
• General Energy criteria of loss of stability
• Trefftz stability loss criteria
• Flexural buckling

• Buckling of beam-column
• Timoshenko column
• Buckling of beam-column on elastic foundation

• Energy approach- examples

• Effects of imperfections
❑ Ayreton-Perry formula  &  Eurocode buckling curves

• Linear buckling analysis
• Post-buckling analysis
• Finite element method – a hand-version for buckling 
analysis (=  linearised  slope deflection method)
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Content of the  2nd week 
lectures:



• It is this energy form                 of   criticality condition that will be 

used systematically thorough this course to derive the stability  loss 

equations (=eigenvalue problem=buckling equations in the differential form) 

for all our structures 

• It is again this energy form that will be used to obtain good 

approximations for the buckling loads (for hand- calculations & Finite 

Element formulation)

Physically speaking, these two conditions mean that the perturbed state is also 

an equilibrium state; thus another neighbouring (or far) equilibrium exists and a 

tiny 'kick' can moves the system  there (=loss of stability) 

= stationaity condition

=  neutral equilibrium condition

Trefftz stability loss 
criterion (less general) 

The energy principles - all in one slide
2) The virtual work principle:
(valid for all systems systems consevatives, 
non-consevatives, statics, dynamics)

1) The stationary total potntial energy:
(valid only for conservative systems in  statics)

perturbation:
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Lecture slides for internal use only
D. Baroudi, Dr.
All right reserved

No

Soil material unstability

The key stability question in 

structural design



The Fundamental Questions

All real structural systems are imperfect

✓ in form, 
✓ in material properties, 
✓ in the sense of residual stresses 
✓ in the way the loads are applied

- for many practical problems, need 
numerical and experimental
approaches for usuable results in 
structural design

- analytical approach for very simple 
structures - assymptotic analysis

- analytical approach for very simple 
problems possible like buckling of 
simple members or substructrues, 
columns, frames, plates, symmetrical 
shells...

Understanding the theory is 
necessary 1) to correctly design 
experiments and 2) to interpret 
their results. 

This is even more true, for designing 
and doing correctly (=reliably) the 
numerical simulations and 
interpreting correctly their resuts.

why need for 
theory then?



+ Eurocode 7, geotechnical design
• Slope stability
• Pile stability (foundations) 
• …



Russia, about 1890

2

2

L

EI
Pcr =

crPcrP

buckling

Foot bridge (ramp) collapse in Jiujiang City 
(China's Jiangxi)

Railway bridge collapse, Russia ~1890

The mechanical cause of the 
collapse is the same: flexural 
buckling of compressed upper 
chord of the truss  (yläpaarteen 
nurjahdus)



Flexural buckling

Despite our interest for post-buckling behavior, in structural 

design, stability loss is an unwanted event. 

However, bifurcational buckling exists only for a  non-existing perfect structure and thus GNA should be 

performed to find the limit-load, if  any.



Mechanical meaning of stability loss
Loss of stability means  loss 

of effective (apparent) rigidity

K of the stucture = (nearly or) 

horizontal tangent on the 

load-displacement curve

(=stiffness matrix K becomes 

singular)

Lateral-torsional buckling

effective rigidity



Self-reading

Stability theorem of Lagrange-Dirichlet & 
Trefftz stability loss criteria

The following slides:

are mainly a recall from last week  meant for

the reader can jump directly to  
the new topic (slide 18):

GOTO slide 18



Stability theorem of Lagrange-Dirichlet & Trefftz stability loss criteria

(This theorem is more general than Trefftz stability loss criteria)

Trefftz is a particular case where the total 

potential energy increment is expanded only 

up-to its quadratic terms between the 

initial and perturbed states

Trefftz stability loss
criterion 

Trefftz stability loss
criterion 

More general 
criterion than Trefftz

stability loss criteria

stability loss criteria

It is this form of   criticality condition that will be used systematically thorough this course to derive the stability  loss equations for all our structures

