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Initial
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configuration

The topic of this week is challenging for at least two reasons

1. By itself, this topic about torsional, lateral torsional and combined flex-
ural torsional buckling is the most time-demanding for the students.
However, it is worth of studying for future engineers.

What makes this topic even more difficult before addressing the stabil-
ity aspects, is that the students need necessarily some minimum under-
standing of the specific mechanics related to warping torsion in beams
having thin open-walled cross-sections.

l; motion

Lateral torsional
buckling
Kiepahdus

Warping is simply non-uniform axial displacement of the cross-section
induced by torsion only. When this axial displacements is restrained,
axial and shear stresses are induced. Such additional stresses are called

warping stresses.

after eliminating w"'

0\2 . :
This subject of structural mechanics is known as Vlassov’s theory of EI (4) G I 17 (M x) — 0 Initial tﬁlﬂll'g
warping. This is a new concept which is not necessarily known to w 1 v E I Y =V, noment
Y

students. It is simply not feasible, in two lectures, to learn neither to

teach, warping torsion and stability. However, a solution exists. 2 O
ping y & & Tables
2. No worry, there is a solution which makes this topic do-able for you: ng & b -
we will address stability questions in these two lectures and cover them QQ Qb ‘:j%‘[ 7 o 2t + htat
correctly. We will need and use from tables two key parameters to study > "o S . Mble' :
t
the stability loss involving warping. Namely, the location of the centre ' ""!2 J Co=Z0 Ly
of shear (or rotation) and the warping rigidity [ A
3. Naturally, we will demonstrate the necessary physics of warping then ) b — b -
Yy, We ) o y P bing Pure torsional = e m by
move to stability questions. The idea is to understand the phenomenon ) Lot _T 1} + by
itati buckling A _ (b + balts? + bt
qualitatively. . ) J - 3
Vaanténurjahdus £ | | oL Uk bt
Mg * 712 byt + b




This course textbook Must classics
Readings e-book

THEORY OF
ELASTIC STABILITY

STEPHEN P. TIMOSHENKO

Professor Emeritus of Engineering Mechanics
Stanford Universily

_ Chapter 6. Torsional and Flexural-
Torsional Buckling

AP\ §

Chapter 7. Lateral-Torsional b
Buckling

IN COLLABORATION WITH
JAMES M. GERE

Associate Professor of Civil Engincering
Stanford University

SECOND EDITION

INTERNATIONAL STUDENT EDITION

Stability of Structures

Principles and Applications

McGRAW-HILL INTERNATIONAL BOOK COMPANY

Auckland Bogotad Guatemala _Han_jlhurg Johannesburg Lisbon
London Madrid Mexico " New Delhi Panama "Paris San Juan
. Sao Paule Singapore Sydney Tokvo

Chai H. Yoo B

Sung C. Lee H



Topics of the lectures and homework

Content

“7 motion

Lateral torsional

E.' buckling
2nd week Kiepahdus
| 2. Lateral-torsional buckling (kiepahdus) ~ ! | ,
b 3. Torsional buckling (vaantonurjahdus) | I i
Vaantonurjahdus

\ 4

* Beams having thin-walled gpen cross-sections can shear o

have torsional modes of stability loss due to their center \j ?

relatively lowtarsional Agidity. S A
et

* In addition, one princple bending rigidity, usually, the
loading plane, can be very nmuch larger than the minor
one.

... and for narrow cross-sections, too
(lateral-torsional, here)



The idea of this bending Pure torsion Warping
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Homework #3

Lateral torsional buckling,
Pure torsional buckling
and
Combined flexural-torsional buckling

* ok

Deadline 18.3.2021 before 23:45

March 11, 2021

Topics: Lateral torsional, pure torsional and combined flexural-torsional buckling.

Contents
1 Exercise: Lateral torsional buckling
2 Exercise: Combined flexural and torsional buckling

3 Exercise: Flexural-torsional buckling

INB: Only two exercises are compulsory. The remaining one, will be counted
as extra points. Each Question is graded by five points and EXTRA, five

points, respectively.
Readings

1. CHAI H. YOO & SUNG C. LE. Stability of Structures
Chapter 6. Torsional and Flexural-Torsional Buckling
Chapter 7. Lateral-Torsional Buckling

2. Lecturer’s reading-supporting material pdf:
Chapter 2: Torsion of open thin-walled beams

3. Lecture slides of the third week

4. Use of other sources is not prohibited but is encouraged

1 Exercise: Lateral torsional buckling

Use energy principles' and determine an approximative expression for the
buckling load P of the simply supported elastic beam of length £ is centrically
loaded by a compressive axial load P as shown in Figure (1). The end-
rotations support is a fork-type. The buckling load should be expressed as
Pg = f(El,, ElL,,GI}, ¢, a).

% lp /N.A
SE" SEETR gl Antdses K,
il SRAAN ‘SSSSSCLS25EES
~ e | w i

oub il 1
‘Z:" ) o % Simply supported beam
N ST
EI,
E1, aregiven
GI;
Figure 1: Simply supported beam. The support condition for end-rotations

is a fork-type. The load P is at a distance a from from the neutral axis. The
cross-section of the I-beam is doubly symmetric.

For comparison, the analytical exact solution is given and is

Pgt
AM, 5

~ 1.35 [\/1+[0.54PE'ya/M’,ef]2+0.54PE‘ya/]W,ef )

where Pg, = n2EIL,/? and Mye; = \/Pey|GL, + n°EL, /€]

Hints: 1) Trigonometrical trials lead to less work for the student. For instance, for
rotation ¢(z) =~ Asin(wz/f) is enough. Naturally, the student is free to chose his
own kinematically admissible approximation.

2 Exercise: Combined flexural and torsional buck-
ling
An elastic cantilever column (Figure 2) is centrically axially loaded at its free end.

The load acts on the center of gravity of the section (= centroid).

Centric compressive load -
at the center of gravity P F
of the cross-section

f

; {

A Te

Y

M L
Y

de=D

Figure 2: Axially loaded cantilever column. The geometrical parameters are
such that ¢t = h/5 and £ = 10h.

« Determine the buckling load Pg and the corresponding mode (flexural or tor-
sional or combined?). The location of the center of shear (SC) and the warping
inertia moment I, can be determined using tables.

DAt SR D TR T T 7 T Dution
3 Exercise: Flexural-torsional buckling st
Consider the simply supported elastic column (sub-figure a) in Fig. 3). The cross-

section is in the form of a crucifix X or +. The thrust P is axially centric. MPa.

what
At both end we have a fork support for rotations and also warping is free to happen am)
at both ends and thus ¢"” = 0 at = 0 and z = £. As regard to bending both ends
can be assumed, for the purpose of the exercise, freely supported.

« Determine the buckling load and the corresponding mode

« (EXTRA 5 pnts) Determine only the pure torsional buckling load for the real
X-column in sub-figure b) in Fig. 3) Hint: find the column in Finland and
determine its dimensions (approximative). Assume it made of steel and simply
supported and the end-load being centric. Do not account for self-weight.

(EXTRA 2 pnts) Determine the critical length £, for mode transition between
pure torsional and pure flexural. Draw a diagram of the critical load P,, =
P..(f) as a function of ¢ for both flexural and torsional buckling. Show the
buckling envelope.

p Central axial compression at the center of

=ieonst; l gravity of the cross-section

Simply supported X-shaped column'

Figure 3: a) Simply supported elastic column (of length ¢) under centric
thrust P. b) X-shaped column somewhere in Finland.
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i: Lateral torsional buckling of i-beam
(kiepahdus)

Conmrent; Good experiment with load-displacenent curves
The student can clearly see the transition frombending in the
vertical plane to bending in the horizontal plane and tarsion

2: Pure Torsional buckling of L-
shape cross-section (angle) column
(Puhdas viddnténurjahdus)

Comment: Good experinment with a funny
professor.

Note that, the apparent (tarsional) rigidity gets
dranatically reduced close tothe buckling
load



https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

Progress of the test

—
https://www.youtube.com/watch?v=000Ri 2Vkcgé&app=desktop
(24.02.2010) '

Progress of the test

Cross-seetion:
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(kiepahdus) "

7. Bucklil oceudged

e - NN 3 - _“
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Geometrically-no ,

Progress of the test
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Elastic linear responSe e ™ 4
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i _ Experimental load-
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https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

The phenomenon

Lateral torsional buckling
Kiepahdus

Flexible deck

Beams with thin-walled open cross-sections
can have torsional modes of stability loss due
to their relatively low torsional rigidity

|OTL

Thin-walled open cross-sections examples

Transversal
loading

l

Unbraced
compression
flange

[]L

i;- motion

Lateral torsional
buckling

Combined flexural and torsional buckling
Yhdistetty taivutus- ja vaantonurjahdus, eli
avaruusnurjahdus

Axial loading

‘I
"

Initial
equilibrium

b)

stability



The phenomenon of buckling Axial loading

with torsion l
(Pure) torsional
Torsional buckling buckling
Vaantonurjahdus ﬁ
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Flexural buckling  Torsional buckling
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|

Beams having thin-walled open cross-sections can have
torsional modes of stability loss due to their relatively
low torsional rigidity .

(Pure.) Torsional Lgteral torsional buckling  1,.cyersal loadin
buckling Kiepahdus

Vaantonurjahdus - l
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Initial stress
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b Iz

Cross-section Instantaneous

| gm— 0 -
G rotation center
©
(Y .!:ﬁ_‘,a
e }

| [
In both cases the cross-section have a torsional motion



The phenomenon shear center? warping?

i . . aol/;n e _ . .
Spateral Tor;nonal bu.CkI'ng o'l 7? Lateral torsional buckling
ingly symmetric cross section 1 =} _
o Kiepahdus
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ay= ) Aibel) ¥ 47
] a % 5949 ' g -
i L . = Eﬂ., |
S- shear center (rotationcenter): (¥s, 2s = 0) . g' ] -3
C- center of mass . | ‘_3 ,l,:é' |
Moment arm of external force: @y = (¥s — yo) = ‘t;
sing .Q°, b<v-,;:4
Lateral-torsional buckling of singly symmetric thin %
- Qe

open section beam under transversal load g,.
Vaantokeskio = shear center



The phenomenon - a bit mechanics

oﬁ«("f“} rj Lateral torsional buckling

Kinematics of lateral torsional buckling Kiepahdus

44<‘<f\

Kinematics of the lateral buckling : )

the flanges as thin plate being physically as
a discrete grid or network of slender
inter-connected thin bars in which

Lateral motion

1. Each compressed bar separately buckles § L o
i : = <

as simple axially compressed column, | :E -

sY

resulting in: lateral deflection
Mo

2. The vertical bars, because of continuity,
rotate, resulting in: rotation of cross-
sections

pre-buckled configuration
(membrane stale)

3. Bars in tension have a stabilizing effect

slighly buckled configuration

e

Question: why the cross—sections rofates when only bending stresses are loading it? Laferal AT &
Answer- tounderstant the mechanisus, one have to nove up to a thin-plate nodel of the walls of the molion due fo Il';” motion

beam The local-type buckling of te thin plate (lonmrehdus), when interpreted by the beam-nodel isseen  Ver fical  reral torsional
as rotations of its cross-sections. Refer to the discrete network model in the main figure of this slide loading buckling



The phenomenon

Pure torsional buckling
Puhdas vaantonurjahdus

Axial loading

!

..:
ATy i

0
il T

f—

Axial vertical loading
Question: why the cross—sections frﬁ
rotates when only axial in—plane stresses are loading it?
Answer- to understant the mechanismus, one have to move up to a thin-plate nodel of the walls of the
beam The local-type buckling of te thin plate (lonmehdus), when interpreted by the beam-nodel is seenas
rotations of its cross-sections. Refer to the discrete network model in the main figure of this slide.

Axial loading

having gpen thin-walled
cross-sections are such
models first developped by
Massov to nodel such
conplex phenomena as
thin-walled bears adding a
kinematics known as
warping (kKayristyrrinen).




p Central axial compression at the center of
l gravity of the cross-section

Tw

b

Torsional Buckling Flexural Buckling

Simply supported X-shaped column



What is warping? What is the shear center?<
The student should refer to the additional reading For the purpose of this ':":"
material for details on warping course: use tables to I‘:

find SC and Iw O

o (7))

(G) center of gravity —

[= area center (C)] 'E

.G Clamped boundary :.'.;

S ‘5,.:»"'" / o

(SC) center of shear
[center of rotation]

Fat G Fat SC

Combined and torsion

/
CENTER

Only bending in transversal
plane

1. When transverse force applied at shear center it
does not lead to torsion

2. The shear center (SC) is the center of rotation
fora thin-walled section of beam subjected to
pure torsion

3. The shear center is a location of shear flows
resultant force when the thin-walled beam is
subjected to pure shear

U Combined and torsion



Distortional modes in some
thin-walled cross sections

NB. In addition to the modes _ofoC
shown in previous slide,

Local distartional buckling
nodes for beams

with a very thin-walled
cross-section are possible >
the cross-section georetry is
distorted

For such very-thin walled
beams it becomes inpossible
and nat practical to put
stiffeners to keep the cross-
section undistorted

il iy

CS

_—

(SC) center of shear
[center of rotation]

Distortional local
buckling. Vlasov
theory does not
account for such
deformation mode.

!

for that, one needs shell-nodels

What is the shear center?

(G) center of gravity

[= area center (C

Fat G

)]

Combined and torsion

Clamped boundary

Only bending

The cross-section shape is assumed
nat distarting in Mlassov's theary

°
NSV
»&\(\’\‘@ AR® Q’*\\s
oV ™
&Nwﬁa

3.1

2
\o©
6&“6'
S

torsion
arn b =

he sh cation of shear

of beam subject

1. When transverse force applied at shear center it

2. Th C) is the center of rotation
fora thin-walled sectio ‘

ea 1o

flows

A el am ie
-walled beam is




Mechanics of thin-
walled beams with
open cross-sections

In lateral-torsional and
torsional buckling
we should include

warping to obtain
the correct strain
energy change due to
this mode of
deformation

In order to derive the
correct stability (loss)
equation

Torsion problem (no buckling)

Lateral torsional buckling equation: Warping effects Pure torsion (M0)2
Kiepahdus T EBL. oW _qr o e,
Thin-walled open w ¥ G 2 ET £ O’
cross-section I).\: ___________________ | Y
i B 1 4 2 1
dp L die  odfp ml d2
El,—=m N2 -F—==727 8 qg,2¥ _n,
d >4 E dz dz EI+ v 1.2
Fully restrained i Combined torsion E Free torsion
torsion : i
|
leikkausvoimavainto ! yhdistetty vaantd | puhdas vidnto
09 == — —
1 'M
b TN L
B(KL) 08 i NN HHAT seeéen
B(0) g4 ; AAN [H=B | B~
0:3 1 \\_' - .1IQ ;] =
0.2 : NI B
0.1 - .:i = =~ !
0 1 "'"-‘“_‘_*_—
0.1 0.2 0.4 0.6 081 2 . 4 6 810] 20 40 60 80100
s ' Lib<2 |
y R |
¥=GL/EL, [ \f‘ T — . - O
GI l ]
k = EIU T =T T ‘\:[ij' ~
w |

Ref. Rakenteiden mekaniikan jatkokurssi, lecture-notes, Emeritus prof. Markku Tuomala

—



Shear Center
Leikkauskeskio

What is the Shear Center?

e e Vaantokeskid (= {
g1 ; - ; 1
- ‘:E' — T <<}

1 Horizontal
W translation !

il
o e e
e i el

S

e
\_.)
.

-1
Y r*
il ||
ZC»

Eﬂ

®

‘Vertical vV

S,EEELS@;{"" e = 2, F e = -‘;, %{ -'f;_ ‘g

deflection |

Let’s repeat this experiment in class Ryl

Rigid body rotation
around the shear
center

What is this high-tech
device?




