
Lecturer  
Djebar  Baroudi, Dr.
Civil Engineering Department
Aalto University                   version 31.3.2021

• Lateral-torsional buckling
kiepahdus

• Pure torsional buckling
vääntönurjahdus

• Combined flexural-torsional buckling -
avaruusnurjahdus tai yhdistetty vääntö- ja 

taivutusnurjahdus

Weeks #3-4 – Lectures series

NB. This topic is the most difficult one of the 
course  because, it needs preliminary 
knowledge about Vlassov torsion of beams 
having open cross-section (warping torsion). 
Unfortunately, this knowledge is missing from 
the curriculm. 

About mechanics of warping, readings (not compulsory)
1_Warrping_Torsion_RM2b_Stability_Course_2017_JP.pdf (I put this in MyCourses)

Readings from course' texbook:
Chapter 6. Torsional and Flexural-

Torsional Buckling 

Chapter 7. Lateral-Torsional 
Buckling 
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• Lateral-torsional buckling 
(kiepahdus)

• Pure torsional buckling 
(vääntönurjahdus)

• Combined flexural-
torsional buckling 
(avaruusnurjahdus tai yhdistetty 

vääntö- ja taivutusnurjahdus)

P



P

Kiepahdus

Pure torsional 
buckling
Vääntönurjahdus

Tables

Initial bending 
moment

after eliminating w''



Must classicsThis course textbook
e-book

Chapter 6. Torsional and Flexural-
Torsional Buckling 

Chapter 7. Lateral-Torsional 
Buckling 

Readings
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Topics of the lectures and homework

2nd week

* Beams having thin-walled open cross-sections can 
have torsional modes of stability loss due to their 
relatively low torsional rigidity. 
* In addition, one principle bending rigidity, usually, the 
loading plane, can be very much larger than the minor 
one.

shear 
center

Kiepahdus

Vääntönurjahdus

… and for narrow cross-sections, too
(lateral-torsional, here)



Lets start the story  from the beginning

Warping

buckling load 
and mode

Pure torsionbending

The linear equations of loss of stability
Eigen-value problem (BVP)

It is the solution of these equations 
which  provides the buckling load 
and the corresponding mode

The idea of this 
challenging 
lecture in one 
single slide

1.     Use energy principle, 

derive the eigenvalue 
equations of loss of 
stability for lateral 
torsional and combined 
flexural-torsional 
buckling

Initial stresses from pre-buckled configuration Non-linear strains (quadratic part) 

from slightly buckled configuration

slightly buckled configuration

pre-buckled configuration

(membrane state)

2.     Use energy principle 

and derive approximate 
solutions for the 
corresponding critical 
loads (we will use 
systematicaly this 
approach).

Warping effects pure torsion

after eliminating w''





Some videos on stability of structures 

(24.02.2010)

Cross-section 
motion: compined 
bending and torsion

https://www.youtube.com/watch?feature=youtu.be&v=cYRicTk-Q08&app=desktop

1:  Lateral torsional buckling of I-beam      
(kiepahdus)
Comment: Good experiment with load-displacement curves
The student can clearly see the transition from bending in the 
vertical plane to bending in the horizontal plane and torsion

2:  Pure Torsional buckling of L-
shape cross-section (angle) column     
(Puhdas vääntönurjahdus)
Comment: Good experiment with a funny 
professor. 
Note that, the apparent  (torsional) rigidity gets 
dramatically reduced close to the buckling 
load

no load 
yet

buckled

loaded

(
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0
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Hohohoh, it buckles

buckled

(
2
4
.
0
2
.
2
0
1
0
)

https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop


Some videos on stability of structures 
https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

Lateral torsional buckling of 
I-beam
(kiepahdus)

(24.02.2010)

1. Starts loading
Elastic linear response

2. Bucklig occurred  
Continue loading
Geometrically non-linear

3. unloading
Elastic linear response

Experimental load-
displacement curves
= equilibrium pathsw - Measured horizontal displ. (mm)

v - Measured vertical displ. (mm)