Self-reading



Let's illustrate mathematically the basic stability types 
• stable
• Indifferent                          this will be one condition for loss of stability

• unstable
• keeping a simplified example of the rigid ball (null strain energy)

The total potential energy of the system

potential energy 
of gravitation 

Initial total potential 
energy

perturbed equilibrium 
position

Initial equilibrium 
position

The sign will provides us the nature of stability

… or equivalently

The idea is the make the study of stability in 

terms of variational calculus

Self-reading

x0= 0

The sign of                    

gives the full information  

about the stability behavior 



So, the criticality condition:

Self-reading



Leading term for sign change in the 
increment of total potential energy

v

v

The criteria of loss of stability

More suitable form for finite number 

of dofs and continuous case

This is a Taylor expansion of a function

A Taylor expansion of a function

It is tis form of   criticality condition that will be used systematically thorough this course to derive the stability  loss equations for all our structures 

Physically speaking, this condition means simply that the perturbed state is also an equilibrium state; thus an neighboring equilibrium exists 

Self-reading





About the criteria of loss 
of stability – Example with 
two dofs

Self-reading



About the criteria of loss of stability –
Example with two dofs

Self-reading



unstable
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Critical load

smallest 
buckling 
load:



NEW Material starts from here …



Torsional 
buckling

Trefftz
stability loss
criterion     

General 
stability loss
criterion 

Change of 

total 

potential 

energy 

between which 

two states?

?

N.B. The perturbed configuration [.]* can be thought achieved 

keeping the load constant and  for instance,  giving a tiny kinematical  

perturbation to a an adjacent configuration v* . After that, we test for 

the equilibrium of such perturbed state by giving it a tiny virtual 

perturbation                            ... this is why we vary the change  .dv* 



H - a tiny perturbation

P

H

Change of total 

potential energy 

between which two 

states?

or imperfect structure
perturbed configuration



Stability (loss) energy criterion 



Energy criterion of loss of stability (Bryan form)

+ should also include increment of work of 
external work not already accounted in by the 

work of initial stresses

example in next slide ...



- Additional work of 

external force not 
included in the pre-
stress

Initial 

stress
Quadratic 

part of 

the strain

Linear part of 

the strain

Example: Buckling of a column

initial bending 
stress

initial axial 
stress



Finite deformation (strains) What deformations are significant in buckling?

Ex. Plate: quadratic part of strains

quadratic part 

they will work with initial stresss

Advanced reading - these may be too technical details 
which however are needed when deriving buckling 
equations 



Flexural buckling Equations (of loss) 

of stability

R
ef

:http://perso.ensta-paristech.fr/~touze/PDF/MS205/amphi1_ms205.pdf

N.B. The perturbed 

configuration [.]* can be (also) 

thought achieved keeping 

the load constant and  for 

instance,  giving a tiny 

kinematical  (virtual) 

perturbation to a an adjacent

equilibrium configuration v* 

= v* 

A thought
experiment

Keeping P

constant

P

This difference 

does to zero at 

buckling





! does not depend on material properties



The linearised 
eigenvalue problem:
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Moderate 
rotations 
assumption

assumption needed to 
determine buckling load 
and modes as the 
solutions of a linearised 
eigenvalue problem



Initial 

stress

Quadratic 

part of the 

strain

Linear part 

of the 

strain

BCs BCsField equation

Stability loss criteria 

N.B. compare to the virtual work 

principle which the more  

general than the principle of 

stationary potential energy.