Let’s repeat this experiment
in class

Center of

mass
. Painopiste

- | —-—1 Horizontal
Shear Center b L ol
Leikkauskeskio sco e c

/ Vaantokeskio 0 (I

Vertical T

deflection |

Rigid body rotatip’ﬁ
around the shear
center

(i’ >




What is warping? What is the shear center?

€0
7 7 P
/ /
s -
;;
Z= 7] -
L r/4 )
y
/ * ﬁ @
/
N
(2} doubly symimetric {b) singly symmetric
shapes, shear center
and centroid coincide

+ cantroid » shear center

- =

() unsymmedtnic




What is warping?

Poikkileikkauksen kayristyminen

Warping is a displacement called
deplanation which is an axial
motion of points on a cross-
section occurring
perpendicularly to this cross-
section and resulting from pure
torsion

pure torsion
tiol1s.10] aJnd

<—"r||
—y- ¢ ]

Relative motion

warping |

©O
-
)
(D
c—t
O
)
':'2
| ©
=

pure torsion

Axial normal stresses
result from restraining -
the warping




Warping kinematics Warping = deplanation =
/ out-of-plepe axial displacement due to torsion
—

—

U = (- w')i

: Deplanation— axial
displacement

i Ap(e)

-~ -
-~
-~
- .
--
-

Experiment illustrating the deplanation.: Warping = deplanation



Total torsion

M, = M; + M,
-

= T=Tt+ Tu

] | Saint Venant torsion!

H (uniform torsion, free

: torsion, out of plane
ﬁ : warping uniform and not
H constrained)
: Shearing — distortion of
: midplane

Vlassov torsion
(non-uniform torsion,
warping torsion)

No shearing — no

Superposition principle

distortion
o SR TR R R 1
boked  Woting Tormm o Toston)
/ *,W\x ?‘"\,? A \“( S‘T Ouax,
b T Vlnuo\l 54 @

A schematic for the total torsion problem. Assume a twist
moment M, is acting at the ends of the shell-beam. By superposition we
decompose the total twist moment as M, = M; + M,,. Nota bene that in
this presentation of Viassov theory, we consider only the contribution of
torsion moment M, leading to zero distortion of the mid-plane xs.

Geometry of the motion of points on the
cross-section

- N

Aulf) =
slanation

[

Zero shearing of the mid-plane (Vlassov’s kinematic hypothe-
sis) - experimental evidence.



Geometry of the motion of points on the

cross-section Kinematics of the displacement
X
=== -

df(z) = [df,, 0, 0]' =df(z)i,

dw = PP’ = [df(z)i] x f(s), §E

- = ‘ \f 1 |
p(s) =y —ya)j + (z — za)k. | “j‘ | \.
The main idea: Express the deplanation differential such that it can ” :— —‘ , \ L‘X ‘ , '

be integrated to obtain the axial displacement u(z,s)) at any point = _J[ || |
P(z, s) of the section at on the mid-plane. In order to achieve this task, | | | =71 X N

one has to find an expression for the deplanation differential du(z, s)), ;~7 VAl

one should express du in terms of dv which is at its turn expressed | +- | | | | [

in terms of y(zr) = dv/d=, (Fig. 2.1). This is what we will do in the ] &l 7 !et[ | \
following. \ _{__1 Ep op ‘

8!
|
{

Main geometric assumption: m
The cross-section shape does not chang} ne
distortion, ei vaaristy) i ‘; erds)

N
HIE Infinitesimal rigid-hody motion of a point in the plane (y, z) of
(Cross-section.

“\A_

So stiffeners should be added to
keep the cross-section not distorted

Such assumption is quite impossible to achieve _ .
with very thin-walled cross sections. This is one You can go directly to slide #35:

reason why, in practice computational tools are Lateral torsional buckling - Deriving the linear
needed - usually, shell models are needed. equations of loss of stability



Vlassov's theory of warping - out-of-plane kinematics

due to warping
= deplanation

@ =(u—yv' — 2w’ —wd)i + (v — (2 — 25)9)j + (W + (¥ — ys)P)k.
beam theory warping axial
displaceemt Warping kinematics:

Warping = deplanation =
out-of-plane axial displacement due to torsion

— axial displacement
| ug(z) = u —yv' — 2w’ ~— we’

iﬂ@(l‘) =v— (2 — z5)0,

wQ(x) = w+ (y — ¥s) P,




In-plane kinematics

In-plane small displacement
components in a small rigid-
body rotation

(the rotation direction in this subfigure is ~ (P ‘
taken negative) rigid-body in the cross-

Q= W+ "éq "3 \)5"“%)( section plan.
Segment SQ has only rigid- i Vg = Ve —(ZQ 23} smcq

u(z) =u—yv' — 2w’ — we’,

Segment SQ moves as a

body translation and rotation —_
SQ 0\T) =V —\2—Z
around he shear center S Rotation in this subfigure is Q( ) ( s)¢’
correctly positive wQ (x) = 2 + (y J— ys)¢,



Va l|d |ty Of th e Vla Ss OV'S What is warping? What is the shear center? 1. When transverse force applied at shear center it

The student should refer to the additional reading FOT o pUImos6 Of this does not lead to torsion

material for details on warpin ; ;

theory (or model) i h o | fora tinweled sevionorbeam susecsd
ré’:‘ ESL:::T;“?;?%}Y ngrTeh’éogiiggr center is a location of shear flows

Note that local distortional buckllng & Oi; Slamped boundary resultant force when the thin-walled beam is
nubs, fa. mans haVIrg Very thl N- Lo / \ subjected to pure shear
walled cross-section (shell-beans), s of oy
cannat be accounted with the Massov ) RS
theory, since the cross-section geometry
Is distarted

Technically speaking, it is inpossible
anon-sense to try to put stiffenersto

Only bending in transversal
plane U Combined and torsion

Combined and torsion

retain the cross-section shape as
assumed in Vlassov's theary) The cross-section shape is assumed ‘ \0({\0% )
not distorting in Massov's theory %\“c.%\e’\s "-de M
For a reliable analyses one should use %Sgc’i\““ ' R O
b [ xh ' x|}
computtational technology and/or 3\\9,%0(?; | TN
experimental approach Distortional  local ,&\(\’\“ R it e
buckling. Vlasov o W& %&\g\\«\ \ y I
H | | theory does not @‘\0( | | |
' “ thel - e_and thy account for such Y
engineer analyses For that, theengineerneel ;.- hation mode. N

courses of mechanics, in general, even with



Validity of the Vlassov's theory (or model)

sponds to the rigid-body motion of the cross-section in orthogonal plane to x.
Therefore, it implicitly assumes that the cross-section geometry remains without
any distortions. In other words, the geometry of the orthogonal projection of
cross-section remains unchanged during motion. In order for this assumption
to hold in reality, the thin-walled cross-section should have enough stiffeners to
avoid possible shape distortions (Cf. Figure margin). Otherwise, the Viasov the-
ory on which the above kinematic assumptions are based, will not hold. In this,
case accounting analytically for such shape distortions makes the theory unnec-
essarily complex. This is however, done in many published work. Our-days, i

will be more wise, in such cases, to use also computational simulation tools anc

treat the thin walls as thin shells. However, for many cold-formed steel thin

walled cross-section, it is often not practical nor possible to weld any additiona
stiffener.

Lateral-torsional buckling of |-beam

Local /

distortional

modes
Thin-shell

Front view

Top view

i =(u—yv' — 2w —wd)i+ (v— (2= 2)9)] + (W + (y — ys)P)k.
It should be reminded that the kinematics described by (Eq. 1.559) Corre- Wa rplng klnemathS:

due to warping

= deplanation
— axial displacement

HQ{IJ =u—yv — zw — we’

|
i r)=v—(z— 2)0,
we(z) =w+ (y — ¥s)9,

=t
S ‘?‘:
- i =]
I: dl._.ll...-""
W v
. (Y
]
]
J L J

Flexural buckling  Torsional buckling

ﬂ

Front view

Distortion of the
cross-section




Thin-walled structures are
Important for engineers

They deserve their own scientific journal

Thin-Walled Structures 150 (2020) 106677

\ Contents lists available at ScienceDirect

Thin-Walled Structures

¥ 05 j r

ELSEVIER journal homepage: http://www.elsevier.com/locate/tws

Full length article @
Dynamic buckling of cylindrical storage tanks under fluctuating
wind loading

Jumpei Yasunaga®, Yasushi Uematsu” An example Of a pUblication

* Steel Research Laboratory, JFE Steel Corperation, Kawasaki, 210-0855, Japan
® National Institute of Technology (KOSEN), Akita College, Akita, 011-8511, Japan

ARTICLE INFO |:>
Keywords:

Cylindrical storage tank With
Wind tunnel experiment rim
Finite element method analysis

Buckling

Vibration

Time-history response analysis

(a) Pre-bucking  (b) Buckling  (c) Post-buckling  (d) Static buckling

Flg. 11. Variation of deformation mode obtained from the time history response analysis and static buckling mode (top view of 3D model, steel tank, H/D = 0.92).




The sectorial coordinate — w(s)

The complete story of the warping: Deriving the deplana-

tion from only geometric meaning of Vlassov’s kinematic
hypothesis

From geometry, (Fig. 2.6), one have

b

r(s) = h(s) = p(s) cosa|. (2.5)
= du = vds
Projecting dw on the undeformed geometry (small displacement theory)
- dv dé(x
dv =d - &, (2.6) Y= p(s)cosa-——=
M ——
=p(s)cosa -db(z), (2.7) =r(s)
=r(s)df(z). 2.8) Inserting this 'shear angle’ expression into the boxed equation one obtains
From the kinematics, (Fig. 2.7), we write that increment of the axial du(z,s) = —r(s) - 9’(3) .ds. (2.14)
off-plane displacement (deplanation) du of any point on the mid-plane '
(component in the direction of z—axis of the total displacement under Finally integrating along the curvilinear coordinate from a freely chosen
twist only) as polus or starting- point sp = 0 to s one obtains the axial displacement due
du = —ds - siny =~ —vds, ‘ (2.9) to torsion as
where the rigid-body motion for the point P on the mid-plane follows p , . ,
directly from Vlassov’s kinematic assumption (differential element dzds u(l‘? S) - lf(s)ﬁ ('I)ds = —0 (I) fST(S)dS =—0 (3:) ’ ':""(S)' 15)
have a rigid body rotation in pure twist of the section) v,; = 0 =,

displ t vertical and horizontal ts i ti lane ) . .- . :
LSS R O G ST S SR LS e Finally we have obtained both 7) the definition of the sectorial coordinate

dv = dz - siny =~ ~vdz, (2.10) w(s) :
du = —ds - siny =~ —vds, (2.11) WA (S] = /’r(s)ds. (2.16)
5
where v is a small rotation angle between two adjacent cross-sections.

Combining the above equation, finally, one obtains the needed relation for
the axial increment of displacement

and 1) an equation above for computing the axial displacement due to
torsion - u(x, s) - which is called deplanation or warping.




Normal Stress resultant from Vlassov twist

u(z,5) — —/Sr(s)ﬁ’(:c]ds _ —6"(:.*:)[51'(5)::15 = _0'(z) - w(s). wa(s) = /S*r(s)ds.

crrl,5) = (e, 8) = —0"(2) - (o)

L ooz, 5)dA = — fA Ew(s)"(z)dA = —E6"(z) L w(s)dA = 0.

sectorial linear moments -«
/A o.ydA = —E0"(z) L w(s)y(s)dA|= 0,
[ 0,2dA=—E#'(z) [ w(s)z(s)dA = 0.

!

[4 w(s)dA =S,

sectorial static moment of the cross-section.

Suy= [ w(o)y(s)dA,

Dear student: do not worry, if all this
'staff" is difficult for you. It is trully
difficult and this special topic by
itself , without stability aspects,
needs at least two-three weeks of
lectures and guided exercises to be
digested. That is why, this is will not
asked in the exam. We will use the
results of this theory to study the
related stability topics to torsional
and lateral-torsional loss of stability.

0w(x,s) = Feyz(x,8) = —Ew(s)0"(x) | warping normal stress or Vlassov’s normal stress

Shear stresses

Bi-moment
_ N Y11 2
B(z) = L TestodA = B0/ (z) [ w(5)dA
’

Sue = fA w(s)2(s)dA. 0 (2. 5)

I, = / wi(s)dﬂ, sectorial moment of inertia

A

T =T T Tu,
M
Ti T: - t(s)
_ w(s)
= B(z) I
Oxzr = My ) 3}3].



Most important slide about Vlassov torsion

7

Shear stressies/ﬁ + T,
Tt = Me t(s) l

I;

Warping axial stress:

Warping shear stress:

o.(x,8) = —Ew(s)d"(z) =

B(x)w(s)

L,

B'(z)S,(s) N M, (z)S,(s)

T.(z,8) =

t(s)l,

t(s)L,

¥

S, = Lw(s)d}l — /Sw(s)t(s)ds,
_ 2 _ [, 2
I, = fA W (5)dA = f W2 (5)t(s)ds,
bi-moment and the warping moment (torsional)

B(z) = —FI,0"(x),

—EI60")(z) + GLA" = m,

M, =B = —EL#",

M, = GLY,

B=—-EL0"

Total shear

Saint Venant Vlassov shear

shear

\\
R
3

“\\

QA

N

N
e

:

TIUHUS YeRmpos useuda

i Shear stresses from free-torsion (Saint Venant) and non-uniform
constitutive relations v)- (these figures were adapted from Belaiev (1959).)

M, =B = —-FEI,0"



The phenomenon Shear stresses from pure torsion

Torsional stresses

(a) Positve Angle of Rotation (b) Shear Sress Due to Pure Torsion
Warping shear Warping normal
stresses stresses

Owo
Twd m Two G"%{?

C compression
=—-E2M
Swo
**** ““Wﬁl/}
Te0 | Two. T
Tol Cua= EW;.V



Example of table giving shear center and the warping inertia moment .

Shear
enter

! w '3 : _
Ofl—. A trhb g | t*
¢ h/2 w ™ -f : p . = -
| R ekl S R
LR
L — U If by = ty = t:
T Ft T b1 + by?
f O 3 o3 s
Toh g Gutbt M J = Z(by + b 4 B)
¢ e ‘ ' 3 , 3
{ C. = teh?  bi3bst?. ‘
l-—bz—-l v 12 by® + be?
3bx% Ifty =i, =1i:
— b - / ! w
_.1 ¢ ﬁbtf + Mu e = 3b=
. i —I. 5 o 2 ;— b 3!) +h
e | 7 _l. C. i,b%h 3bty + 2hts J = 3 @b + k)
* T 712 6bty + hte tb3h? 3b + 2h
ey d Co =

12 6b +h

W

Now to stay
realistic (6 weeks
of this stability
course) we will use
tables for theses
cross-section
constants

Torsion topic is a
wide subject.
Torsion of beams
with thin-walled
open-cross
sections deserves,
at least, a full
three-weeks
course by itself



Main geometric assumption of the =T
Vlassov’s theory: '

Initial |
_ equilibrium
The cross-section shape does not change | configuration
(no distortion, ei vaaristy)

So stiffeners should be added to keep
the cross-section not distorted

= Such assumption is quite impossible to
achieve with very thin-walled cross
sections

This is one reason why, in practice
computational tools are needed to
perform reliable stability analysis and
GNA for very thin-walled shell-beams ...