Buckling  load Limit  load
(limit point)

Cross-section 
motion: compined 
bending and torsion

https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop


cross-sections

Beams with thin-walled open cross-sections 
can have torsional modes of stability loss due 
to their relatively low torsional rigidity 

Combined flexural and torsional buckling
Yhdistetty taivutus- ja vääntönurjahdus, eli 
avaruusnurjahdusLateral torsional buckling

Kiepahdus

Unbraced 

compression 

flange

Flexible deck

Initial 
equilibrium 
configuration

a)

b)

Loss of 
stability 

The phenomenon

Thin-walled open cross-sections examples

Axial loading
Transversal 
loading



(Pure) Torsional
buckling
Vääntönurjahdus

The phenomenon of buckling 
with torsion

Lateral torsional buckling
Kiepahdus

In both cases the cross-section have a torsional motion

(Pure) torsional 
buckling

Beams having thin-walled open cross-sections can have 
torsional modes of stability loss due to their relatively 
low torsional rigidity .

Axial loading
Transversal loading



The phenomenon

Vääntökeskiö = shear center

Loading plan

shear center? warping?

Lateral motion 

Qo
y

sinf .Qo
y



The phenomenon - a bit mechanics

Lateral 
motion due to 
vertical 
loading

Lateral motion 

Question: why the cross-sections rotates when only bending stresses are loading it?
Answer: to understant the mechanismus, one have to move up to a thin-plate model of the walls of the 
beam. The local-type buckling of te thin plate (lommahdus), when interpreted by the beam-model  is seen 
as rotations of its cross-sections. Refer to the discrete network model in the main figure of this slide.



Pure torsional buckling

The phenomenon
Axial loading

Axial vertical loading

Axial loading

Puhdas vääntönurjahdus

Question: why the cross-sections
rotates when only axial in-plane stresses are loading it?

Answer: to understant the mechanismus, one have to move up to a thin-plate model of the walls of the 
beam. The local-type buckling of te thin plate (lommahdus), when interpreted by the beam-model  is seen as 
rotations of its cross-sections. Refer to the discrete network model in the main figure of this slide.

Valssov torsion of beams 
having  open thin-walled 
cross-sections are such 
models first developped by 
Vlassov to model such 
complex phenomena as 
thin-walled beams adding a 
kinematics known as 
warping (käyristyminen). 
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b

b

Thickness t  = const. 

Simply supported X-shaped column

Central axial compression at the center of 

gravity of the cross-section

a) b)
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1. When transverse force applied at shear center it 

does not lead to torsion

2. The shear center (SC) is the center of rotation 

for a  thin-walled  section of beam subjected to 

pure torsion

3. The shear center is a location of shear flows 

resultant force when the thin-walled beam is 

subjected to pure shear

What is warping? What is the shear center?

Only bending in transversal 
plane

Combined and torsion
Combined and torsion

(G) center of gravity 

[= area center  (C)]

(SC) center of shear

[center of rotation]

Clamped boundary

F at  G

SC
G

F at  SC

SC
G

F

SC

G

For the purpose of this 

course: use tables to 

find SC and Iw

The student should refer to the additional reading 

material and textbook for details on warping



Local distortional buckling 
modes   for beams (or beam-

shells) with a very thin-walled 
cross-section are possible   →
the cross-section geometry is 
distorted 

For such very-thin walled 
beams  it becomes impossible 
and not practical to put 
stiffeners to keep the cross-
section undistorted

Distortional modes in some 
thin-walled cross sections

The cross-section shape is assumed 
not distorting in Vlassov’s theory

NB. In addition to the modes 

shown in previous slide, 

for that, one needs shell-models



Lateral torsional buckling equation:
Kiepahdus

In lateral-torsional and 
torsional buckling
we should include 

warping to obtain 

the correct strain 
energy change due to 
this mode of 
deformation

…

In order to derive the 
correct stability (loss) 
equation

Warping effects Pure torsion

tThin-walled open 

cross-section

Mechanics of thin-

walled beams with 

open cross-sections
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What is the Shear Center?