The few following slides are a recall 

form Beams and Frames course (2018)

Related to how the stability 

equations are derived by considering 

equilibrium of a deformed 

differential beam element 

(loss of) Stability equations 

The differential approach - general solution

We now, for a while,  make a break and go to 
energy principles and then come back and recall 
shortly the differential approach



We used previously this 

incremental form:

What if, insted one 

uses the 'full'

total potential 

energy at the tiny 

buckled state



What if, insted one 

uses the 'full' 

total potential 

energy at the tiny 

buckled state



Some examples of direct 

application these 

principles will be shown

The following two energy principles

• to derive, in general,  

equilibium or motion 

equations

• to obtain good hand

approximations for 

dynamics, buckling 

laod and corresponding 

modes

• to derive good 

numerical methods and 

in particular the FEM 

discrete equations 

NB. this principle holds for conservative systems

2: Virtual work principle (VWP)

1: Stationary total potential energy

NB. this principle is universal and holds for all 

systems (conservative and non-conservative, linear

and non-linear)

are used to 

In these course we foccus on stability aspects

this stationarity 

condition follows 

(also) from the VWP



Energy principle can be used to 

obtain good approximations for 

the buckling laod and modes

Critical load = 
=

... or trigonometric series

= virtual work principle



The energy principle can be used to obtain 

good approximations for the buckling laod



Use a better mode approximation: for instance the analytical exact mode for buckling under the end-load  --> HW?



Linearised 
stiffness matrix

Hand-version of FEM

Geoemetric . 
stiffness matrix



total deflection

Effect of initial imperfection



Failure under wind excitation during construction phase under combined very slow torsional free vibrational mode (less

~1 Hz) and flexural mode resulting in excessive displacements (resonnance) and finally joints failure. Additional 

remarks: there is practically no torsional rigidity at all, to cite only one error. (note that there was no temporary supports!)

Reference: extracted from video Youtube 2021 (link sent by Dr. Athanasios M.) 

Dynamic stability loss 

torsional free 
vibrational mode 



This is the equation of motion

Dynamics and stablity

Free vibration harmonic assumption



Dynamics and stablity
to demonstrate the power of virtual power

This is the equation of motion

Free vibration harmonic assumption

1) Vibrating string 2) Static buckling

4) Transversal free vibrations of beams

crutial for structural design of (stayed bridges) cables: 
parametric vibrations lead to structural failue and fatigue failure

4) variable natural frequency with changes in axial force (tension/compression)

= runsauden sarvi

1
2

3



Dynamics and stablity

compression p > 0

tension P < 0



Dynamical stablity loss



Dynamical stablity loss

(we assume so, in this example)



Dynamics and stablity

Reference:

How we show 
this result?
Propositions?

= ?

=buckles = loss of stability



(first mode)





and analysis question

Analysis: Thanks to energy method, 

we can have good estimates before 

diving into computer 

simulations/analysis

Problem: 

?

When only P2 acts:



reference load

Approximation

First, let's solve for proportional loading to have a reference

this is the exact buckling mode when only P2 is acting alone

acting simultaneously

When only P2 acts:

How to cross-check?



reference load

Approximation

exact buckling mode when only P2 is acting alone

How to cross-check?

approximate solution



The few following slides are recalled  form Beams and Frames 

course (2018)

Related to how the stability equations are derived by 

considering equilibrium of a deformed differential beam element 

(loss of) Stability equations 

The differential approach -
general solution

We jump directly to the slide:
Geometrically non-linear analysis of 

frames by the Slope-deflection 

method
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v=

0P

To account for the second order effects, the 
idea is to write the equilibrium equation in 
the deformed configuration 

/geometrical nonlinearity/ (account for 
the nonlinear part of the strain tensor)

Assumptions:
- Large displacements
- Moderate rotations
- Linear elastic material (Hooke’s law)

,tan1,tan  = v



1cos,sin  

‘Moderate’ rotations

QQ  )cos( 

Q



vv +=

=+ 
+Q Q

QQQQ ++ )cos()( 

0(          )



Combined flection M + N

The superposition principle does 

not hold anymore

vPPP = sin Equilibrium



v=

vv +=+ 

0P

To account for the second order effects, the 
idea is to write the equilibrium equation in the 
deformed configuration 

/geometrical nonlinearity/ (accounts for the 
nonlinear part of the strain tensor) and 
membrane forces               from the 
undeformed

The General solution
(for compression case)



)()cos()sin()( 0 xvDCxkxBkxAxv ++++=

v=

vv +=+ 

0P

The General solution
(for tension case)
NB. The tension have a stiffening effect on 

bending

The General solution
(for compression case)