Deriving the linear equations of |oss of stability — The

IDEA

1
ATl = —f e BedV 4+
2 Jv

——_

“~
linear part of strain increments

/

nitial stresses from pre-buckled configuration

ngTJOdV - éWemt(R Ezl
‘__V \

such that €U (oY,e3)

quadratic part of strain incre

/ U[UH?EZ)

Non-linear strains (quadratic
part) irom slightly buckled

‘ 1
. 1! \ (—*—)
€;; = i(ui,j + Ui + U iUk, ;)

1
E= E ((VXU.)T +VXU+ (VXU)T .

u* =u’ + Au

- [an Vo, wO]T + [0: 0, w]T
- - N e, —
post-buckled

+ A¢
~—
post-buckled

09

initial equilibrium

px = ¢°
~—~

=0, initial equilibrium

du =(0,0, dw),

O(AIl) =0,Véu

dead load

configuration

- using Einstein summation rule

VXU.) .

du =(0,0, dw),

Ugp Z(HU? Vo, 0):

» &

Initial primary
equilibrium

Eigen-value problem (BVP)

The linear equations of (0ss of stability

and the corresponding mode

no warping I, ~ 0

()’QC ‘ l ‘ﬁkﬁ{' |
i f

primary

equilibrium
Perturbed
equilibrium

LY

‘e !
/’ motion

It is the solution of these equations
<= which provides the buckling load

&erturbed Lateral torsional

equilibrium bUCkllng
Equation example
(M)

EL, ©

El,o% — GI,¢" — =0,



Total potential energy

Non-linear strains (quadratic part) —jtjal stresses from pre-buckled configuration

from slightly buckled configuration
1 (g g
All = E[ €1 Ee dV + e lodV — L‘&Wm{ﬂ Eﬂl i —v°
- 4 ~ - ‘__V — _..- such that U7 (aY,e3)
linear part of strain increments  quadratic part of strain increments 0
U{g“;?EZ)
1 e ¢ 1 Flexural
All = —/ EI(v")dx + [ oY A= () ]dz, —P = N%z) < 0 «——
2 Jo ( 1 Jo °F [2( /] (%) buckling
€2
l Pure torsion )
¢ Q.
jf cr_geszdm, :
0 AI - o ‘
o — =
Initial stresses: po = il S sy
- Initi | Z — ==
Warping w_ Initial stresses: k =
0 e = By =
Tay(Z,Y) = 57 (¥)

1 ¢
—/ EL,¢"dz
2 Jo

\\\

Beams having thin-walled open cross-sections

\

+ (vp)?]dAdz

can have torsional modes of stability loss
due to their relatively low torsional rigidity .

€2 Flexion in both directions

Sheba L _Ls A~
TT="1 "+ AT
5 (A-IT ) = ,?- ?“7 "\ir,
B .

buckling load and
corresponding mode

... and for narrow cross-sections, too

—_—

P »

'l;' motion

Lateral torsional
buckling




In short ...

'

bending Pure torsion Warping

V4
/ ElLw"dz + = / GI,¢%dz 4 - / EL,¢"dat
0

+ / / w 0 ) 2 (,Ué? ) 2] ji Adx pre-buckled configuration

(membrane slate)

Initial stresses from pre-buckled conﬁguratlon Non-linear strains (quadratic part)

chebr LYoy Ross : from slightly buckled configuration
° Ll
I‘{T: + AT N buckling load lishily buckled
‘ — slightly buckle
\5 (A'IT ) =0 /?- ?«7 min— and mode coniiguration

= b, tion
(5(AH) — 0j V(Su ug =(ug, vo,0), ¢ =0 V i

Lateral torsional

We will derive BVP for buckling
lateral torsional and The linear equations o1 Ioss of stability
combined flexural- Eigen-value problem (BVP) /

torsional buckling

\

It is the solution of these equations (
which provides the buckling load Elwgp(él) — G_[t(p” — —xgp
and the corresponding mode EIy

- 4 - > Lets start the story from the beginning ...




Lateral-torsional buckling of beams
kiepahdus

What to do?
« derive the stability loss equations for lateral torsional buckling

when the warping is negligible

Assumptions

* negligible additional vertical deflection v
« accounts for the effect of shear stress

* negligible or no warping at all

at buckling

START:

Narrow cross-section
Initial stress

Pure torsion /
' i

1 [ 12 : 1 [t 12 4 1 ¢ 0
ATl = = / ELw"dz 4 - / GL¢ dz i [ f oerd Ada,
2 Jo 12 Jo 0 JA

I, << I,
no warping I, ~ (

Yow, 6¢ kin. admissible —

d(All|w, ¢]) = 0,

Ugp Z(HD? Vo, 0):

Rectangular narrow
cross-section

state

——> |no warping [, =~ (

Post-buckled .-

~
Ll 2

= infinitesimal
critical perturbation
equilibrium toward adjacent

equilibrium

L\ A

\
N \
\
A M
\
\

GoAL: Stabilit ti
apllty egquation
EI, (w")" — (M%)" =0 il
(GI¢") + M2w" = 0.
complete model

u* =u’ + Au
= [ug, vo, 0] + [0, 0, w]T
————

———

initial equilibrium post-buckled

Px = ¢’ +  A¢
~— ~—

=0, initial equilibrium post-buckled

—— The following slides show the details of how we obtain the stability loss equations: ..



Lateral-torsional buckling of beams Rectangular narrow

kiepahdus :
: : : cross-section
* In flexural buckling of columns the thrust (puristus) was axial

and normal to the cross-section of the beam-column

——> |no warping [, =~ (

=0

Effect of location Initial equilibrium

of the load L/i
* Now we address stability of beam having a thin-walled open
cross-section
centroid
* The loading is transversal to the axis of the beam P 71 Bost-buckled
\o'bb state
H Y infinitesimal
I, << I, Narrow cross-section o — itical = rd‘:;t’i":n
i 1 uilibri toward adjacent
no warping I, ~0 - xS 1 b equilibrium
Pure torsion ' $°$ tension €2 = 5(w! +u})
| \
_§U yw :I.‘-l-. t(,f} .'l‘l-l— D'EQ x, 1=o =0 =0
____________ = —(w,,-)2.
iti NL _
! Initial stresses Yoy = ’Y;cy + oy = ,},Iy + ’ny
kinematics of the displacement increments of the mid-plane z = 0: 0 _ M compression ¢ | =
w(z,y) =w(G)+ysing = w(z) + yo(z) T e
: _ e
u(a:,'y) =0 . Work conjugates: o l(w )2
B Hypothesis (which holds) 27 g\Te y
v(z,y) = - " . . o
* negligible additional vertical deflection v at Initial stresses
buckling 0 )
z
* accounts for the effect of shear stress Work rgy(z, y) = QbI( ) S ( = Wg#s;‘(y)
* negligible or no warping at all conjugates: o =
Y.'.t:’y Y Yy = ny + Yoy = f}/.:cy + ’T:cy



Lateral-torsional buckling of beams

Rectangular narrow s, [no warping I, ~ 0

Pure torsion cross-section T,=©
1t 0 1 [t 2 ¢
an:_/ Efw”d:r+—/ GI ’dm+//gﬂedAdm i
5 | Ely 5 |, Gl . |, oze2dAdz, I, << I, -
no warping I, ~ (0
Initial stresses ¢4 |
Sign convention o
e infinitesimal
Bending Shear stresses from transversal load W SoulibridNT > toward adjacent
ﬂffn . 4 equilibrium
o _ Mz Qy(x) (M) (x))’
o, = 0 _ %y + (1) — +
o Iz Y Txy(xsy) - Tsz (y) - gI SZ (y)
z ¥4

This is now a complete model ﬂ

1 st 12 1 ¢ 12 ¢ YA,
&H:E/ ElLw d:r:-|—§f Gl dm+/(quﬁ)wd:r
0 0 ]

——_

bending— & shear

NB For pedagogical reasons and to lower the conplexity of the procedure, | decided that in the
fdlowing derivation of equations of stability, we first start by omitting the effect of shear stresses
resulting fromtransversal load and account only for bending initial stresses. This way should be easier Example: Transverse
fro the student to follow: Then we add the contribution of initial shear stresses (of the transversal load P or distributed
load) when shear effects to conplete the total potential energy increment and find its effect to the 0ad g applied at the

stahility loss equations centroid




Deriving the linear equations of |oss of stability — The |IDEA ¢

1
A= 5[ a™Badv + [ @olav — AWelP o)
- 4 - i ‘__V ‘_v_\ - such that ¢U (o0 ,e3)
linear part of strain increments  quadratic part of strWems
U{U;?Ez) Non-linear strains (quadratic part) irom slightly

buckled configuration

o! HPNX
gel e
""" i ‘ L o et | ‘ ] .. e % 1 (]
LSESN %T‘h‘l e R e // ___~Tnitial stresses from pre-buckled . 5 RXE o ‘x
T iR o T . primary
L ,—'A--rf;“m"lg“mm“ equilibrium / *
_CRcEesEERARccemERRREFAES 2T T AT
R T == ZT kL | Perturbed
A L) o : ‘ R o equilibrium
e s Al L] , L { I . I"“"
[l T | ‘ 11O Warplng w"‘"[]
o | [

| TORSIONAL. | _ATERAL




Lateral-torsional buckling of beams
Rectangular narrow

Pure torsion cross-section
A AR L e ¢ dx + [ o%rdadz
T2y Y 2 )0 o Jas® 2 = I, << I,
no warping I, ~ (0
Initial stress:
kinematics of the displacement increments of the mid-plane z = (: 0 ﬂffg
| . o
w(z,y) =w(G)+ysing ~ w(z) + yo(x) == T, Y
u(z,y) =0, \ 1, , Example: Load P or
v(z,y) =0 5(% + wy) distributed load g
applied at the centroid
:lcuz—wm)%lm—uy)z PP
2~ 2~~~
=0 =0 =0
1
“ = §(w,m)2- < centroid
G orC
1 [ 9 1 [t 9 4 v x
= §/ ELw" dz + 5/ GL;¢' " dx +/ MOw'¢' dz
0 0 0 JA A

/
when shear effects omitted T , :
(this model is not complete. How we obtain this term?
Shear force effects should be accounted
for in lateral-torsional buckling, ref.
lecturer pdf-material)

,.)2

X

no warping [, ~ (0
age il o
Initial equilibrium ;
Pre-buckled state
¢4
P Post-buckled
state
infinitesimal
critical perturbation
equilibrium toward adjacent
equilibrium

q

u* =u? + Au
= [uo, vo, O]T + [0, 0, w]T
——— — o —’
post-buckled
+ A¢

initial equilibrium

qu

=0, initial equilibrium

~——
post-buckled



?
' \ w(z,y) =w(G)+ysing =~ w(r)+ yo(x)

1t 12 1 ¢ 72 ¢ 0 1 .f
All = - | EL,w"dz+ = | GLi¢' dx + M w'¢'dx
2 Jo 2 Jo ,J0 JA u(z,y) =0,
when shear effects omitted v(z,y) =0
(this model is not complete yet...)
v
£ £ Mo 1 1 1, .
[ [ otestadr = [ PEED [y Lt 4 S0/ (0))? + v/ () ()} Adz er = (w2 +?)
0JA o I. Ja” 2 2 . . 1
— ,_( U,z _“-’..a:)2 + ,_( Vxr — Uy }2
2~ 2~~~
=0 =0 =0
L M‘? 2 e MB 2 3 . — (w2 infinitesimal
=§‘/[] Iz v dmLydA—l_EA Iz (f) d:BLy dA+ - i(“:"y} ' critical —=) perturbsation
e equilibrium toward adjacent
S.=0 =0 ’ equilibrium
£ 0 i T (‘y |
+ / M; w'¢'dr / y?dA o N
0 Iz A ‘
=1
e Euler-Lagrange equations I w¢ G Zz
=] M w' ¢'dx ) ) 1 N o
0o (Field equations): 1] | "4
. , - ERN1T
Stability equation /t N
§(Allfw, ¢]) =0, Vow,d¢ kin. admissible = > D sacs? ¢ P
Boundary conditions | wsing 17

4



Lateral-torsional buckling of beams

Rectangular narrow
Pure torsion cross-section

1 £ 9 1 £ 9 £ 0
A= [ Ehuie+s | GLedet [ [ oledads, I, << L. e

no warping I, ~ (

—— |no warping [, ~ 0

N

Initial stress: i
kinematics of the displacement increments of the mid-plane z = (: : JME P """ Post-buckled
| . = 1 state
w(z,y) =w(G)+ysing ~w(x)+ yo(x) O I, Y
‘U,(:Ej y) — O: \ 1 a 0
1 0 ~ Qy() (M (@)
v(z,y) =0 & = 5wl +wy) Tay(@y) = ST () = S W)
= Lus —wa) + (v — )
2~ 2~~~
=0 =0 =0
ﬁ = %(fwm)2 <
(il b4 s
v A ';}i ?;.
]. f ]_ E f L i " ’>—A+
AIl = = f ELw"dz + = f GI¢*dz + f (MO¢) w'dz )
’I:nem:lingIr & shear g"(- ;
% (@.y) = “LZSH(y)
How we got this term? / Example: Transverse load £ dalis bl 4

This is now a complete model P or distributed load g o[ vy = Stw)
applied at the centroid v



1 ¢ 12 1 ¢ 12 9 Q !
:_f Elw d:r:-l——f Gl.é d:c—|-/ (MO¢Yw'da
2 Jo 2 Jo 0

L. - ——_ ?
> bendlng & shear \ 'u__l(xj ’y) — fur(G) + yblll C) ~ W ( ) + J(J( )

How we got this term? u(z,y) =0,

This is now a complete model r v(z,y) =0 e
. = i('e:n —wg)? + £(: . — U, )2
AU ( Iy / / my%yd Ady G——\NOrK of shear initial 2 2o 2

stresses is now added EEVH
gy tﬁw'd:r/ S.(y)dA+
NL _
_E_} ~ Yey = 2EIF — Wy = f}’:ry + ’Txy — T:]:y + foy
£Qy 2
- v —¢*dx | yS,(y)dA . ; ,

Euler-Lagrange equations
(Field equations):

Stability equation

§(Allfw, ¢]) =0, Véw,d¢ kin. admissible = >

Boundary conditions



when initial shear stress effects is omitted, for
Deriving the Stabi“ty loss equation pedagogical simplicity. They will be added at the
end of the derivation Initial equilibrium
(this model is_not complete... will be complete  Pre-buckled state
on next slide

N L~
_ : il » Lateraliey .V
§(All[w, ¢]) =0, Voéw,d¢ kin. admissible — — -
l ¢ ¢&“ ¥
5(&11[’11?, (f"]) =/D E'Iyw”ﬁiw”dg; +/ﬂ Gftﬁblfhﬁrdm‘l" no warping I, ~ 0 'P ~ Post-buckled
state
+ | Ef M2w/'s¢fde+ [ ff M26w'¢'dz = 0 ) Rectangular
U, 0o Ja 0 Ja ° ’ - ¢P narrow cross-
Véw,d¢ kin. admissible. | .\ section
rotation

§(Al[w, ¢]) = fﬂ E -E'Iy (w")" — (ﬁg&)'] Swdz+

Should account for this part: (shear initial stresses)

_ ff -(Gftd).r); 4 (Mﬂw;) "] 5¢d3}—|— to have a complete model
{J A A

£ 4
L SAUL,) =+ / (MOYw'da + / (MOY $6w'da.
0 0

(CLd' + M2 5] z n

: f
(- Gy o) s+
+ [ELw"8w] = 0,

Vow,d¢p kin. admissible.




Deriving the stability loss equations ...

when shear effects accounted
(this model is complete)

stresses:

|

Only bending initial 5

Should account for this
part: (shear initial stresses)

0(Allfw, ¢]) = 0,

Yow,d¢ kin. admissible —
¢ ;

(All[w, ¢]) = f ElLw"éw"dx + f Gli¢'6¢'da+
0 0

¢ ¢
+f f Mfw’5¢’dm+f f M%w'¢'dz = 0,
0 Ja 0 Ja

Véw,d¢ kin. admissible.

£ £
5(AU% ;) = + / (MOYw'éda + / (MOY $6w'da.
0 0

!

—

EI, (") — (M0¢)

(GIL¢') + (Mgw’)’ A

— ((m2)g) =

p - -
o

0 .
from 73, vy

(M)Yw' = 0.
from 79 _.~*.