SC C

w

v

Horizontal 
translation

Vertical 
deflection

Rigid body rotation 
around the shear 
center

Shear Center

Leikkauskeskiö
Vääntökeskiö

Let’s repeat this experiment in class

What is this high-tech  
device?



Shear Center

Leikkauskeskiö
Vääntökeskiö

Center of 
mass
Painopiste

Bending only Bending  &  rotation

Let’s repeat this experiment 
in class



What is warping? What is the shear center?



What is warping?
Poikkileikkauksen käyristyminen

warping

Warping is a displacement called 
deplanation which is an axial 
motion of points on a cross-
section occurring 
perpendicularly to this cross-
section and resulting from pure 
torsion

p
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Axial normal stresses 
result from restraining 
the warping Relative motion

p
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Relative motion



Warping kinematics

Warping = deplanation

Warping = deplanation =
out-of-plane axial displacement due to torsion





Main geometric assumption: 
The cross-section shape does not change (no 
distortion, ei vääristy)

So stiffeners should be added to 
keep the cross-section not distorted

Such assumption is quite impossible to achieve 
with very thin-walled cross sections. This is one 
reason why, in practice computational tools are 
needed - usually, shell models are needed.

You can go directly to slide #35: 

Lateral torsional buckling - Deriving the linear 

equations of loss of stability



Vlassov’s theory of warping  -

Warping kinematics:

axial displacement

due to warping
= deplanation

Warping = deplanation =
out-of-plane axial displacement due to torsion

beam theory warping axial 
displaceemt

out-of-plane kinematics



In-plane kinematics



Note that local distortional buckling 
modes,  for beams having very thin-
walled cross-section (shell-beams),  
cannot be accounted with the Vlassov 
theory, since the cross-section geometry 
is distorted 

Technically speaking, it is impossible 
anon-sense to try to put stiffeners to 
retain the cross-section shape as 
assumed in Vlassov’s theory)

For a reliable analyses one should use 
computational technology   and/or 
experimental approach

However, the computer compute and the 
engineer analyses. For that, the engineer needs 
courses of mechanics, in general, even with 
equations

Validity of the Vlassov’s 
theory    (or model)

The cross-section shape is assumed 
not distorting in Vlassov’s theory



Validity of the Vlassov’s theory    (or model)
Warping kinematics:

Distortion of the 
cross-section

Local 
distortional 
modes 
Thin-shell 3D – FE-model

axial displacement

due to warping
= deplanation



Thin-walled structures are 
important for engineers

They deserve their own scientific journal

An example of a publication



The sectorial coordinate 



Dear student: do not worry, if all this 
'staff'' is difficult for you. It is trully 
difficult and this special topic by 
itself , without stability aspects, 
needs at least two-three weeks of 
lectures and guided exercises to be 
digested. That is why, this is will not 
asked in the exam.  We will use the 
results of this theory to study the 
related stability topics  to torsional 
and lateral-torsional loss of stability.



(Russian: called bending center)

Most important slide about Vlassov torsion

Warping axial stress:

Warping shear stress:



Torsional stresses

Shear stresses from pure torsion

Warping shear 
stresses

Warping normal 
stresses

The phenomenon



Example of table  giving shear center and the warping inertia moment

Shear 
Center 

• Now to stay 
realistic (6 weeks 
of this stability 
course) we will use 
tables for theses  
cross-section 
constants

• Torsion topic is a 
wide subject. 
Torsion of  beams 
with thin-walled 
open-cross 
sections deserves, 
at least, a full 
three-weeks 
course by itself



Main geometric assumption of the 
Vlassov’s theory: 

The cross-section shape does not change 
(no distortion, ei vääristy)