Combined compression/tension and bending

0P

vv +=+ 

)()cosh()sinh()( 0 xvDCxkxBkxAxv ++++=

NB. The compression have a softening (of the 

effective bending rigidity) effect on bending

N.B. for                

0P

→= 0P )()( 0

32 xvDxCxBxAxv ++++=



Euler's basic buckling cases Eulerin perusnurjahdustapaukset

2

2

cr


EI
P


=

2

2

cr 4


EI
P


=

From Beams and Frames course



Elementary buckling casesFive Fundamental Cases of Column Buckling

Geometric interpretation of the 
effective length

Adapted from the reference: 
STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR  STRUCTURAL ENGINEERS. THEODORE V. 
GALAMBOS ANDREA E. SUROVEK 
JOHN WILEY & SONS, INC.

From Beams and Frames course



Example – rigidly fixed ends column

Non-trivial solution: 
the determinant 
vanishes:

Criticality: or 

The zeros of the determinant:

The critical load is the smallest:

Adapted from ref: prof. Tuomala M. 2

2

cr 4


EI
P


=The critical load from 

the Euler’s ‘Table’ :

Cf.



Examples – rigidly fixed ends column

Non-trivial solution: the determinant vanishes:

(Stability loss criterion ) Criticality: or 

The zeros of the determinant:

The critical load is the smallest:

The corresponding Eigen- (buckling) mode:
(insert the solution back and solve the integration 
constants…up to a constant)

Four BCs:



Examples – what is the buckling length?

critical 
load:

corresponding buckling mode:

2

2

cr 4
L

EI
P


=

buckling mode

2nd derivative 

)()( xvxM 

0)25.0( =LM 0)75.0( =LM

2///4 buckling

2

buckling

222

cr LEILEIP === 

2/buckling L=

PP

P 2/buckling L=

buckling length

2/buckling L=
Obtained from theory

Given by tables
L



1
buckling =



Second-order effects 0P 0P

The stress-problem:  
Solve the deflection v(x) as function of 
the axial load P (the loading parameter)

EI

P
LkL 









−







= 1/

2
cos/1

8

8/

)2/(
22 E

E

PP
PqL

LM 



Homework: Show* that max. bending moment reduces to:

( ) 
P

Lq
kL

k

q
Lv

2

)2/(
12/cos/1)2/(

2

2
−−=



and that maximum deflection is:

Second-order effects = non-linear effects

22 /0 LEIPq E =→=

EPP = 75.0

Compression case



Slope-deflection method – Stiffness-equation

)()()( 0

1221

0

1212

0

1212 kLMKkLCkLAM +−= 

)()()()( PMKPCPBPAM ijijijijijijijij +−+= 

Stiffness-coefficients and loading terms 
depend on the member axial force

 21,12=ij

EI

P
LkL 

Stiffness-coefficients are 
symmetric with respect to i and j

Case of compression : P > 0012 =− PNN

Member axial force can be compressive
or tensile. The stiffness-coefficients are 
different in compression and in tension.

Compression : P > 0

12

0P

N

N12

21

12 vv −

  Lvv /1212 −

The stiffness equations of the slope-deflection method 
with axial load 
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



However, it is more practical to express 
the stiffness coefficients in terms of 
Berry’s functions as we did till now.

1212 vv −== 

12M   k

= ),0()(12  kMkA

( )
2sincos2

sincos
)(12

−+

−
=




A

/)( 211212 LPMMQ ++=

12M

21M1v

2v

Compression : P > 0

We have earlier established these eqs previously when  using Maxima

Boundary conditions:

The stiffness coefficients – axial compression and 

bending

  k

 

 vy
NB. Notation:

021212 −=−== vvv

12Q
21Q

0)()( 2)4( =+ xvkxv

DCxkxBkxAxv +++= )cos()sin()(

0)0( 1 == vv = 2)( vv 

12)0( =v
21)( = v



12

21

12

21

12
21

12
21



]