0

Lateral U
deflection

\/\\"

no warping I, ~ 0

Stability equation:

Initial t_e‘dyilibrium
Pre-buckled state

<~
~~~~~

Post-buckled

state
Rectangular
L narrow cross-
(i)’ section
rotation

(GIthJI)’ -+ MBT.UH

El, (w")" — (M2¢)" =0

= 0.

complete model

obtained from previous slide

Boundary conditions:
at x =¢,

GL¢' + Mjw' =0,
—(ELw") + M2 =0,
EILw" =0,

at =0

.'—
or w =10

w =10

¢ =0.




Energy methods to estiamte critical buckling load

Example: Lateral torstional buckling

Eigenvalue problem of loss of stability
these equatiosn will be derived later

In the energy approach, instead of solving the difficult
differential equation system (with adequate boundary {EIy (w")" — (M%) =0

conditions), we use directly the stationarity of energy (GI:¢") + MOw" — (.
functional (total potential energy increment)

§(Alljw, ¢]) =0, Vdéw,d¢ kin. admissible = ... to obtain directly the
approximated eigenvalue problem
o) . .
d(All(a;; P)) =0, Va; = All(aq, asz,...,ay; P) =0, Approximated eigenvalue
da;
J Y problem
After chosing approprite approximations for the buckling modes K — PS = '[],

det[K — PS| = 0,

1 ¢ "2 1 f* 12 ¢ 0
MI:EfG ElLw d:r:+§/ﬂ Gl.é d:c+fﬂ(Mz¢5)wdm

bendin; & shear= / ¢
0 4 o0

2€2d‘4d‘2,




Approximation of buckling load using stationary potential energy

criterion [ eare:  Approximations:  ¢(z) = ¢p - z/¥

1 [* 12 1 rt 12 ¢ 0// 1ot 2 — 1 (et
MI:E] ElLw d:r_:+§f GLé % da + /(qub)wd:c + 1/2Pag(t)> w(@)=wo- [l —cos| 5 ]
0 0 0 - -~ >

] v ,\* ~ ~ a=0, Plocated at G
strain energy change work of initial stresses 70,00
0 ;
M, (x) — P(£— x) e

The method: Now we will insert the approximations of the buckling modes into
the increment of the total potential energy (Eq. 1.922) and require stationarity
(=neutral equilibrium) by asking

All(wg, ¢o) = 1/2- GIL; /L - ¢3 + 7 /64 - EL,/0Pws + (4 — ) - P - gowo

‘” 5(&11(1{}0,@0)) =0, va’fﬂﬂ, 5@0 >
OATII(wy, ¢g)/Owg =0 ,and JOAII(wg,dg)/Fdg =0

4.131

w4/32. EL )6 (4—n)-P| [w] [0] = det{K(P)} =0 = Pu~ 5 \/EIy-GIt
(4—m)-P GI; /¢ ¢o| |0 4.013
7

_K(P) L

analytical

JE@+GQ

-




riLe DRCAREUIN TS U 29

1 % Energy method to approximate buckling load 30 % Strain energy
2 ® in lateral torsional buckling 31—  delta U B(L, EI y, w0) = 0.5* EI y * int(d2 w * d2_w, [0 L])
3 T T T 32 — delta U T(L, GI_t, theta0) = 0.5 * GI_t * int(dl phi * d1 phi, [0 L])
4 % Canteliver beam - lateral buckling under tip load P R .
5 5 at the center of gravity G 33 % ——— work of initial stresses (bending MOz)
6 % Author: Baroudi D. 2021 = 3
7 U 35
8 — syms EI L P v v0 x 36 % Work increment of initial stresses
5= syms delta P delta_F 37 e———————————————————————————=——=
10 = syms Pl P2 38 % Initial bending moment: MOz
11 39 s
Ey syms EI y GI T 40 — MOz (x, P, L) = —P * (L -x)
B SYm=s theta0 w0 theta w 41— d 1 MzO Phi(x, P, L, theta0) = simplify( diff( MOz (x, P, L)*phi(x, L) , x) )
ié & 42 — delta W(P, L, w0, theta0) = int( d 1 MzO Phi(x, P, L, thetaO) * dl w(x, wO, L), [0 LJ)
16 % Displacement approximation (you can use better approximations) jj :
17 I ettt —— S
18 %% w(x, w0, L) = w0 * x.72 / L*2 % less good approx. 45 % total increment of potential energy
L3)\= w(x, wl, L) = w0 * (1 - cos(pi * x/ (2*L) ) ) % better one 46 s -
20 — dl w(x, wl, L) = simplify( diff(w, x) )‘ 47
21— d2 w(x, w0, L) = simplify( diff(dl w, =) ) 48 — delta Pi = delta U B(L, EI y, w0) + delta U T(L, GI t, theta0) ...
= 49 + delta W(P, L, w0, theta0)
23 % twist angle approximation (you can use better aprox.) 50
24 2 53l % Equations of neutral equilibrium
25 — phi(x, L) = thetal * x /L 52 ® -
26~  dl phil(x, theta0, L) = simplify( diff(phi, x) ) 53— delta Pi w = simplify ( diff(delta Pi, w0) )
27 — dZ2_phi (x, the implify( diff(dl_phi, x) ): - .= . N . i . - .
28 o Output 77777777777777 54 — delta Pi phi = simplify ( diff(delta Pi, theta0)| )
55 e

delta pi = 1/2% All(wg, ¢o) = 1/2 - GL;/L- ¢ + /64 - EL, /w5 + (4 — ) - P - dowp

(GI_t*thetal"2)/L + (EI y*w0*2*pi~d4)/ {32*L"3)] — (P*thetal0*w0* (pi — 4))/pi

delta Pi w =

74/32- EL,/¢? (4—m)-P| |wg 0
(EI y*wO*pi~4)/(16*L"3) - (P*thetalO*(pi - 4))/pi ==
1/2 * (4—m)-P GIL /¢ o 0

delta Pi phi = v

(2*GI_t*thetal)/L - (P*wO*(pi — 4))/pi




Approximation of buckling load using stationary potential energy 5(%

criterion

High Cantilever beam

2
Let L =2/, thus the bending moment due to the own weight is M_ = % (1 —(%)2) , when

the origin is located at the mid span. The energy integral is
f
7= J.[EIV (w")? + GI, (¢ + Z(Mf;é)’uf]dx The beam is simply supported at each end
0
when the approximations for the deflection and rotation can be of polynomial form, satisfying

the boundary conditions w/'(0) = w(x/) =¢'(0) =@¢(£/) =0 and are w= wo(l—(%)z) and

¢=a,(1- (%)2) . Trigonometric functions w= w, cos{%) and ¢ = ¢, CDS(%) give better

approximation.

17 = I[EIF (%)2 + GI{(_ ;?50 )2 + 2[?5 '?50(1 — (;)2)2} (25?‘;0)}1) —

0

e -l

What is the critical length of a simply supported beam with
respect to lateral buckling, when its cross-section is a narrow
rectangle (80 mm x 1000 mm) ? The Young’s modulus and the
shear modulus are E =36kN/mm? and G = 15,4kN/mm”
respectively. The loading due to the own weight is

g =24kN/mm’.

(or1 8EI,  16gf
=7 3 W, + ‘?ﬂa
4EI, , 4Gl , 16g¢ ow, ! 15
T3 ot ¢o + wo¢a =3 =
/ 30 15 o 861, , 16t L T 7
= 0 ] "2 12 ro7
_ _ EEETMANE AIl = —f ElLaw" dz + —f GIL¢ dm+f (M2¢)'w'dz
8EI, 16g/¢ 2Jo 2 Jo J0 P
€3 15 Yo :{O} = E;f) :EEI)’E;IE — L=2/=33.1m bEﬂdin;& Shear
16g¢ 8GI, || ¢, 0 4 ¢
L 15 37




From where comes the Standard EN lateral torsional buckling stress formula?

This is in the Eng. PRACTICE &= < <= This is given by the THEORY  no warping L ~ 0

Critical lateral buckling stress in Mo,cfr
EN 1955-1-1 (section 6.3.3) for | Ocr = (e) — e) \/EI GIt
wooden beams Wy W E
DR 0 T R c
O it = = - = WQS ) is the elastic bending resistance.
W, LW, ﬂ
Critical stress in .
torsional  buckl; It is the solution of the differential equation of
REGIGIEL e Stability loss under uniform bending
for a wooden beam
in uniform bending EI, (w")" — (M%) =0,
as given in the (GLi¢') + (M%) =0

standard (check
1955') . Let’s derive this formula



Note that now the shear force is identically zero

PUI‘B bendlng since the bending moment is constant

Puhdas taivutus L : :
so shear contribution can be simply ignored.

EI, (w")" - (MJ¢)" =0, {Efy (w")" — (M2)" =0
(GL¢') + (M) =0 (GL#) + MW" =0,

incomplete model, no shear complete model

GLNR

e 4
(7
3

A constant external moment M? = My at both ends

ﬂ Solution of the differential

under uniform bending:

(4) _ agq. a1t
EIyw Moo =0, Notice the analogy ) )
with Euler buckling of (E) [(E) k2| A

GI1;¢" + Mow" = 0.
a simply supported / 14
q column = 4
“, P. = FEI,-m°/l*
(4) 2,1 __
w + kt w = O? The buckling (critical) end-moment
1 Mo,
(:b - G 1t w. - 1 e M{],cr o
1e critical stress cr — —
2 2




A constant external moment M? = Mj at both ends

Pure bending

Puhdas taivutus

EI,w® — Myg" =0,
Gft(’f}” + ﬂfgw = 0.

w® 4 kP =0,

o =—dpur. |
k? = M3/(GLEL) = g—ﬁ W' — gﬁ
“ u The buckling modes
Moy ,er = %1/}3 I,GIi | The buckling (critical) end-moment & Ver ( IZ?) — Asin ( %)

N
Ocr — MU?CT — ﬂ- \(‘EIyGIt ch'r (:C) — _B GIt Sln(%)

(6) (E) "
Wy Wy, ¢ The critical stress




Pure bending

Puhdas taivutus

Résumé:

no warping [, ~ 0

‘0
Moor = 54/ ELGI,

no warping I, ~ 0

The buckling (critical) end-moment

M{],cr m
W Wi

The critical stress
JEIL,GI, |-

For cross-section with non-negligible warping, the critical

moment is

_
Mo, or = z\/EIyGIt 1+

(Timoshenko)

T Bl .

A constant external moment MY = M at both ends

EN Standard Formula:

. M yerit T Ey 51, G g5 or
erit s
"W, L,

—— Cross-section warping




Rayleigh-Ritz energy method Rayleigh-quotient

er e : - <
The energy criterion in the form 6(AIl) = 0 means that solutions of the stability Fer < Per.approx.

problem make the change in the total potential energy (1.407) stationary. This

___________________________________________________________________________________________
______________________

______________________________

_________________________________________________________________________________________________

6(All(a;; P)) =0, Véa; = i.&ﬂ(ﬂl,{lg, ..yap; P) =0, [1.440)

da; —>
where a; are the parameters in the displacements approximation. The ELbD‘VE\
stationarity condition leads to the homogeneous system of equations (Eq. 1.441) l

below: . .
B ' Discrete Eigen- r
K- PS =0, value problem _~1'441),

_________________________________________________________________________________

det[K — PS] = 0,

geometric-matrix terms 5;;

Stiffness-matrix terms K ;



Rayleigh-Ritz energy method Here we start with no warping case

Approximation of buckling load using Rayleigh-quotient Effect of location

High Cantilever beam of the load

centroid

Two illustrative examples
to study the effect of the

location of the load tension

flange
using the

Rayleigh-quotient

Also called Rayleigh—Ritz ratio
compression
flange




Rayleigh-Ritz energy method

Approximation of buckling load using Rayleigh-quotient
High Cantilever beam

1 ¢ 12 1 ¢ 12 ¢ R,
All = —f Elyw  dz + —[ Gli¢ dm+[ (M, ¢)w'dz
2 Jo 2 Jo Jo .

-

/gendin; & shear

7
0 — 70
Stability criteria 5( AH) —0 initial bending moment
o 1) by approximating separately w(z) ~ w(z) and ¢(x) ~ ¢(z) in the energy

functional (1.444) and using the criticality condition (stationarity). This
is a more general approach.

e 2) approximating only w(z) in the Rayleigh-quotient (1.450) after elim-
inating the second unknown function ¢(x) using the second equilibrium
equation. (not a general method. In general, it may become impossible to
proceed explicitly with the elimination for other types of problem.)

High Cantilever beam
R = O
{ o J=0

= Mlj(1}=0
Hb

i

!
P )=
\V/ ’Pc(; ? {Zg’(ﬂgb

Here no warping case

d(AIT) — 0 Amore general method

AlIl = 0 \i Rayleigh-quotient
p2 _ f[f Efyw”2 dz
T (MO)2w'? /G dx




Approximation of buckling load using Rayleigh-quotient High Cantilever beam
High Cantilever beam -

I "2 1 : 12 : 0. 1 ;!
All = 5/ El,w  dx + 5/ Gl d:r:—|—/ M w ¢'dx
0 0 0 1

M2(z; P) = P - M (x)

eliminate ¢(z) from the energy-functional integrating initial bending moment
Load P at the torsi tre G: centroid
GLo" + (Mow') =0 —> GL4 + (Mow') = C oa a e torsion centre
w'(£) =0,0(f) =0 = C =0, The simplest polynomial
—1 . —t B
. Qﬁ,:_MBw, w(r)=Al —z) = W' (x) = Az({ —z/2)
Gl Fulfills kinematic boundary conditions: rw(O) 0
12 12 _ 4 w"((}) =0
p2 _  Jo BLyw" dz — Py =1/(385GLEL)/(2¢%) Approximation from 5(0) = 0
" f[f (Mg)2wf2/GIt dz 4.18 R-quotient
5 VG ET,.
T f NB. | comp‘ute‘d this‘
Rayleigh-quotient v 4.013 S;](Zamrp;?fgzltth e
P, < Py abprox. P, = 7 GI:EI, Exactanalytical solution Sudentfedothe
Exact < Approximation shear.




Approximation of buckling load using RR-quotient

High Cantilever beam Exam example - 2018

2
Let L =2/, thus the bending moment due to the own weight is M_ = % (1 —(%)2) , when

the origin is located at the mid span. The energy integral is
f

7= J.[EIV (w")? + GI, (¢")* + Z(Mfgﬂv)'w’]dx The beam is simply supported at each end
0

when the approximations for the deflection and rotation can be of polynomial form, satisfying

the boundary conditions w/'(0) = w(x/)=¢'(0) = ¢(£¢)=0 and are w= wo(l—(%)z) and

¢=a,(1- (%)2) . Trigonometric functions w=w, cos(%) and ¢ = ¢, CDS(%) give better

approximation.

f

20 mm

1000 mm

e L >

What is the critical length of a simply supported beam with
respect to lateral buckling, when its cross-section is a narrow
rectangle (80 mmx 1000 mm) ? The Young’s modulus and the
shear modulus are E =36kN/mm? and G = 15,4 kN/mm?

respectively. The loading due to the own weight is

g =24kN/mm’.

1 ¢ 2 1 st 9 ¢
_! f ElLw"de + ~ f Gl dx + f (MO¢)'w'da
2.Jo 2 Jo Jo

-

bending & shear

0 2w, x4, e x 2xw,
7= ET (420 1 GI(—=222 12| & 1-(2P)? | (4222 [dx =
J} &1,y + 6L [zeeso( O )
or1 _8EI,  16q!
4FET N Y& o 15 "°
_ 3} pv§+4GII¢§—|—16q€WO¢0:><aWD é —
‘ 3¢ 15 or7 _8GI, ,  16at All
og, 3¢ 7 15 °
| 8EI, 16¢/(
5 s |[w)] [0 EI,GI
£ b ={}:>EG=E s L=2/=331m
16q¢ 8GI, ||4,] 10 4 4
L 15 3¢




Computational stability analysis

Stability analysis consists of performing next steps:

¢ linear stability analysis to determine the the critical buckling load: buck- Linear buckling Analysis
ling loads and corresponding buckling modes (The homogeneous linearised (you will have a computer exercise on this)
equations of elastic-stability form an Eigen-value problem)

¢ non-linear analysis to study the full post-buckling behaviour and to in- Post-buckling Analysis
