — 0y)]* — 2Py(cos O — cos by)

iy - £ 0% p, =%
19 P.~ snd’ a Jl

 Stable symmetric
v’ Structures having this type of behavior are
always imperfection insensitive and have
consequently a reserve of resistance

1.6

1.4+

1.2

cr

1

0.6

041

0.2r

Effect of initial shape imperfection on the
maximum compressive limit load

0.8

Ideally perfect structure

material

Limit-point

”
;
// X
/ ‘
2 / \
/

/ : Non-elastic material
5 Elasto-plastic failure
’ (material instability)

Sensitivity analysis

Stable-symmetric bifurcation

0 20 40 60 80
0 [deg.]




Unstable-symmetric bifurcation model

Axially loaded perfect structure:

1
II= Ekvz — Pfy(1 — cos ) = A p— —
1
= Ekfﬁ sin® @ — 2Pfy(1 — cos §) )
: 3D
The cquilibrium pﬂths L N gl Unstable-symmetric bifurcation
- | Fer! AL e, G |
g = klEsinfcosd — 2Ply.sinf = 0 B N .
Jl 0.5+ g C,%P w
2 3 3
t.n ® 0
0 B H[Radiapts]
PZ%CDSEZPWCUE& : [ y 1
iy, 05Ff v E -
where P., = = i
2 /{
4t ;C ]
Stability is determined by studying the sign d(dII/df) = d*I1/d6* %

_ If the second derivative vanishes, then one should take higher
derivatives till non-zero®® value is achieved, for this case, for the sign of Equilibrium path. Unstable-symmetric.

5(ATI).



Unstable-symmetric bifurcation model

1 ‘
I1= Ekfﬁ(sin f# — sinfy)? — 2Pfy(cos By — cosh).

. Axially loaded structure with initial imperfection |
[he spring stiffness is k.

The equilibrium paths o
. =D
P sin @y e c | Unstable-symmetricb
5= (1= == | cosb, P, =kb/2, [ S A
er sin @ 1k i
Jl B8/ .
0.5} © C;%p
] S
& ®
8 0 3B |
) o\

Stability is determined by studying the sign d(dIl/d#) = d*I1/d6”

_ If the second derivative vanishes, then one should take higher
derivatives till non-zero®® value is achieved, for this case, for the sign of

5(ATI).



Unstable-symmetric bifurcation model 490

Axially loaded structure with imperfections: 90 5 !l"_ ___\_’_.__QJ,__J.____ _ ) .
) < 0 » B
Il = —kfi(sin @ — sin 6y)* — 2P¢y(cos By — cos f)
— 5o\ : 0 0l CO8 Uy sl ).
E
The equilibrium paths ‘U’ Effect of initial shape imperfection on the maximum
3 compressive limit load Load-displacement curve
P Y S11 9() cos O P = .ICEH/IZ 90=[)° : |deally perfect structure
P.. sin @ g 14—l !
- 840
A P g able-symmetricb 0.8
1_Pcr Al -
B/ S o6 -
.
0.5F = Oo l‘
o) A 0.4
> N Locus of maxima: s
: 0 B 10° '
%{ Perfect structure | P/Po = [1-(sinaﬂ)2fa]*’“
ot i i i i i i i i -
* Unstable symmetric 0 5 10 15 20 25 30 35 40 45 50
v T his gives imperfection sensitive structures :\’ :>' e

Imperfect structure



Unstable-symmetric bifurcation model

Axially loaded structure with imperfections: 9(]

* Unstable symmetric
v' T his gives imperfection sensitive structures

0.9

0.8

Tl

0.7

P
max  cr

0.6F

0.51

04}

0.3f

0.2

D 5 10 15 20 25
Initial imperfection i, [deg.]
Maximum axial force reduction with respect to the amplitude

of initial imperfection. F,. is the collapse or buckling load of the perfect
structure.

1.2

Effect of initial shape imperfection on the maximum
compressive limit load

9[]:[}” : |deally perfect structure
X

| Locus of maxima: i
0.2} 10° : . 1/3
- sin@ = (sinfly)""
. 2/3]%/2
| P[P = [1 — (sin 6o) ]
ﬂ -l i i i j i i i i
0 5 19 15 20 2 30 35 40 46

0 [deg ]

Imperfect structure




Asymmetric bifurcation model Rigid-bar-spring-model
Limit-load, raja-kuorma
Snap-through model

Simplified example to illustrate the concept of limit-
load

2L cosa u = 2L(cosf — cos )

e Rigid truss: two straight rigid bars of equal length
connected to each other by a hinge. One support allows 2L cosf

free lateral movement restrained by a elastic spring k
2) Stability of equilibrium
* Load P is kept increasing quasi-statically and we want to U

solve the force-displacement curve (equilibrium paths)

‘ d*I1/dé? = 4kL?*(cos o/ cos @ — cos® )

1 2 2 : .
1= Ek(ZL) (cos@ — cosa)* — PL(sina — sin 8). STABLE <= | > 0, when 6 < 0 and 6 > 65,
UNSTABLE <<=| 1II" <0, when — 65 < @ < 5.

2) Equilibrium paths ' The equilibrium dIT/df = 0
The zeros of the second derivative are
1/37 —
‘U’ load-displacement ’curve’ = equilibrium paths 6 = + arccos|(cos a) f | =405
p To fix the ideas,

—— =sinf — tanf cosa = sin #(1 — cos a/ cos 6) for an initial angle a = 30° = Op = +17.6°
AL P =40.028 - 4k L.




load-displacement 'curve’

Snap-through
)z — Stable
- = - Unstable

Limit point

4k L
@

§<0 P increases then the
———
angle # decreases
To fix the ideas, O = £17.6°

for an initial angle @ = 30° — P — 40.028 - 4k [,

™ 8=0 7



Asymmetric bifurcation model

PP

* Mises truss: two straight elastic bars of kh?
equal length connected to each other by
a hinge to fixed supports allowing free
rotations only

. . 02 + v? — 2uh
Limit-load, raja-kuorma load-displacement ’curve’ P\/ k(=) ={ — V2 +v2 - 2vh
Snap-through model
The fO”OWIH.g (?xample llustrate the Mises truess: limit-load and snap-through (Baroudi, 2019) pses tyee
concept of limit-load 1 ' Lo
|

N5t
limit-load —

Cx

* Load P is kept increasing 0
quasi-statically and we want to solve the
force-displacement curve (equilibrium

na
paths) iy
05 ! L L 3 L Limit-load buckling model
. 0 e L - 13 “ 29 Snap through illustration

* The truss so shallow that no buckling 5 =vih

of separate bars occurs: only snap- A shallow truss

through (consequently, only vertical load-displacement "curve’ 5

component of the tip-displacement occurs. If tfor shallow trusses Pt — 92§ — 352 + 53 J = U/h

truss enough high then one should consider h < (¢ kh3 ’

the horizontal component as well.)