So stiffeners should be added to keep 
the cross-section not distorted

Such assumption is quite impossible to 
achieve with very thin-walled cross 
sections          

This is one reason why, in practice 
computational tools are needed to 
perform reliable stability analysis and 
GNA for very thin-walled shell-beams …



Deriving the linear equations of loss of stability – The    IDEA

Initial primary 
equilibrium

Perturbed 
(adjacent) 
equilibrium

Initial 
primary 
equilibrium

Perturbed
equilibrium

The linear equations of loss of stability
Eigen-value problem (BVP)

The seed:

It is the solution of these equations 
which  provides the buckling load 
and the corresponding mode

Equation example

Initial stresses from pre-buckled configuration

Non-linear strains (quadratic 

part) from slightly buckled 

configuration



Pure torsion

Flexural 
buckling

Warping

Flexion in both directions

Beams having thin-walled open cross-sections

can have torsional modes of stability loss 
due to their relatively low torsional rigidity .

… and for narrow cross-sections, too

buckling load and 
corresponding mode

Initial stresses:

Initial stresses:

Initial stresses from pre-buckled configurationNon-linear strains (quadratic part) 

from slightly buckled configuration



Warping

buckling load 
and mode

Pure torsionbending

The linear equations of loss of stability
Eigen-value problem (BVP)

It is the solution of these equations 
which  provides the buckling load 
and the corresponding mode

In short …

Lets start the story  from the beginning …

We will derive BVP for 
lateral torsional and 
combined flexural-
torsional buckling

Initial stresses from pre-buckled configuration Non-linear strains (quadratic part) 

from slightly buckled configuration

slightly buckled 

configuration

pre-buckled configuration

(membrane state)



Rectangular narrow
cross-section

Pure torsion
Initial stress

Narrow cross-section

Assumptions
• negligible additional vertical deflection  v     at buckling
• accounts for the effect of shear stress 
• negligible or no warping at all

kiepahdus

complete model

What to do?
• derive the stability loss equations for lateral torsional buckling 

when the warping is negligible

START:

GOAL:
Stability equation

The following slides show the details of  how we obtain the stability loss equations: …



• In flexural buckling of columns the thrust (puristus) was axial 
and  normal to the cross-section of the beam-column

• Now we address stability of beam having a thin-walled open 
cross-section

• The loading is transversal to the axis of the beam

Rectangular narrow
cross-section

Pure torsion

Initial stresses

Narrow cross-section

Hypothesis (which holds)
• negligible additional vertical deflection  v at 

buckling
• accounts for the effect of shear stress 
• negligible or no warping at all

kiepahdus

Initial stresses

Work 
conjugates:

Work conjugates:



Rectangular narrow
cross-sectionPure torsion

Initial stresses

This is now a complete model

Bending Shear stresses from transversal load

Example: Transverse 
load P or distributed 
load q applied at the 
centroid

N.B. For pedagogical reasons and to lower the complexity of the procedure, I decided that in the
following derivation of equations of stability, we first start by omitting the effect of shear stresses
resulting from transversal load and account only for bending initial stresses. This way should be easier
fro the student to follow. Then we add the contribution of initial shear stresses (of the transversal
load) when shear effects to complete the total potential energy increment and find its effect to the
stability loss equations.



Initial stresses from pre-buckled 

configuration

Deriving the linear equations of loss of stability – The    IDEA

Initial 
primary 
equilibrium

Perturbed
equilibrium

The seed:

Non-linear strains (quadratic part) from slightly 

buckled configuration



Rectangular narrow
cross-sectionPure torsion

Initial stress:

How we obtain this term?

Example: Load P or 
distributed load q
applied at the centroid

G  or C

when shear effects omitted
(this model is not complete.
Shear force effects should be accounted 
for in lateral-torsional buckling, ref. 
lecturer  pdf-material)



?