vestigate the sensitivity of critical points with respect to imperfections in | - also known as
shape, loading and material, and to determine also limit load. (= a full Non-linear buckling analysis
non-linear problem with non-zero right-hand). - also GNA

(you will have a computer exercise on this)

1. Solve initial stress state in the pre-buckled state for

unit loading

Two steps: ~ Linear buckling Analysis

2. Solve the linearized homogeneous equations of (you will have a computer exercise on this)
stability to obtain the critical load and buckling
mode




FE-buckling analysis

Linear stability analysis

| Model Builder

- = 1 | v TtEl Tiv

4 @ \ateral_buckling_|_thin_beam.mph (root)
4 © Global Definitions
P, Parameters
135 Materials
4 W Component 1 (compT)
b = Definitions

4 A I-thin beam - Lateral buckling
(1) THIN-BEAM upper part (blk1)

(1] THIN-BEAM Lower part (btk2)
YA Plane Geometry

b v View 2

” Form Union (fin)

Computational stability
analysis:

1.
A

4 2 Solid Mechanics (solid)
W Linear Elastic Material : steel
%8 Free 1: traction free faces

@ Initial Values (u, v, w) = 0 and d/dt (u,v, w) =0
@ Prescribed Displacement : (u, v, w) = 0 damped
® Edge Load at x = L, tip unit load for pre-puckled state

A Mesh 1

Computational stability analysis
Lateral torsional beam buckling with
thin cross-section

il

Solve initial stress state in
the pre-buckled state for
unit loading

Solve the linearized

homogeneous equations of

stability: Critical load and
buckling mode

4“6 Study 1

J

Steel:

E =200 GPa
b= 5.83mm
h= 50 mm
L= 346.6 mm

Critical load factor=7114.8

7. Step 1: Stationary (solves stresses of pre-buckled state)
Ui Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) so

4 ™. Solver Configurations
4 _"_-g Solution 1 (sol1)

Example using COMSOL

17, Step 1: Stationary (solves stresses of pre-buckled state)
I_Ii Step 2: Linear Budkling (solves: Linarised Homogeneous Equations of Stability)
4 ™, Solver Configurations

b _Fed Solution 1 (sol7)
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FE-post-buckling analysis

E = 70 GPa, v = 0.33 Lm0
¢=05m,b=583 ’
h = 50 mm H = P/1000.
P.. =1.176 kN.

Post-buckling
analysis

L
H = P/1000.
i Post-buckled
> <3 P state

perturbation load was at y = h/4 . P
away from the center of mass

0 ? 0
.02
0
)
4 4 0.04
wo'm  xo? m

P, = 1]176 kN.
Bucklingloccurs here

0.7pP 0.8P 1P
N.B. displacement scaleis 1:1 P=2kN

0
0.02 |
o !

|
-0.02 |
-0.04 '

- 0.55P =
P, =1.176 kN.

x107% m

cross-section.

Initial equilibrium
Pre-buckled state

¢ £ — ’
-H = P/1000.
‘P Post-buckled
state

[Post-buckling analysis] A thin aluminium cantilever with a
vertical tip load P = 2 kN and a horizontal perturbation force H = P/1000.
The critical load being P,.. = 1.176 kN. Simulation data: £ = 0.5m, b = 5.83
mm, h = 50 mm. E = 70 GPa, v = 0.33. Location of the horizontal
perturbation load was at y = h/4 away from the center of mass of the



FE-post-buckling analysis — bifurcation diagrams

Post-buckling analysis (Lateral torsional buckling of narrow cantilever [Baroudi, 2018]

3.5

Unistable

cr

P/P

151 Stable

0.5+

/ 3.5

cr

P/P

0 | | |

|
-0.25 0.2 0.15 0.1 -0.05

0 0.05 0.1 0.15 0.2

w (lateral deflection) [m]

Displacement scale in post-buckled
configurationis 1:1

Z, W
X, u “ ‘

Y,V

Post-buckled
configuration

0.25

Post-buckling analysis (Lateral torsional buckling of narrow
T T

cantilever [Baroudi, 2018]
T T

{
0 - | | | | |
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
v (vertical deflection) [m]
=0
EF = 70 GPa, v = 0.33
> Z

¢=0.5m,b=>5.83
h = 50 mm H = P/1000.
P, = 1.176 kN.

Post-buckled
state

perturbation load was at y = h/4 . P
away from the center of mass



Lateral-torsional buckling for beams with warping  Lateral-Torsional buckling I, ?é 0.
~1 Singly symmetric cross section

1 £ 1 ¥ 1 I
ATl =2 f ELw"dz + = / GL4%dz + - f EL¢"dx +
2 Jo 2 Jo g 0

-

Strain energy

new contribution to AU .
frofn warping

14 /¢ Y
0\, 0 "2 |
+ /(Mzc;ﬁ)wd:.: + / MOB,(¢)2de  + ¥
J0 P JO P
both bending & shear initial stresses  new contribution to AW(72,) 0.\ S
; Thin-walled shells shear is 7 P s ,
a negligible and often neglected . |
+5y / Qy¢52d33 _ glig ften neg a
0 i

new contribution to Weaxt

3 3 ,‘)& . s Q
o ¥P dg

| use this illustration just to S- shear center (rotationcenter): (¥s, 2s = 0)

demonstrate restrained warping

Loss of

o C- center of mass
stability

Moment arm of external force: Ay = (?/s - ?/0)

v

Narrow rectangular cross-
section with no warping:

. 1
Restrained warping  warping By = ﬁ /A y(y2 + Z2)dA — Ys,
A

Narrow rectangular cross-section with no warping and end-point load at a:

1
2, .2
£ ¢ ‘ — _
ATl = % f El’yw”zdx+% / GL¢"dz + / (M2¢)'w'dz + 1/2Pad(£)? Bz 21, /Az (y" +27)dA — 2,
] 0 0



Stability Equations

1 14 1 14 1 14
M- [ ELw’ds+ 3 [ GLg*do+ 5 [ BL¢™d +
2 Jo 2 Jo 2Jo J

Showing variation of the new contributions only:

1 ¢ 9 /
3 / EIL¢"dz) = / EL,d"54"dz,
0 0

new contribution to AU ) Y,
Oy

¢
fo MG, ()2 +

£
n /U (M2$)'w'dz

a
§(— 21" q,p°dz) = ) qygb(?cbdﬂ:

N, ——_

both bending & shear initial stresses

Ay ¢ 2

"
new contribution to Wext

4

This case with warping:

new contribution to AW(79,)

Stability loss criteria:

§(AIL) = 0

Thin-walled open-cross section
(shells) shear is negligible

¥

J /0 M7 By(¢)*dx) = /0 MOB,¢'6¢ dx.

Singly symmetric cross section

7

This term goes to zero when we ignore the
0 effect of\(niti
. (Efyw) — (M29)" = do so)
H !
(EI QSJHJ (GJ't ¢f) L Mgw’” 2/6,9'. (MO &5‘, —+— By qy S- shear center (rotationcenter): (ys,2s = 0)
nowi farm-— C- center of mass
— tc — Moment arm of externél force: Gy = (¥s — %o)
mr 0 .\
ET, (w") (M ¢) Ay = €y = Yq — Ys

Previous case with {
no warping:

(GL¢') + MJw"

For details in deriving (1.485), refer to the lecture-notes by Prof. J. Paavola




Kinematics of the cross-section for in-plane motion

Kinematics = geometry of the motion

Out-of-plane motion

(= deplanation = warping)
should be added into the axial
components of the motion

1-plane small displacement
omponents in a small rigid-

ody rotation
he rotation direction in this subfigure is o (? 4

ken negative) a —~~=  rigid-body in the cross-

tsQh W vigid }le w“'("éq ﬂé \snn(f section plan.
egmen as only rigia- (\IQ-—- ’lfc 5 ZQ 23) SN—)LQ

Segment SQ moves as a

Loss of

stability ody translation and rotation

SQ
round he shear center S

Rotation in this subfigure is correctly positive

warping



Example: edges subjected to constant moment only

Consider such simply supported beam
with singly-symmetric constant cross-
section which is loaded at both ends by a
constant moment MZU — ﬂ_,{g

(ELw")" — (M2¢)" =0,
(Elqu”)” — (GLi¢") — MB’{U” “+ shear neglected + engqb =0

I e

ElLw® — M3¢" =, __Trials should fulfill the
E] ¢,(4) — GL¢" — MO = 0. PDE and the BCs \1

— MO

2 70
These differential equations can be solved in many ways : det [[W/E] El, M,

1. One way is to eliminate the rotation ¢(x) from the first
equation and insert it in the second equation. Then, one f
solves the last PDE in terms of the rotation ¢(x) only.

Y

2. However, the system of PDE with constant coefficients is w(z) = Asin (1z/f)
quit straight-forward to solve by taking trial solutions ¢(z) = Bsin (rz/f) .

simply supported beam .-/ M? =

|

Lateral buckling of
I-beam subject to
end moments.
Boundary conditions:
w(0) = w(f) =0, w'(0)=w"(£) =0
¢(0) = ¢(£) =0, ¢"(0) = ¢"(¢) =0

[ /02El, + GIL;| ~ 0

Ny

The buckling moment

M,, = %\/my [EL,(n/0)? + GI]




Example: Simply supported beam subjected to transversal con-

Simply supported beam ;
stant load

For cases where
the load is along
the center-line

eyzo G

(ELuw")" — (M29)" =0, ' -
(EL,¢")" — (GI@’\)’ — MW" n engﬁb —0 Constant transverse distributed load qy

simply supported beam .-/

q Insert the pre-
U’ ME = —yﬂ:(f — 117) stress bending

2 moment

For distributed load acting along the center-
line, we obtain:

4) y 9 Lateral buckling of
Eij o ? [a}(f o 211)(;5] — 0? This PDE is not easy to solve. I-beam subject to
Timoshenko solved it using ] -
Efwcgb(‘l) _GL¢" — qﬁm(ﬁ — )" = 0. | infinite series end moments.
—a system of coupled equations 2 Boundary conditions:

w(0) = w(¥) =0, w'(0) =w"(£) =0
$(0) = ¢(£) =0, ¢"(0) = ¢"(£) = 0

The solution was given by Timoshenko

0)or = EI,GI,/¢? GI0? Stability
(Qy ) ’Y\/ Y t/ 7= f( E'Iw ) coefficient




Example: Simply supported beam subjected to transversal con-

stant load

Simply supported beam : | M? =

For distributed constant load acting along the center-line

(¢ — =)

Some values for a doubly symmetric I-beam cross-
section for various locations (upper flange, centroid

Lateral torsional buckling.

and lower flange) of the loading

Efyw(4) _

q "o
o [z(t—2)¢]" =0,

EL,¢W — GL¢" — %‘f:c(f — )"

VALUES OF THE FACTOR 4 FOR SIMPLY SUPPORTED I

wiTH UNIFORM LoOAD

EAMS

The solution was given by Timoshenko

(@y)er =¥/ EL,GIL/*

Effect of load

locations:
upper flange
centroid
lower flange

_____________________________

-Load
applied
at ) T
L 80 +
Upper flange  25.8
Centroid - 30.1 4,
Lower flange . 35.1 |

, f(GItBQ)
Load 1= VEL
applied
at 0.4 4 8 16 24
Upper flange 92.9 | 36.3 | 30.4 { 27.5 | 26.6 | 26.1
Cf::roid 53.0 | 426 | 36.3 | 33.8 | 32.6
Lower flange 77.4 59.6 48.0 43.6 40.5
742 CLE - Hy— (G]t(p)
-Load
GIt g applied / Elw Elw
| [Tea [ 80 128 | 200 | 280
‘ 26.7
Upper flange 9 | 25.8 | 26.0 | 26.4 | 26.5 | 26.6
antroid 5| 30.1 | 29.4 | 29.0 | 28.8 | 28.6 .| 28.6
Lower flange 4 | 351 | 33.3 | 32.1 | 31.3 | 31.0 | 30.7

(g,0)er = v+/EL,GI;/

Timoshenko Elastic Stability of structures.

metric I-beam

value

s for ~y for 2 doubly sym

Effect of location
of the load

centroid

tension
flange

compression
flange




I-beam Cantilever Analytical solution

ELw® — [P({ —x)¢]" =0,
EL.¢W — GL¢" — P({ — 2)w” =0

*

Lateral buckling of I-beam cantilever

P, = /B I,GI, /32 Timoshenko in 1910.

| B

Stability

IJP

l; motion

Lateral torsional
buckling

Clamped cantilever

/

coefficient

vz = 4.013/[1 — / EL,/GL¢?)?

; P, = v, y/EL,GIL,/ ¢

1o = 4.013/(1 — \/EL,/GL¢??

VaLUES OF THE FACTOR v; POR CANTILEVER Brams or I Szcrion

GI,0*

Gl | 0.1 1 2 3 4 6 8
EL | k |

5 4.3 5.7 | 12.2 107 | 976 | 86 | s.03

2 |

GLf 10 12 14 16 24 32 40
El, | o o

v | 7.58 7.20 6.96 6.73 6.19 5.87 | 5.64

Lateral buckling of I-beam cantilever




: . i b2 FaA M
FE-computational example The out-of-plane axial [ "

A g | bh/a
FE-Buckling analysis: displacement is Ei gl 75
proportional tothe — [~ ""? ~ tlfff{:f/ml
. . . . L/ s 1o =
Lateral-torsional buckling of l-beam sectorial coordinate DJ_ i ) 2
Pcr = 53.4 kN l _ l f)
View from top
R/z
| —— 4 + Ky
— bh/4 -
1 bh/4
j (4):!
E Front view y

Top view

£ s

aluminium with £ = 70 GPa, and v = 0.33. The thickness is constant 1 ¢cm
and the web has ¢ = 10 cm hight and the flanges of ¢ = 10 cm width

Lateral torsional buckling of dou-
bly symmetric I-beam. The transversal load is at the cross-section
centroid.P., = 53.4 kN. Note the small amount of distortion of the web
(flexural mode of the web)

‘; motion
Lateral torsional
buckling




Analytical versus FE-solution: (FE)

Lateral buckling of I-beam cantilever cr = 93.4 kN
Analytical solution:

ﬂ P =y 1.I’EIHGL5/€2, where
= lfggij”?dm+1fgcjt¢ de4= / EI ¢”2da:1—f (MP¢)'w' dz+1/2Pag(£)? ——
2 Jo 2 Jo - v2 = 4.013/[1 — \/EL,/GL2)?

Clamped cantilever

/

Energetic solution

*

Nowa=0

The kinematic boundary conditions

= [#(s)ds = (2b+ )t PE—
{’IU(D) =1U,(D)=01 / 5= T ) bia b/2

bh | | | b4

$(0) = ¢'(0) = 0. - / 22dA = f 2(s)t(s)ds ~ th3 /6, (T S g
. . 1, =~ th/6
example of simple candidate — f W¥(s)dA = / 2(5)t(s)ds = b®h2t/24, yf‘w | L = e/
fulfils the kinematic constraints % b X :
- 3 : T
w(z) = wo(l— cosTF) Z“ h+ 2)¢" ),
2
¢(xr) = Po(1 — cos z;_:') ¢ I\
HW: Find the o e
. . bh/4 \k
rw,.(m) — wor/2¢ sin approximation of the b
- 25 buckling load using 5=
£ (¢'(z) = gom/2¢ sin TF Rayleigh-Ritz and 'y
S compare it to analytical
ES Sectrorial  coordi-
ﬂ The shear center and the nate w

centroid coincide
doubly symmetric open thin walled cross-section,




Post-buckling analysis

_ 1.15 1.25
Buckling occurs

somewhere here A =1 0 0.1
m — m 5

Post-Buckling
0.1 Lateral-torsional
buckling

1.6 " Uy \ N.B. plate buckling starts ~ ©-Baroudi, 2013

(ala-laipan lommahdus)

FE-post-buckling analysis of an aluminium I-beam cantilever.
The transversal tip-load is at the centroid. The scalar numbers A = P/P,,
in the sub-figures correspond to the the scaled transversal load. Note that