  /1212 vv −

2

12 )0()0( EIBkvEIMM =−==
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Formulary

Compression

Extension

Berry’s functions (stability function)

Loading terms

The stiffness coefficients

ijijijijijijijij MCBAM +−+= 

(are symmetric) EI constant

ijM

jiij MM −=

jiM
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Application example
of the geometric non-linear 
theory (for moderate rotations) for 
analysis of frames and
continuous columns

Equilibrium eqautions in the tiny 
buckled configuration

Buckling of frames – recall 
from ‘beams and frames 
course
for the slope-deflection 
method with Berry’s stability 
functions

Geometric non-linear stiffness matrix



The stiffness coefficients – axial compression and 

bending

Example from exam 2018
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Buckling of Continuous Beam-Columns and Frames

Exam
p
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Buckling of frames - no side sway 

Solution:

=+ 02321 MM

EI

P
LkL 

),()()()( PMKPCPBPAM ijijijijijijijij +−+= 

( ) ,022321 =+ aA

0PCompression:

L

EI4
,

6

)()(4

)(2
22 L

EI

kLkL

kL





−

0Pcompression

only beam 1-2 is axially 
compressed

normal force = 0

Critical condition = non-trivial solution exists:

 02 ?0)( 2321 ==+ kLakLA

no side sway: 

0)(4)(16)(12 22 =−+ kLkLkL 

2

288.233.5
L

EI
PkL cr ==

,
tan

113
)( 








−=


 








−=



1

sin

16
)(

Berry’s stability functions:

,22321  =

0=ij

kL

kL 33.5=kL

44.428.6 cr  
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Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Q: DETERMINE THE BENDING MOMENT AT RIGID JOINT #2

N21 + Q32 = 0Iterations are 
needed to solve the 
bending moment:

Express Q32 in 
terms of end-
moments



Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Moderate rotations 
and loads close to 
critical load but not 
over N21N21

should be N21

NB.  Q23 have the same sign as e



Computational Linear and 
non-linear buckling analysis

Free Exercise  - 20 extra-points  for HW

1.  Perform (elastic) linear buckling analysis for the perfect 
geometry and find the critical load and the respective buckling 
mode [4 points]

2.  Find the second buckling load and the buckling mode [1 pnts]

3.  Analysis the shape imperfection effect on the buckling load 
(GNA) [15 points]

For that do: 
• Take a) the  first buckling mode  and then the second one 

(or their combination) multiplied by L/400  (L distance between 

mode nodes, as in Figs.  on right) as a shape imperfection to add for 
the perfect geometry or b) instead of adding a tiny 
combination from buckling modes, just add the two shape 
imperfections given in the figures, separately or as a linear 
combination.
• Determine the load-displacement curve at some 

characteristic points 
• What is the limit load? How much the buckling load of  the 

perfect arch is reduced?

Use FEM softwares, at least 
for the questions 2) and 3)

Anaytical solution:





Timoshenko
buckling load

Euler buckling 
load

Increment of work of 
external force during 
buckling

Change of strain energy 
during buckling



Timoshenko
buckling load

Euler buckling 
load

Reduction coefficient for 
the Euler buckling load

Reduction coefficient

Boundary 
conditions effects

Cross-section 
geometry 
effects
Quadratic effect

Material effects
Linear effect

Reduction coefficient of the 
Euler buckling load



Reduction coefficient of the 
Euler buckling load

(see the extended lecturer' notes)



Built-in columns – ‘ristikkopilari’

Ref. Timoshenko

• Examples displayed for intellectual curiosity

• Ourdays, stability of such structures is analyzed 
computationally, especially because torsional 
stability loss is involved in addition to flexural modes
which is quite complex when not impossible to analyze 
theoretically
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Mistä nurjahduskäyrät tulevat?