Boundary conditions

Stability equation

Euler-Lagrange equations
(Field equations):

when shear effects omitted
(this model is not complete yet...)



Rectangular narrow
cross-sectionPure torsion

Initial stress:

How we got this term?
This is now a complete model

Example: Transverse load 
P or distributed load q
applied at the centroid



?

Boundary conditions

Stability equation

Euler-Lagrange equations
(Field equations):

How we got this term?
This is now a complete model

Work of shear initial 
stresses is now added



Deriving the stability loss equations …

Lateral 
deflection

rotation
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Rectangular 
narrow cross-
section

when initial shear stress effects is omitted, for
pedagogical simplicity. They will be added at the
end of the derivation
(this model is not complete... will be complete
on next slide

Should account for this part: (shear initial stresses)
to have a complete model



Deriving the stability loss equations …

Boundary conditions:

Lateral 
deflection

rotation

Th
e
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Stability equation:

Rectangular 
narrow cross-
section

when shear effects accounted
(this model is complete)

Should account for this
part: (shear initial stresses)

Only bending initial
stresses:

complete model

obtained from previous slide



Example: Lateral torstional buckling without warping

In the energy approach, instead of solving the difficult
differential equation system (with adequate boundary 

conditions), we use directly the stationarity of energy 
functional (total potential energy increment) 

After chosing approprite approximations for the buckling modes

Eigenvalue problem of loss of stability
these equatiosn will be derived later

Approximated eigenvalue 
problem

... to obtain directly the 
approximated eigenvalue problem

Energy methods to estiamte critical buckling load



Approximations:



output

1/2 * [

]

1/2 *

1/2 *





From where comes the Standard EN lateral torsional buckling stress formula?

It is the solution of the differential equation of 
Stability loss under uniform bending

This is given by the THEORY
This is in the Eng. PRACTICE

Let’s derive this formula



Notice the analogy
with Euler buckling of 
a simply supported 
column

Solution of the differential 
under uniform bending:

Puhdas taivutus

Note that now the shear force is identically zero 
since the bending moment is constant
so shear contribution can be simply ignored.

complete modelincomplete model, no shear



The buckling modes

Puhdas taivutus



Résumé:

Puhdas taivutus

EN Standard Formula:

For cross-section with non-negligible warping, the critical 
moment is [we will derive this formula later]



Discrete Eigen-
value problem



Rayleigh-quotient

Two illustrative examples 

to study the effect of the 
location of the load

using the

Also called Rayleigh–Ritz ratio

Here we start with no warping case



Stability criteria 

Rayleigh-quotient

A more general method

Equilibrium criteria 

Here no warping case



Fulfills kinematic boundary conditions:

Exact analytical solution

Approximation from 
R-quotient

ApproximationExact

NB. I computed this 
example with ignoring 
shear effect.
Student! Redo the 
exercise and account for 
shear.



Exam example - 2018



Two steps:

1. Solve initial stress state in the pre-buckled state for 
unit loading

2. Solve the linearized homogeneous equations of 
stability to obtain the critical load and buckling 
mode

Linear buckling Analysis
(you will have a computer exercise on this)

(you will have a computer exercise on this)

(you will have a computer exercise on this)

Linear buckling Analysis

Post-buckling Analysis
also known as
Non-linear buckling analysis
also GNA



N

FE-buckling analysis



Experimental Validation of the FE- buckling model Material Aluminum: E = 70 GPa, n = 0.33

• Experiment:           63.5 N and  90.2 N 
(Southwell-plot)

• FE-model  (3-D):     64.6 N and 93.3 N
• Analytical (beam model): 59.8 N and 89.1 N

a = 0

Ref: Experiments by R. Kouhia & P. Hassinen (TKK)

Experiments 1-D Model 

a = 0

P
N.B a < 0 means in this 
table  that the load is 
bellow the rotation centre

(Prandtl 1889 & Timoshenko 1910)



w

v

FE-post-buckling analysis



Stable 

Displacement scale in post-buckled 
configuration is   1:1

U
n

st
ab

le
 

Post-buckled 
configuration

FE-post-buckling analysis – bifurcation diagrams



Restrained warping

Strain energy 
from warping

Narrow rectangular cross-
section with no warping:

Note that in this case we have axial 
compression, so it is combined 
torsion and flexural buckling 
I use this illustration  just to 
demonstrate restrained warping

Thin-walled shells shear is 
negligible and often neglected

Narrow rectangular cross-section with no warping and end-point load  at a:



Showing variation of the new contributions only:Stability Equations 

This term goes to zero when we ignore the 
effect of initial shear stresses (often we can 
do so)

Thin-walled open-cross section 
(shells) shear is negligible

Previous case with 
no warping:

This case with warping:

Stability loss criteria:

new term

usually this terms is 
neglected



Kinematics of the cross-section for in-plane motion

Out-of-plane motion
(= deplanation = warping) 

should be added into the axial 
components of the motion

Kinematics = geometry of the motion



Consider such simply supported  beam 
with singly-symmetric constant cross-
section which is loaded at  both ends by a 
constant moment

These differential equations can be solved in many ways :

1. One way is to eliminate the rotation from the first 
equation and insert it in the second equation.  Then, one 
solves the last PDE in terms of the rotation            only.

2. However, the system of PDE with constant coefficients is 
quit straight-forward  to solve by taking trial solutions 

Boundary conditions:

Trials should fulfill the 
PDE and the BCs

+ shear neglected



Insert the pre-
stress bending 
moment

For distributed load acting along the center-
line, we obtain:

For cases where 
the load is along 
the center-line

Boundary conditions:

Constant transverse distributed load

This PDE is not easy to solve. 
Timoshenko solved it using 
infinite series.

Stability 
coefficient



For distributed constant load acting along the center-line

Some values for a doubly symmetric I-beam cross-
section for various locations  (upper flange, centroid
and lower flange) of the loading

Effect of load  
locations: 
upper flange
centroid

lower flange



Stability 
coefficient

Clamped cantilever
Analytical solution



The out-of-plane axial 
displacement is 
proportional to the 
sectorial coordinate



Clamped cantilever

Analytical solution:

The shear center and the 
centroid coincide

HW: Find the 
approximation of the 
buckling load using 
Rayleigh-Ritz  and 
compare it to analytical

Now a = 0



N.B. plate buckling starts
(ala-laipan lommahdus)

Buckling occurs 
somewhere  here  l = 1



FE- based Post –buckling analysis

Computer class HW
for next week #4

DO FE-based
• Buckling analysis
• Post-buckling 

analysis







Post-buckling analysis using RFEM



Perturbation
Horizontal tiny force

Post-buckling analysis using RFEM



• Lateral-torsional buckling:   beams 
loaded transversally with respect to 
center-line axis  [previous topic]

• Torsional buckling: axial thrust 
(compression) normal to the cross-
section [this topic]

For columns with thin-walled open 
cross-sections, the torsional rigidity  is 
dramatically smaller as compared to the 
same but closed section. 

When torsional rigidity is much small as 
compared to flexural rigidity in the 
principal directions loss of stability 
through torsional mode may occur. 

Thin-walled open cross-sections Pure torsional 
buckling mode

HW: determine the buckling 

load for this specific x-shaped 

column



Restrained warping

• This expression is general & accounts 
for combined torsional and flexural 
buckling

• the loading is axial centric thrust

Combined torsional and flexural 
buckling

Geometry of the 
motion of a 
material point on 
the cross-section

Pure torsional buckling will be treated as a special case where no flexion occurs



Restrained warping

• This expression is general & accounts 
for combined torsional and flexural 
buckling

• the loading is axial compression

Combined torsional and flexural 
buckling

Geometry of the 
motion of a 
material point on 
the cross-section

• In general, the loading 
is eccentic

NB
• - bending arround axrs z- and y 
• - torsion arround the axis of center of shear