for A > 1.8 local (plate-)buckling (lommahdus) of the lower flange occurs.

005




FE- based Post —buckling analysis

1
Computer class HW
for next week #4

E
. DO FE-based Post-bulckling a'nalysis %ateral 'I:orsiona: bucklinlg, forcel contrql [Sarour!i, 2019]
. . 15 B ] e "l
* Buckling analysis
e Post-buckling
analysis
- 1 g
a8 5
E Q.
5.
Il 0
2]
~< )
a
05 B = m
(7]
P
0 1 1 | 1 1 1 1 1
05 04 03 02 -0 0 01 02 03 04 05 ¥
w(f)/h h =10 cm.
Equilibrium paths. FE-post-buckling analysis of an alu-
minium [-beam cantilever. The transversal tip-load is at the centroid.




Homework - week 4: deadline

Computational Stability Analysis of structures by

Finite Elements

Linear buckling and Post-buckling analysis

2 Physical problem

Consider a clamped metallic cantilever which is transversally loaded at its
free-end at the centroid of the cross section with a load P. Determine 1) the
buckling load and 2) analyse the post-buckling behaviour.

Data: The length £ = 1 m. The material is aluminium with £ = 70 MPa and
v = 0.33. The profile is an I-profile. The wall-thickness of the cross-section
is 1 cm. The width and the height of the cross-section being a x b = 10 x 10

Application to lateral torsional stability of a cantilever 9

90
LI
05
2

2 83
3 8:
9

Linear buckling analysis

Post-buckling analysis

cm- .

1 Task

Perform 1) linear stability and 2) post-buckling analysis (GNA or also called
non-linear buckling analysis) using Finite Elements software. The idea is to
get the student in a first critical touch with the FE-computational technology
through an application example from structural analysis.

The finite element discretisation can be done using shell-elements or 3D
solid elements. Generally shell-elements are sufficient to capture the mechan-
ical behaviour of thin-walled shell-beams. However, if you want to have an
idea of degree of accuracy of shell-approximation, you can then use 3D-solid
elements. Anyway, the thin-shell approximation is in itself a good way to
access the accuracy of one-dimensional models we are using in this course
to derive the theoretical buckling loads. For the purpose of the homework,
When using COMSOL if you have problems with shell-elements, then just
use solid 3D-elements.!

The FE-software that is guided through to do this homework will be
COMSOL Multiphysics and RFEM. However, the student can use any other
software suitable for him, like Abaqus, Ansys, Lusas,



Model Builder

== T |l &~

4 @ Global Definitions
Fi Parameters
528 Materials
4 [@ Component1 (compT)
P = Definitions
4 }5\ I-thin bearn - Lateral buckling
F) NEW - yldlaippa (levimpi) /2 {blk1)
F[) NEW - yldlaippa (levampi) 2/2 (blk3)
) NEW - ala-lappa 1/2 (bik4)

W COMSOL

4 4% Cantilever_doubly_symm_|_Bearm__| ateral_Tosional_buckling_and_POST_Buckling__Anah

4 ~cf Study 1: LINEAR BUCKLING ANALYSIS
|~ Step 1: Stationary (solves stresses of pre-buckled state)
~ Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) sol

5 M A S > %P

= |_— = |

4 ~dv Study 2: POST-BUCKLING ANALYSIS

Add Build  Mesh Cdmpute Study 2: POST- Ade
hysics Mesh 1~ BUCKLING ANALYSIZY Sl e o e e e e e e e e e o o e e e B e E o R R T e e
Mesh Study 7~ Step 1: Stationary: [POST-BUCKLING]
.

tings Properiies

Graphics
aa @l L-xxzER @ =

ionary,
Copfpute C' Update Solution
param(25)=1.2 Surface: von Mises stress {N/m?)

J: | Stationary: [POST-BUGKLING]

) NEW - ala-lappa 1/2 .1 (bik5) Nim?
ET) NEW - uuma 1/2 (bik) Study Settings Al
@ MEW - uuma 1/2 .1 (bik7) . L 53
nclude gesfnetric nonlinearity
[ 'E- Work Plane 1: vertical mid-plane 2 (wp2)
b Work Plane 1: horizontal mid-plane {wp 1) Reslits While Solving 5
[ ‘E- Work Plane 1: horizontal mid-plane 1 {wp3) Physics and Variables Selection
* Point1(0,0,0) (pt®) Vodify model configuration for stuly step 4.3
Point C (centre of gravity) (pt17)
= CENTROID of I-beam section (pt18) Physics interface Sojrefor Discretization
Line Segment 1 vertical G - UP (Is1) Salti WisdenE [ || Physics settings 4
Fo.rm Union. (fin) values of Dependent Valiables
=22 Materials - 3.5
4 =5 Solid Mechanics (solid) (AR 6 G
il Linear Elastic Mategidl : Aluminium Adaptation and Erpor Estimate g
i Free 1:tractiopAree faces Study Extensiong
s Initial Valugs (u, v, w) = Oand dfdt {u, v, w) =0 A
7
I Free 1 fraction free faces A Auiliary swgp / _— 2=
@ Fixdd Constraint (u=0,420, w=0) CLAMPED seep type: [ Seyfified combinations
[Lin. BUCKLING] PGint Load Transversal Tip Load P f Parameter name  Pgrameter value list Parameter unit 2
3 [POST-BUCKKMNG ANAL, PERTURBATION] Tip-load Horizontal H param ~ || ange(0,0.05,3)
= [POST BUCKLING ANALYSIS] transversal load P = 0:dP:nx Per L5
A Mesh 1 i
4 ~db Study JLINEAR BUCKLING ANALYSIS
tep 1: Stati . AN d 1
p 1: Stationary (solves stresses of pre-buckled state)
Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) soly [n continuatjon for: || Last parameter
2V [tra SolverConfigurations | B Befine fhad cases 0.5
4 ~dn Study 2: POST-BUCKLING ANALYSIS A 1
I [ Step 1: Stationary: [POST-BUCKLING]
: b [Pre Solver Configurations
& Home Definitions Geometry Materials Physics Mesh Study Results Developer
b
p A @ P; Parameters = & Import 2e % i — r\fjb r @ F f\
- = = gl P_{ | @ — X }I’E ] E .""‘r
boe o a= Variables - E " Livelink - + ' 5 . + . _ -
b B Tables Application Component . Build Add Solid Add Build Mesh Compute Study 2: POST- Add Stress  Add Plot | Windows  Reset
b §i Mode Shape (solid) Builder - fix) Functions = All Material Mechanics = Physics Mesh 1= BUCKLING ANALYSIS - Study (solid} - Group - - Desktop -~
4§l Stress (solid) Application Model Definitions Geometry Materials Physics Mesh Study Results Layout
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Post-buckling analysis using RFEM

General | Calculation Parameters

Method of Analysis

() Geometrically linear analysis

() second-order analysis (P-Delta / P-delta)
() Large deformation analysis

(@ Postcritical analysis

Method for Solving System of
Nonlinear algebraic equations:

Hewton-Raphson

Newton-Raphson combined with Picard

Picard

Mewton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

Dynamic relaxation

Edit Load Cases and Combinations

Load Cases | Load Combinations = Result Combinations

Existing Load Cases

I LC4 P-1
El LC5 P-1500+imp
IEFl LCG P-1+imp

500000

(@) Postcritical analysis

RFEM

LC No. Load Case Description

by DI Bahram S. using RFEM.

| P-500+imp

X

General Calculation Parameters

Method of Analysis

() Geometrically linear analysis

() second-order analysis (P-Delta / P-delta)
() Large deformation analysis

(@) Postcritical analysis

Options
[ ] Modify loading by factor:

[ | pivide results by loading factor

Activate stiffness factors of:
[ ] materials (partial factor yM)

Method for Solving System of
Nonlinear algebraic equations:

() Newton-Raphson

() Newton-Raphson combined with Picard

I Picard
() Newton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

() Dynamic relaxation

Cross-sections (factor for J, Iy, Iz, A, Ay, Az)
Members (Definition Type)

Surfaces (Definition Type)

Activate special settings in tab:

[ ]Modify stiffness

[ ] Extra options

[ | peactivate

Consider favorable effects due to tension of members

Incrementally Increasing Loading

[ ]Activate
Initial lnad factor ki : I:l [-1
Load factor increment Ak I:l [-]

Refinerment of the last lnad
incre et 15

Stopping condition for:

[ ] use initial load (not increasing):

Refer internal forces to deformed
structure for:

Mormal forces N
Shear forces YWy and Yz
Maments My, Mz and M1

Try to calculate kinematic mechanism
lculate ki ha
(add low stiffness in first iteration)

[ ]Apply separate number of load increments
for this load case: I:l

Save the results of all load increments

[ ] beactivate nonlinearities for this load case

L Elm

]




Post-buckling analysis using RFEM by DI Bahram S. using RFEM.

P— General Calculation Parameters
Global Calculation Parameters Calculation Diagrams

tszzNSdseol(\)J:.rq%) / Incr. @ Postcritical analysis cb N"; ‘Dziﬂgfﬂm Description 2:;"0‘3 DIA"T;?T"S X
. eometrically linear analysis
182A Incr. / Loading = () Second-order analysis (P-Delta / P-delta)
e @ Load case: (O Large deformation analysis
79+ B LC3 - P-500+imp (@) Postcritical analysis
72t
65T Load combination: | Method for Solving System of
:? Monlinear algebraic equations:
g‘; * Vertical Axis Newton-Raphson
304 » Result type: Mewton-Raphson combined with Picard
23+ — . ' IR . Picard
167 ' _ > Newton-Raphson with constant stiffness matrix
g ! ! ! ! J ! ! : UYlmm] | (@ Modified Newton-Raphson
6.8 135 20.3 27.0 338 405 473 54.0 60.8 Dynamic relaxation

| Values

Incr. lteration |Load Factor uy ~
MNo. MNo. [ [mm]
1 3 0.010 0.0
Result type: Value: 5 3 0.020 00
Nodes - Deformation Y ' 3 3 0.030 0.0
4 3 0.040 0.0
Location 5 3 0.050 0.0
Node Mo. 6 3 0.060 0.0
7 3 0.070 0.0
13 v 8 3 0.080 00
9 3 0.090 0.0
10 3 0.100 0.0
11 3 0.110 0.0
12 3 0120 0.0 w
Comment
| > 2Q 5

RFEM




Torsional buckling

J e Lateral-torsional buckling: beams
loaded transversally with respect to
center-line axis

* Torsional buckling: axial thrust
(compression) normal to the cross-
‘ section

|
‘ For columns with thin-walled open

u cross-sections, the torsional rigidity is

: dramatically smaller as compared to the

I same but closed section.

K When torsional rigidity is much small as

i} compared to flexural rigidity in the
principal directions loss of stability

through torsional mode may occur.

f;’

1

¢

.
cs

Thin-walled open cross-sections

= v et A

L

2N |
Pure torsional
buckling mode

L=300cm
Torsional Buckling

L =500cm
Torsional Buckling

L=1000cm
Flexural Buckling



Combined torsional and flexural * This expression is general & accounts

buckling for combined torsional and flexural
buckling

Total potential energy « the loading is axial centric thrust

/

/

1 ¢ ) 1 ¢ )
AT = ] Bl ds + / ELv"dz+
0 0
1 /¢ 1 [t
+ - / GIL¢*dz + = / EI ¢"dx+
2 Jo 2 Jo

£
i ].3 /A ”5%[(%)2 + (vh)?dAdz

stability

Restrained warping warping

Pure torsional buckling will be treated as a special case where no flexion occurs

Geometry of the
motion of a

material point on
the cross-section




Combined torsional and flexural * This expression is general & accounts

buckling Total potential energy for combined torsional and flexural
buckling
1t 12 I "2
&Hzijg Efyw dr + 5/3 Elv""dz+ * the loading is axial compression

1 [t 1 ¢
+ 5 / GI¢*dz + = / EIL,¢"*dz+
2 Jo 2 Jo

£
i ].3 /A ”3%[(%)2 + (vh)?dAdz

P
e,
A—
ev;_r_l_/__.— —> Z
> = 4
Yy

stability

Restrained warping warping

11 “NB
0 0 0 ‘ I P * -bending arround axrs z- and y
N"=-P, M, =-Pe., M_=-Pe,, * - torsion arround the axis of center of shear

* In general, the loading
y is eccentic

Geometry of the
motion of a

material point on
the cross-section




Torsional buckling

1 [t S B R
ATT == / ELuw"ds + / ELv"de+
2Jo 2 Jo

£ ¢
41 / GLy Az + - / EL,¢"da+
0

)

_____________

l:&ﬂ_@)_'ﬂ(__bfﬂdﬂdw ‘

The kinematics A/A/l neglecting the work of shear stresses.

arbitrary material point Q(y, z) of the cross-section

Total potential energy

this expression is more
general & accounts for
combined torsional
and flexural buckling

the loading is axial
compression

In-plane small displacement
components in a small rigid-
body rotation

P
<

A 4

r . / / / (l:n\;;:tu[:izi;nviirocr_ion in this subfigure is
uQ(@) =u—yv' — 2w —wd, combined motion o
VR h ly rigid-
Lvo(@) = — (2 — 25) tramslation Lot |
: | ! é}&x around he shear center S
I S on
(o) =lw+-v)o, | ayoe®

Centroid (C) translations
The increment of work due to initial stresses

§(AIl) = 0 —= Stability

a‘u’Q W+(I‘éq r\é \thtf
Vg = Ve —(::Q 23)smcq

SQ
Rotation in this subfigure is
correctly positive

Kinematics for combined torsional and
flexural buckling

P Segment SQ moves as a
~~"=  rigid-body in the cross-
_ section plan.

equations:

ElLvY + p (V" + (25 —

EL,w™ + P [w" — (y,

ez)qb"] _ 0’Stablllty criteria

ey)qbn] — Oa
El,¢W — GL¢" + P [(zs — e )v" —

(ys — ey)w” +v¢"] =0

1
> [, ol(wl)? + (vp)lav =
P rt
— 5]{) (W) + (V) +r2(¢))? — 220" ¢ + 2y’ ¢ ]da
=1 A= L+ 1)/A+ (y3 +23)

The eccentricities being e, and e,

Pure torsional buckling will be treated as a special case where no flexion occurs




Torsional buckling Total potential energy

1 [t o, L
ATT == / ELuw"ds + / ELv"de+
2Jo 2 Jo

£ ¢
41 / GItcf)"zder 1 / EL,¢"da+
0

arbitrary material point Q(y, z) of the cross-section

»

-
<

/

uQm)— u—yv — 2w —wd, combined motion
— /;) 2: — zs)(j), translation
:wQ(gj) i:['u_} —|— (y T yS)Qﬁa & '(,‘()’(,a)(;lﬁﬂ {%)& )
\ ﬂ%“d Ho Y

=~
Q