Student's Readings 



Design formula:

Depends on eccentricity

Eccentricity

Solve  from this:

…
 a

n
d

 o
b

ta
in

s:

Student's Readings 



External axial load
Action

Resistance

Buckling curves

Ayreton-Perry design formula
Student's Readings 



Student's Readings 



1st mode

2nd mode

Ref: example adapted from RK.

Investiagte 1) the buckling 2) 
the post-bucling behaviour 
using this discrete simple 
model for various ratios of 
support spring and rotational 
rigidities.

The question: are the post-
bucling braches stable or not? 
sensitivity to imperfections?
surely depends on the ratios of 
support spring and rotational 
rigidities.
What is the critical ratio for 
switching bto unstable mode,if 
any

Example of 
design problem



FE- Linear Buckling Analysis

[FE-buckling analysis] 
First three critical loads and 
respective buckling modes

Buckling 
load 

FE-Mesh

2D-elasticity

Euler 
analytical 
1D

FE- Linear Buckling Analysis
• In this FE-analysis, 

the column was treated 

as a two-dimensional 

elastic domain





FE- Post-Buckling Analysis

• analytical approach is used

What to do: at buckling & for 

moderate increments

✓ estimate the      

displacements/rotation

✓ Study stability of post-

buckling branch

load increase

few percent
Derive the force-
displacement relation

• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

How to do it?

Lagrangian 
curvature

Shortening  due to 
flexion



• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

Lagrangian
curvature

Shortening  due to 
bending

The curvature in the Lagrangian formulation:

The minus sign is because of sign convention for positive 
curvature



What to do: at buckling & for 

moderate increments

✓ estimate the      

displacements/rotation

✓ Study stability of post-

buckling branch

Derive the force-
displacement relation

• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

How to do it?

Lagrangian curvature
Shortening  due to flexion

Exact 
expression

Taylor expansions

Taylor expansions with only two terms



The asymptotic force-displacement relation

Taylor expansions with 
only two terms

Assume a (bifurcational) flexural deflection mode  

Post-buckling behavior

FE-Post-buckling 

behavior



The asymptotic post-buckling analysis 

provides also the value of column shortening and 
rotations at buckling



• Perturbed with tiny 
transversal distributed load

• Can also be given as initial 
shape imperfection

Uses: Finite 

strains and large 

displacements 

theory



• Perturbed with tiny 
distributed load

• Can also be given as initial 
shape imperfection

Linear buckling analysis

Post-buckling behavior

Flexural deflection  v(L/2)  / h Axial shortening  u  / h

• at least, up-to the first mode is stable
• very shallow shape… no much increase in load bearing capacity



Uses: Finite strains and large 

displacements theory



v

v

Linear Buckling 

analysis

Sensitivity to imperfections

Post-buckling analysis

(Non-linear Buckling analysis)

Application: 1) Buckling in pile 
design

Application: 2) Buckling of rail track

Buckled rail track.  Note the sine-shaped buckles

v

Cf. Eurocode 7



v

Boundary conditionsField equation

v

v

&

Solutions?

Can be used to find exact 
solutions

Can be used to find 
approximate solutions
Rayleigh-Ritz



v

Boundary conditionsField equation

v

v

&



& Boundary conditions

The following trial satisfies the differential 
equations & the boundary conditions

Indeed, this is a 
limit for ‘long’ 
beams for whichv

Constraint: half-

wave number n should 

be an integer

The buckling load is the smallest critical load:

‘Long’ beams: Beams of arbitrary length:

Buckling 

coefficient 

(see graph next slide)

The buckling load:

v
Buckling load

What is the corresponding buckling mode?

depends on



What is the corresponding buckling mode?
Attention: The buckling mode 

corresponding to the 

critical buckling load  is 

not always the first mode

depends on

R
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v
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l
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d

Relative 

stiffness



• For general types of BCs one should obtain  a 
complete solution of the  ODE

v

v

v

v

v

v



• For general types of BCs one should obtain  a 
complete solution of the  ODE

To obtain from the smallest zero of the determinant

Let’s fix the value
In this example:

• One should consider, 
separately, symmetric 
and asymmetric 
buckling

• The smallest critical 
load → buckling load

Buckling load  (symmetric mode)

Read the details in the 

pdf-notes I provided



& Boundary conditions

Buckling 

coefficient 

(see graph next slide)

The buckling load:

v
Buckling load

What is the corresponding buckling mode?

depends on



Buckles here

(2D elasticity 

solution  with 

tiny initial 

imperfection)

FE-based post-buckling 

analysis
The column-beam is 

simply supported

(kuvasta puuttuu 

nivelet)



Buckles here

(2D elasticity 

solution with 

imperfection)

Buckles here

(1D theoretical  

ideal solution)
The column-beam 

is simply 

supported

(kuvasta puuttuu 

nivelet)



The column-beam 

is simply 

supported

(kuvasta puuttuu 

nivelet)







Euler-Bernoulli beam element

[A result from FEA] The convergence rate k
for Euler-Bernoulli beam element for the 
Eigen-values is k = 4



A
s
s
e
m
b
l
y
:

Buckling 
Load & mode

Initial 

membrane stress

(pre-buckling)

Buckled state

DO: Determine the critical load and the corresponding mode 

by the “handy-FE” method (stiffness method)

NB. On should refine the FE-mesh until 

convergence …



Eigenvalue problem = lobal equilibrium 

equations in the tiny buckled state:

- refernce critical 

load P when both loads 

P1 and P2 are acting

when P2 = 0   

For details on the assembly, please refer 

to my additional pdf-notes in MyCourses 

Non-proportional loading





About convergence … and Richardson extrapolation toward the limit

refine the FE-mesh until 

convergence …

• Assume we have an priori knowledge on 
the convergence rate  of some quantity
(can be always estimated)

• The above extrapolated solution is much 
closer to the exact one than the solutions  
1 and 2

The numerical 
solution is 
proportional to

Positive 
constant

h step-size or 
characteristic mesh-size
(length of the largest 
element)

Convergence rate 

e.g.. buckling load

Richardson extrapolation: is a sequence convergence acceleration method

Two solution with two 
different mesh-size: h2 < h1

Accelerating convergence

[A result from FEA] The convergence rate k
for Euler-Bernoulli beam element for the 
Eigen-values is k = 4. (We can also estimate k 

from log-log plot of convergence rate (graph of 
changes in lambda versus changes in h)NB. This extrapolated value is much more accurate 

than if would refine substantially the mesh further

Extrapolated

value



Simplified model of elastically restrained column

Questions: 

• Study the equilibrim paths 

• how buckling load and stability 
depends on the relative rigidity 



(Ref: This problem is provided by R. Kouhia)

Equilibrium pathsSolution



Equilibrium paths

Solution

From this study we conclude that

• the buckling load increases with
the increase of the stiffness of the foundation. 

• However, at the same time, the 
bifurcation switches from stable to becomes of unstable
after a critical value 



Appendix

No need to distribute the followin slides(or read)



• Is a global energy criterion for stability

• will be used systematically to derive the 
all the equations of stability (loss) we 
need for all elastic structure s

Stability theorem of  Lagrange-Dirichlet

(More general than Trefftz)
Trefftz is a particular case where the total potential 

energy increment is expanded only up-to its quadratic 

terms between the initial and perturbed states

Self-reading



Energy criteria for determination loss of stability
of elastic structures

Self-reading



Trefftz stability loss criteria in its canonical form

We will use 

systematically this 

more general energy 

criterion:

Self-reading





Equilibrium path, Stability, Instability 

Examples – snap-through
Note that loss of stability may happen also without 
bifurcation through limit points as here

Ref: Bazant’s classical textbook on stability

Energy space 
representation and 
equilibrium paths

Instable 

Stable 

Stable 

0),(Π 21

2 qq

0),(Π 21

2 qq

...ΠΠΠ 2 ++= 

snap-through

Limit point
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The Rayleigh-quotient

https://eductv.enpc.fr/videos/mecanique-des-structures-seance-8/ (5.10.2017)
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