Centroid (C) translations
The increment of work due to initial stresses

1 / !
> [, o) + (vp)?av =

¢
— g/ﬂ (W) + (V)2 +r2(¢))? — 220" ¢ + 2y’ ¢ ]da

2= /A= (L+1,)/A+ (42 +22)

In-plane small displacement

Kinematics for combined torsional and
flexural buckling

) Y

components in a small rigid-
body rotation

Segment SQ moves ac =

(the rotation direction in this subfigure is ~ (P ) 1 bod h

taken negative) ~ —~ I'Igl oay in the cros
N Waq = ruu'-a-("gq ¥ \s""“f section plan.

Segment SQ has only rigid- { Qg = Ve '(?q 2 )smcg

body translation and rotation .

around he shear center S Rotation in this subfigure is
correctly positive

Stability criteria

S(AII) = 0 ———>/Stability equations

Solutions of these PDEs (Eigen-value problems) provides
the buckling load and the corresponding mode

Next, we consider symmetry cases of cross-sections
simplifications ——> a) singly symmetric cross-section ....



Torsional buckling  Combined torsional and flexural buckling (@) p

Singly symmetric cross-section geometric factors of the cross-section r:,
S _
i Z
the loading acts in the plane of symmetry r? = Ly Z L. + 2 + 22, 2 /’%
.‘l‘

e,=0,8,=0 2:=0, 1
2 2
- A—
/831 QIZ/Ay(y + 2 )d Ys,

1 2, .2
B, = Qijqz(y + z*)dA — zg,

I

|

|

|

I

|

|

|

|

|

|

|

4 |

|

Combined torsional and flexural buckling | l k

e X

ELw" + P [w" — (ys —ie;)¢"] =0,
EI¢" — GLg" + P [~(ys —ey)w” + (r* + 28¢;)"| =0,

T

For centric loading, put all the eccentricities equal to zero ... ﬂ
and ... solve the problem v

Stability criteria

d(ALT) =0 ﬂ Stability equations v = (r® + 2B8yey + 2B.¢,).
EIZU(4) + Puv" = 0, Coordinates of the SC i

General illustration
Eccentric loading in this figures



Torsional buck]ing Combined torsional and flexural buckling Pure torsional buckling

. . - L4 2 l
Singly symmetric cross-section T ranen

ELv% + Py =0,
ELw™W 4+ P [w" — (ys — ey)¢"] =0,
El¢" — GL¢" + P [(ys — ep)w” + (r* + 2By¢,)¢"| =0,

k——bﬁ

_________g?__________
Se
_ T

Now centric Ioading Doubly symmetric cross-section & centric thrust
Ys=2,=0,ey=€,=0,8,=08,=0

R 41 -------------------------------------------------- , p= il FRFRTTTT
EEIz'U( ) + Py = 0, ——  Flexural buckling The Smay

: : IS th estc ..

! 4 " : | € byep,.  Crit
:Lr‘E:{:y:EL:):(::3::-_|_=:‘i=[=El=]=:::::::::::::::::::::::J::z:?:’:::i-- ----I:?-r-s-i-O-r-]-a-l--b-l:lf:-lil-il:]-g____ I I UCk//ng /Oalga/ /Oad
BlL¢" - GL¢" + P|- + (1’ )¢"] =0,

Decoupled torsion and ﬂ
bending

Pure torsional buckling

” ) , b 1 |7*EL, oI
El,¢ -I—(PT‘ —Gft)qﬁ =0. | —> er = Li + Gy !

the buckling length Lg} should be determined according to the boundary conditions.



Pure torsional buckling Combined torsional and flexural buckling

Doubly symmetric cross-section & centric thrust

T
A

¢'H — 'D.,

it
Yo = 24 = 0, e, =€, = 0, 53; —8,=0 ;mmmuumml.u
|
e (ul ettt | ’ |
EEIzy(’i} + Py = 0, { «— Flexural buckling |
i i 0 { atdp
i (4) "_ | €co | /t/ A
'_Eﬁ?ﬂ-ﬁ:::::i:ﬁgz::::qé:::l _______________ ' l U'O/eo’ is%v/n - ,:[
! 4 " 2 1 i Bk
LE:{L_@Sﬁ’_(___)__:__g{t_ﬁff___i_gf__@___f_U:f— Pure torsional buckling |
U |
|
. fff] errfrtnrrr
Pery = 2EIZ/L%, The smallest
9 9 critical load is the
\ Pﬂaw T EIy/L’lU? buckling load Centric load with doubly symmetric X-section
1 2 2 v
\ PCT1¢ — r2 [ﬂ- EIL'J/ Lf?—" ™ GIﬂ Pure torsional buckling )
P‘F‘E - Gft I

buckling length are L2, L? and Lng) ¢{4} + I
Buckling lengths depend on the —
specific boundary conditions k2

L=300cm L=500cm L =1000cm
General solution: qb(m) — A + Bm + C 31N k_-r + _D COS .IE:I, Torsional Buckling Torsional Buckling Flexural Buckling

Determine the critical length for the mode transition




Pure torsional buckling

Combined torsional and flexural buckling

Doubly symmetric cross-section & centric thrust

The smallest critical ’

' 'Pw,E

load is the buckling 0|
load

2 \:“) A € L 2131

(P.., = m2EL /L2,
Perw = m2EIL, /L2,
| Perg = |m°EL, /L3 + GIY]

.

(/

J,

0t ¢

We i{/ = \\\/‘C;[L\'\JQ

/

g't_\ke

..s
iR

‘ —
=

M——_

i Si— %
B

0
fiTi T

L=300cm

L=500cm
Torsional Buckling Torsional Buckling

Centric load with doubly symmetric X-section

L=1000cm
Flexural Buckling

Determine the critical length for the mode transition



2D versus 1-D: Plate model versus beam-model for torsional buckling

—‘( ree. /7" - ‘// ‘ /.

&se
3

N

>

|l

c

g . ‘K:Jnc “\ZL\‘ ¢ --QC a‘s‘\"“"qb}-{c4 —’,L\ﬁut al L
\;&, — A, <A Sen (7?: Approximation obtained by energy

T, ) <~—~_  metod: (2D-plate model)

— —————— —— ———— —— —— —— ———

" = C~: -+ 3 * -
‘ - Kl'\( A b > § Lv\f;c\ = ’\‘O\m:b__ . G(‘, J
A / l z
*TT/ rrﬂ'rrm'm'rm w\ et | yi L
Y 0 N7
Analytical: torsional buckling (1-D model)
Gt2 (good approximation of exact soludion by Timoshenko)
O — ——  (Timoshenko) © itical kli '
cr b2 P Exact critical buckling stress (Timoshenko)
. < 2 G2
_ 2 /42 T
buckling stress in pure torsional Ocr = (0-456 + b /f ) 6(1 — 1/) b2

buckling for an angle cross-section



Centric loading of beams having symmetric cross-section

ELv® + Py + Pz,¢" =0,
ElLw® + Puw" — y.¢" =0,
EL,¢W — GL¢" + Pzoo" — Pyw” + Pri¢” = 0.

Pcr,v = WZEI;/L& \

1
Pog= T—E[TTEEIM /L7 + GIY,

(v(z) = A1 + Biz + Cy sinfr/ Lo (z — z0)],

-

| ¢(z) = A3+ B3z + C3 sin[n/Lyp(x — x0)].
Pepw =7°EL /L2,

Poy—P 0 —z, P Ch 0
0 PC?",'H.P - P ys P Cy| = |0
—zs P P ys TE(PcT,qﬁ — P)| |Cs 0
A-PB=0, Pery 0 0 1 0 2
A=| 0 Pyw 0 B=|0 1 -y
0 0 rchmﬁ Zs —Ys T2

w(x) = Ag + Bex + Co SiH[TT/Ln(:IT — :1‘:(])],

Combined torsional and
flexural buckling

Combined flexural-
torsional  buckling
of a cantilever-
column loaded at
its cross-section
cenroid (FE-Linear
Buckling Analysis.)



Numerical example - centric load column with singly symmetric

T-section

P

- N
n
<

¢ = 10a

Torsional-flexural buckling = Combined torsional and flexural buckling

centre of gravity (of area) of the cross-section is C.

G = 04F

 CLAMPED
oA

thrust load P is centric and ;;lpplieﬂ at C

e. = 2/3a,

es = 64/65a,

zs = —62/195a = —0.318a
ys = 0

I, = 13/2304a* = 5.642 x 10 %a*,

I, = a"/45 = 2.222 x 10~ %a*,

I; = a*/4500 = 2.222 x 10~ *a*(= I,,/100),
I, = a®/11700 = 8.570 x 10~°a®,

r? = (I, + 1,)/A+ y? + z2 = 0.287a%,
L,=1L,= Ly =Ly, =2{=20a.

From the modes




Analytical solution

Combined torsional and flexural buckling

and

T‘Z.Ezéfgqﬁ [} {]

0.139 0 0
=102 0 0548 0O
0.091

. Ea?

Zg 1 0 —-0.318a
—Ys | = 0 1 0

ze —Ys T2 —0.318a 0 0.287a2

@) D

_ CLAMPE
N
T

A

.E%:r - 7”5 I{Pq

Think: why the 1D is stiffer than 3D FEM solution?

Programming the problem?? in MATLAB leads to [C, P] = eig(A, E

The smallest
critical load is the
buckling load

.

P.. = 1.158 x 10™*Eqg?

For ¥ = 70 GPa and a = 10 cm,

N\

EE)
36
syif=
38 -
39 —
40 -
41
42
43
44 —
45 -
46 —
47
48
49
50 -
51
52
53
54 -
55
56
57
58
59 =
60
61 —
62 —
63

4,
by,

$ Rigidities ———-

EI z=E * I z:

EL vy miES R TV

EI omega = E * I_omega:
GI ¢t S el A

Pv g pi”®2
Pwigpit2

* EI z / (L_v*2)
* EIy / (L_w*2)

P phi = ( pi"2 * EI_omega / (L_phi~©2) + GI_t) /x2
§ ~rrrrrrrrc e ————————
$ Eigen-value problem
§
AgIPvw 0 0
0 Pw 0
0 0 r2*P _phi]
* ___________________________________________
B=[1 0 Zis
0 1 -y s
zZ s -y s r2])
* ____________________________________

% Solving the three critical forces
[C, P] = eig(A, B) ; $§ C- the constants

$ the critical loads := PsI
Ps = diag(P) |
P_cr = min(Ps) $ THE BUCKLING LOAD
* _________________________________________

(Full 3D FEM)

P. =11.6-10"3Ea? = 81 kN.

(this analytical: 1-D Vlassov beam theory)




Approximate linear buckling analysis with energy method

< ¢
i S(ET Ve -Ju v/ + ) | Am =1 / Elu"dz + 1 / ELv"da+

A
2

L—\» L_ G\.[ C}lzclac jEI qb“cp:tm‘—)
,P .

(-

/ GL %z + / EIL¢"dz+

.’-—Q—Z‘_sv 17 '¢ ) 2 /\2 ! ! &'
[ ) + r (¢ ) 2zs'v ¢ + 2ysw ¢ ]d.’L’
| %mmimy | u /

P .752 (@] V(L =, :’C/ﬁ ] 9
= © J(AIN)
PW T 4% gy L Py g =] e =0

| I(AII 72

- N g / oy =0 = Bls {10 = Pluo — oz =0

3 /\?‘l‘f ,"t. ack aw

B T, oA , n?

3 \:\ 'fl % U(q_\—"l)‘o(,{ =0 = = P(¢07‘ - 'U()Zs) + EIw YR ¢0 + GIt = ¢0 = (
A e B (77\/ 5k e

- jaE 5= £

= SEsssie=—vs -

LR S0 : i

< e/J Torsional buckling

| ;'1 ! '\ “ ; s { o

,/ 135 S EI,n2/4f2 —P 0 0

1 | ] L S————

P B
A A= 0 EI.n*/4¢> —-P Pz “ .
b ~—— | = [9
"‘\ =¥ferv
i ;‘j\: % 0 P Zg Elwﬂ2/4£2 e GIt -P. 7'2 d)o :
/"1 =7'2;)cr,¢

2 W . . -
" Singly-symmetric cross-section



Torsional-flexural buckling

Computational linear buckling analysis

 CLAMPED

G

-mode of the flange

Notice the bending

NE departurefrom\~ {
the straightinitial i
shape shown by
white dot-line

Computational linear buckling analysis (3D). Flexural-
torsional buckling of axially loaded column at centroid. The cross-section is
simply symmetric thin-walled T cross section. The thrust load P is centric
and applied at the centre of mass C. The obtained P.. = 75 kN.

Let’s illustrate the Eigen-value problem (Eq. 1.548) above with an application
and solve for the critical load (Figure 1.119). Here are the geometry-data: length
of the column is £ = 10a, G = 0.4F, t = a/15. The centre of gravity (of area) of
the cross-section is C'. The thrust load P is centric and applied at centroid C of

the cross-section.

(3D).



Appendix

In a bit disorder now ... will be updated

 geometric properties of some open cross-sections
(center of shear and warping moment of inertia)

 and many other things ...



Energy criteria for determination of in-

N.B. The perturbed configuration [.]* can be thought

st abi]ity of elastic structures achieved keeping the load constant and for instance, Torsional
| giving a tiny kinematical (virtual) perturbation to a an buckling
Change of adjacent equilibrium configuzasion v*
total
pOtent e al . Primary pre- [ . Stion
. /
ener g y KRR Llateral torsional
. buckling
between which b
yet
two states? m |
""" 1 1A =1II*-11°
-
o 1
g Buckling just All = H(uo * 6“’) - H(uo) = 6H|"0 +§62H|uo +...
9 5- started \:f)_’
- a 1] 7 SRR e e P PR TRy General
§ Lateral-torsional i 6(All) =0 =4 (56 My + - > =0 1_ stability loss
® buckling occurs ~=77T 7T I T T T T T T " criterion
Keeping up to
— __, quadratic terms Trefftz
5Pwt-bulckling“Iysisl‘.aleral'rlunlwn!bmilinu‘xwwlcu-vfh:d [Bulwdi.m{l ——4 6(5211) — 0 L= Stabi/ity IOSS
Z£ — criterion
o Ny buckling U
i - == behavior
L ‘ . This criticality condition for
) P bifurcation provides the
T Taen T T TaSoen - Buckling Equations

Figure 3.122: Equilibrium paths. FE-post-buckling analysis of an
minium I-heam cantilever. The transversal tip-load is at the centroid.

alu-



Shear center and torsion moment of inertia

Poikkileikkaus Poikkileikkaussuureita
Poikkileikkaus Poikkileikkaussuureita 6. Hattuprofiili o - b* +2bb, e —b 3h°b+6h’b, —8b; The Shear‘ center (SC or
c h+2b+zb’ Y I +6h°b+6h°D, +8b] +12hB] . .
b 5 V) is the instantaneous
. ¢ I =2 1= I, == +2h- (——e ) +the’ +2th (b—e_) .
“Tn. Y2 12 6 center of rotation for a
- T 1 th* b} b, h., .
5l &5 1, =5t} +ht) =T+ 2rb(— 27+ 26() section under pure
i =%(h+2b+2b1) torsion or when the
1 th .
T 2ih+ib L resultant of loading
¥ 6
PR e i does not pass through
it Y A this center
I =%(brj. +he) I =%{zx3b+z3m
2 2 : 3
e oL th 1 Lb 8 I-Pmﬁﬂlb e, Ll I2+tbh | th * V =shear center =SC
T2t h+t, b’ 2t h+tb ]_Ll th+th +tb, th +t.b; (vééntc’jkeskib)
tb t W T I _th b
l,="g tthee I =25 +1bec hLﬁ‘[‘, | lﬁf 2 G = center of gravity
b € B e\.r — ru _IPy2 _ 2 2
I =—tbe,c(C —e)- 1}1{— ec)ecs I, == {br +ht) * _itf_ I =g e =) b ey +thec
y 2 1
3 3 b, I ==(h, +£b, +t3h)
T 8. Z- roﬁ;h b 32 % bk
f;er h+6b . ) P by, 1=t ;;:’!1—2#T
t th’ 2 3N i '
I, =—+2bt- (——e) +the. A =5 +2513) C’vz W |
= 2
L =§(h+25) y ] =§(2b+h)
e — b2+2bb] e — 3";'zb"'‘E”’I*Z‘E;'n_8"-"13 8. Ympyrikaariprofili _sina 2 sing — @ cosex
€ h+2b+2b° Y B +6h’b+6h’b, +8b7 —12hb’ LA g e T sa
3 =7
I %+2zb (2 _e ) +the? +2tb (b—e.) o \ | I, =td(@+sinacosa—2"7-7%)
3 3 - I =ta’ (¢ —sinacosa)
1;&2 Ii +2th (___1) +2rb( ) ‘__)*QVL': ; 2.
=—taa
y t
Il =—(h+2b+2b .
’ 3( ) Ref: Emir prof. J. Aalto lectures




Shear center and
warping moment of
Inertia

n " . n
Shape of cross section Location J=Y U I ” Shape of cross section Location J=Y Ji
of shear centre, S i=l of shear centre, § i=1
Axis of symme _ — B3 _ A
is of s try yo = —e J=h+h YHr=% ¥ Y y=2=0 J=2/h+ /)
i 0
20=0 Jy = 3br = %bl?
h= ibl3

J=h+h :';%(b?+b%)

Yo = —e€

0= —€ Ji= %b]l3

Jz = §b213
Yo = —e J=h+ )

20=0 Jy = §an,

h= ibl?

- Y

Axis of symmetry m=¢(l+‘zﬂ—:) J=2h+1

20=0 Jy = §bi}

4 b= ad

e
—o—]

%1

Jp = }dt},

g
_I gzz'fr‘_’ Iy

d?
Tl

Ih—eyly a

Th J=h+h+h

N = %bn?l
_1p 3

J2 = shatp

Jy = §dt}

L

2 I, and I, are the moments of inertia of the top and the bottom flanges, respectively, with

respect to the Y-axis

b J, is the moment of inertia of the c1oss-section with respect to the centerline a-a of the

web




Torsional stresses

Shear stresses from pure torsion

(a) Positive Angle of Rotation

Warping shear
stresses

Tot

Tald Two.

(c) Shear Stress Due to Warping

» Location of Shear Center
u=Gto'

(b) Shear Stress Due o Pure Torsion

Warping normal
stresses

Two
Un@
C

C compression
T tension

Cwo
°“"<?”jy
T —

Cug= EW.-.G"
(d) Normal Stress Due to Warping




Torsional stresses

Pure torsion

Puhdas vaanto
TtFange Eo

-1

Tt Web =11

W d/2

« Location of Shear Center
n=Gteo

(a) Positive Angle of Rotation (b) Shear Stress Due to Pure Torsion

warping torsion
Estetty vaanto
wl

et K

oo |

Pure torsion
Puhdas vaanto

d/2

d/2|
+ Location of Shear Center
(a) Positive Angle of Rotation {b) Shear Stress Due to Pure Torsion
T et warping torsion

T Tw2
Twu/__.-E

Eﬂ!:"_ T2
Y

e
i

i
i

l ‘102
Two
to2

Estetty vaanto

Tot Cus= EW,-;.G"

{c) Shear Stress Due to Warping (d) Normal Stress Due to Warping



warping

warping —

Deplanation = out-of-plane

motion (means the plane of the
cross-section)




Open thin-walled cross-sections

The Sectorial Coordinate

Sectorial coordinate
with respect to A

df.?JA E— ihg(&)d.ﬁ‘ /
d(a:.)‘*A = ('FP — 'FA) x dg

dwa = —(z — za)dy + (y — ya)dz



Open thin-walled cross-sections The Sectorial Coordinate (w Definition
Example: determine the

sectorial coordinate, the shear [ has)
center and Iw i

arbitrary pole
o
¢B

Sectorial coordinate
with respectto A

d(zlA — :thA(S)dS /
fe—— o] dds = (Fp — 7a) x d5

The sectorial coordinate wg(s).

Let’s use the arbitrary point B as a pole (You will find that, it is
computationally wiser to chose a corner point the cross-section as an initial pole)

a = fp disy = i/:} ha(s)ds = /P[(z —za)dy — (y — ya)dz]

dws = —(2 — za)dy + (y — ya)dz

P, P,
The sectorial coordinate with respect to B as determined from the definition is To be useable, It
A b should be
A §ds =55 kun 0<s<b 0<s<3b normalised such
s b < —> that its static
wp(s) = < wr(b) +/ §d8 =55 kun b <s<2b moment vanishes
- 3 3p (read the lecture
wp(2b) — Lb Ed.s — 4p% — 5 5 kun 2b<s<3b notes)
\




The sectorial coordinate graph

Definition

Sectorial coordinate
with respectto A

d(:)A - :thA(S)dS /

dd = (Fp — 7a) X d5

a
N

The sectorial coordinate wg(s).
Let’s shift or re-allocate the pole B to an other point A.

O
How the coordinate- () is then transformed?

dws = —(z — za)dy + (y — ya)dz

P
WA = — AO [(z2 — za)dy — (y — ya)dz]

P
_—/1; [(Z—ZB+ZB—ZA)dy_(y_yB+yB_yA)dz]

o

P P
=~ [ 1= =)y — (= e)dz) — [ [Gsm — 2a)dy — (om — ya)d
P,

P,
= d\-’B — (ZB - ZA)(y — yo) -+ (yB — yA)(Z - zo)

b o

B — 2C =

YB —YCc = — o



The sectorial coordinate graph

Sectorial coordinate @c.

Y
b

=]

Let’s re-allocate the pole to the corner po

How the coordinate- () is then transformed?

P
o = — [3 [tz = =)y — (v~ ya)a]

P A 4
:—j;) [(z — 2B + 2B — za)dy — (y — yB + yB — Ya)dZ]

P P
== [ 1= )y (= ym)dz] = [ [(em — 2a)dy — (5 — ya)d)
P, P,

= W — (2B —2A)(Y — ¥Yo) + (yB — YA )(2 — 20)

int C of the U-profile.

: i [
b A ;
b PE'E o ({)A(‘S)
¢ & 4 e
h grid ©.
¥y the
pi.q
_ I\'L’BZ
, YA = YB +
Coordina I,
tes of SC: Iny
ZAN — ZB — T -

The pdf-material by emeritus prof. J. Paavola
provides detailed illustrative examples.

b b

(1 =

—
_,[;.‘I LN |

wl

—
_[':J L)

-85 — — ——)s = <s<

55 20+( 2)3 0, kun 0<s<b
gs—g(s—b)—{—(—g)b:& kun b<s<2b
k4:32—%3—gf;»+(—g)(3b—s):252—55,, kun 26 < s < 3b



YA = YB + 1,
Lony
A = ZPp —
A B ia

Normalization of the sectorial coordinate

Swa = / wadA =0
A

P P P,
wa(s) = / dwa = / dwa —/ dwa = wa(s) — wa(so)
P P P

!
L]

!
o o

~ SMA
wa(8) = wal(s) — 1



Example from the past: sectorial coordinate distribution and ...

e b
My own exercise-notes from the past... at TKK I J_
€

b ” 2 vaant8keskis A Squtse.e(ainq)
Symmetnapisteessd ((+ai Symm etriaoles.)

, ' bl ' Poikk, lekkavksen on. sdtoriaaliset suureej_: s
. |

St \_,_‘_0
Qi1'g"‘1co




Homework: a) analytically, b) Rayleigh-Ritz, c) FEA — buckling analysis and
post-buckling analysis

foaae, Congression
¢ -
i, fange
l:.J
‘!:- ."ujd:;'.
I ] Bt s Tension flange
w,

Figure 2.8 Lateral torsional buckling due to bending



Example of table giving shear center and the warping inertia moment /

Shear
Center

‘1 o et —T J _ 2bt!' + Mus If tf = ta- = {:
! w '3 : _
Of— A trh2b3 i t
t h/2 L, - __ e = —
| J ComTr Il,,tJ J =3 (2 +h
A
L — g bt If by = ty = t:
T Ft T b1 + by?
f Ol 3 w? 8 '
D S A i ol ) e L J = (b + bs + h)
¢ e | ' 3 , 3
{ C. = teh?  bi3bst?. ‘
Ly, Y12 bt 4 bed
- 3b% Ift) =te = t:
— b - / ! w
_.1 ¢ ﬁbtf + Mu e == 3b=
OJ'"i i —I. 7 o 2 ;— hte? gb +h
Wy .l. C. i,b%h 3bty + 2hts J = 3 @ + 8
* T 712 6bty + hte tb3h? 3b + 2h
e 1 ! Co =

12 6b +h

Now to stay
realistic (6 weeks
stability course)
we will use tables
for theses cross-
section constants

Torsion topic is a
wide subject.
Torsion of beams
with thin-walled
Open-cross
sections
deserves, at least,
a full three-weeks
course by itself



Linear stability analysis

|
Model Builder
- = t | v ETEI Sf~
4 @ \ateral_buckling_|_thin_beam.mph (root)
4 @ Global Definitions
P, Parameters
132 Materials
4 W Component 1 (comp1)
b = Definitions

4 A\ |-thin beam - Lateral buckling
(1] THIN-BEAM upper part (btk71)
(1] THIN-BEAM Lower part (btk2)

Computational stability
analysis:
‘ 1. Solve initial stress state in

Computational stability analysis
Lateral torsional beam buckling with
thin cross-section

|

Plane Geol
. )5 v — the pre-buckled state for Steel: .
Form Union (fin) unit loading E =200 GPa

4 2 Solid Mechanics (solid)
W Linear Elastic Material : steel
%8 Free 1: traction free faces
W Initial Values (uv,w)=0andd/dt(u,v,w)=0
@ Prescribed Displacement : (u, v, w) = 0 damped
® Edge Load at x = L, tip unit load for pre-puckled state
T S CUgT TTUU A U U TS TOT TS PRSRISS OWTe T
A Mesh 1

_ . b= 5.83 mm
Solve the linearized h= 50 mm

homogeneous equationsof | | _ 3,cc

stability: Critical load and
buckling mode _' Critical load factor=7114.8

' .l.

4 ~d> Study 1

'~. Step 1: Stationary (solves stresses of pre-buckled state)

4 ™. Solver Configurations
b [d Solution 1 (sol7)

—

Example using COMSOL

[_IS_ Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) so E

17, Step 1: Stationary (solves stresses of pre-buckled state)
LIS, Step 2: Linear Budding (solves: Linarised Homogeneous Equations of Stability)
4 ™, Solver Configurations

b _Fed Solution 1 (sol7)




0.33

V=

70 GPa,

E=

Material Aluminum

5Nand 90.2 N

63

/V

model (3-D)

Analyt

Experiment

(Southwell-plot)

FE

64.6 N and 93.3 N

ical (beam model)

59.8 Nand 89.1 N

1-D Model

Experiments

8 m
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GI,

i v A v v

Experimental Validation

of the FE-model

AT e N

93,292

- Critical load factor

-64.651

Critical load factor

Ref: Experiments by R. Kouhia & P. Hassinen (TKK)




“Wizibility mode
Internal Forces -y [kMm]
Co1 Lot +LC2

tlax M-y: 452 65, Min M-y: 0.00 kMm
a x

87 Mode Shape View

LC1 | Eigengewicht
LC2 | Nutzlast

[ Material Properties - Steel 5 235] DIN EN 1993-1-1:2010-12 "
Cross-Section Properties - IPE 550 | DIN 1025-5:1954

Design Intemal Forces

[ Cross-Section Classification - Class 1

1 Design Ratio
" Max. Cross-Section Check [Mutpmae | 0693] I [Ea. 62)
" Amplifier [atui | 1 I (6340
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Post-buckling analysis using RFEM

General | Calculation Parameters

Method of Analysis

() Geometrically linear analysis

() second-order analysis (P-Delta / P-delta)
() Large deformation analysis

(@ Postcritical analysis

Method for Solving System of
Nonlinear algebraic equations:

Hewton-Raphson

Newton-Raphson combined with Picard

Picard

Mewton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

Dynamic relaxation

Edit Load Cases and Combinations

Load Cases | Load Combinations = Result Combinations

Existing Load Cases

I LC4 P-1
El LC5 P-1500+imp
IEFl LCG P-1+imp

500000

(@) Postcritical analysis

RFEM

LC No. Load Case Description

by DI Bahram S. using RFEM.

| P-500+imp

X

General Calculation Parameters

Method of Analysis

() Geometrically linear analysis

() second-order analysis (P-Delta / P-delta)
() Large deformation analysis

(@) Postcritical analysis

Options
[ ] Modify loading by factor:

[ | pivide results by loading factor

Activate stiffness factors of:
[ ] materials (partial factor yM)

Method for Solving System of
Nonlinear algebraic equations:

() Newton-Raphson

() Newton-Raphson combined with Picard

I Picard
() Newton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

() Dynamic relaxation

Cross-sections (factor for J, Iy, Iz, A, Ay, Az)
Members (Definition Type)

Surfaces (Definition Type)

Activate special settings in tab:

[ ]Modify stiffness

[ ] Extra options

[ | peactivate

Consider favorable effects due to tension of members

Incrementally Increasing Loading

[ ]Activate
Initial lnad factor ki : I:l [-1
Load factor increment Ak I:l [-]

Refinerment of the last lnad
incre et 15

Stopping condition for:

[ ] use initial load (not increasing):

Refer internal forces to deformed
structure for:

Mormal forces N
Shear forces YWy and Yz
Maments My, Mz and M1

Try to calculate kinematic mechanism
lculate ki ha
(add low stiffness in first iteration)

[ ]Apply separate number of load increments
for this load case: I:l

Save the results of all load increments

[ ] beactivate nonlinearities for this load case
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Post-buckling analysis using RFEM by DI Bahram S. using RFEM.

P— General Calculation Parameters
Global Calculation Parameters Calculation Diagrams

tszzNSdseol(\)J:.rq%) / Incr. @ Postcritical analysis cb N"; ‘Dziﬂgfﬂm Description 2:;"0‘3 DIA"T;?T"S X
. eometrically linear analysis
182A Incr. / Loading = () Second-order analysis (P-Delta / P-delta)
e @ Load case: (O Large deformation analysis
79+ B LC3 - P-500+imp (@) Postcritical analysis
72t
65T Load combination: | Method for Solving System of
:? Monlinear algebraic equations:
g‘; * Vertical Axis Newton-Raphson
304 » Result type: Mewton-Raphson combined with Picard
23+ — . ' IR . Picard
167 ' _ > Newton-Raphson with constant stiffness matrix
g ! ! ! ! J ! ! : UYlmm] | (@ Modified Newton-Raphson
6.8 135 20.3 27.0 338 405 473 54.0 60.8 Dynamic relaxation

| Values

Incr. lteration |Load Factor uy ~
MNo. MNo. [ [mm]
1 3 0.010 0.0
Result type: Value: 5 3 0.020 00
Nodes - Deformation Y ' 3 3 0.030 0.0
4 3 0.040 0.0
Location 5 3 0.050 0.0
Node Mo. 6 3 0.060 0.0
7 3 0.070 0.0
13 v 8 3 0.080 00
9 3 0.090 0.0
10 3 0.100 0.0
11 3 0.110 0.0
12 3 0120 0.0 w
Comment
| > 2Q 5
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Lateral-torsional buckling

Application example: can you comment on lateral stability of the
nodes of the stiffening truss

Two design solutions for the stiffened-beam (jaykistetty palkki)
* Which one is better?

. ASSum
Which one need lateral supports for the nodes €

SpheriCa/ € hlnge

| ix j T T

Stable nodes Unstable nodes

Kirste criterion: Tells when the node need lateral support against stability loss

We can also use the general stability criterion Trefftz or the sign of the variation
of the change in total potential energy

Effect of location
of the load
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Sign positive then stable of




Lateral-torsional buckling

Application example: can you comment on lateral stability of the

nodes of the stiffening truss

Two design solutions for the stiffened-beam
(jaykistetty palkki)
Which one is better?

Which one need lateral supports for the nodes

Kirste criterion:

We assume that the nodes of the truss have spherical hinges. Let us give a virtual
displacement v to one of the nodes, denoted by C (Fig. 9-10). Supposing that all
neighbouring nodes are rigidly supported against lateral displacement, the restoring
force V acting on the node C is given by the expression

N
V =v —,
I i
The original position of the node is stable if 2 % has a positive sign, since in this case
V becomes a restoring force. If this sum is c:.fual to zero, then the position of the node

is indifferent, and if the sum has a negative sign, then the node is unstable since V
pushes it further in the direction of the displacement.

| ix j I e

Stable nodes

Kirste criterion:

Unstable nodes

Elevation

[y C g

Ground plan

Kirste criterion: Tells when the node need lateral support against stability loss

We can also use the general stability criterion Trefftz