Kinematics for combined torsional and 
flexural buckling

Centroid (C) translations

The kinematics

The increment of work due to initial stresses

Stability loss equations:

Stability criteria 

• this expression is more 
general & accounts for 
combined torsional 
and flexural buckling

• the loading is axial 
compression

Pure torsional buckling will be treated as a special case where no flexion occurs



Kinematics for combined torsional and 
flexural buckling

Centroid (C) translations

The kinematics*

The increment of work due to initial stresses
Stability loss equations

Stability criteria 

Solutions of these PDEs (Eigen-value problems) provides
the buckling load and the corresponding mode

Next, we consider symmetry cases of cross-sections                
simplifications             a) singly symmetric cross-section …. 

The kinematics* here we assume that distortional 
(=local plate buckling) does not occur first or we 
have enough plate stiffeners to avoid it.



Stability loss equations

Stability criteria 

General illustration
Eccentric loading in this figures

For centric loading, put all the eccentricities equal to zero … 
and … solve the problem 

Coordinates of the SC

Combined torsional and flexural buckling

Combined torsional and flexural buckling



Now centric loading 

Decoupled torsion and 
bending Buckling load  in pure torsional mode

Flexural buckling

Torsional buckling

Combined torsional and flexural buckling



The smallest
critical load is the 
buckling load

Flexural buckling

Buckling lengths depend on  the 
specific boundary conditions

Combined torsional and flexural buckling

General solution:

Pure torsional buckling

Determine the critical length for the mode transition



The smallest critical 
load is the buckling 
load

Flexural buckling

Combined torsional and flexural buckling

Pure torsional buckling

Determine the critical length for the mode transition



2D versus 1-D: Plate model versus beam-model for torsional buckling

buckling stress in pure torsional 
buckling for an angle cross-section

(good approximation of exact solution by Timoshenko)



Combined torsional and 
flexural buckling



Torsional-flexural buckling = Combined torsional and flexural buckling

From the modes



Combined torsional and flexural buckling

The smallest
critical load is the 
buckling load

(Full 3D FEM)

(this analytical: 1-D Vlassov beam theory)Think: why the 1D is stiffer than 3D FEM solution?





Torsional-flexural buckling



Appendix
In a bit disorder now … will be updated

• geometric properties of some open cross-sections 
(center of shear and warping moment of inertia)

• and many other things …



Torsional 
buckling

Trefftz
stability loss
criterion     

General 
stability loss
criterion 

Change of 

total 

potential 

energy 

between which 

two states?

?

N.B. The perturbed configuration [.]* can be thought 

achieved keeping the load constant and  for instance,  

giving a tiny kinematical  (virtual) perturbation to a an 

adjacent equilibrium configuration v* 



The shear center (SC or 
V) is the instantaneous  
center of rotation for a 
section under pure 
torsion or when the 
resultant of loading 
does not pass through 
this center

• V = shear center = SC 
(vääntökeskiö)
G = center of gravity

Ref: Emir prof. J. Aalto lectures

Shear center and torsion moment of inertia



Shear center and 
warping moment of 
inertia



Torsional stresses
Shear stresses from pure torsion

Warping shear 
stresses

Warping normal 
stresses



Torsional stresses
Pure torsion
Puhdas vääntö

Pure torsion
Puhdas vääntö

warping torsion
Estetty vääntö

warping torsion
Estetty vääntö



warping

warping

Deplanation = out-of-plane 
motion (means the plane of the 
cross-section)



The Sectorial Coordinate

Open thin-walled cross-sections

Sectorial coordinate 
with respect to A



Open thin-walled cross-sections Definition

Let’s use the arbitrary point B as a pole (You will find that, it is 
computationally wiser to chose a corner point the cross-section as an initial pole)

The Sectorial Coordinate
Example: determine the 
sectorial coordinate, the shear 
center and 

The sectorial coordinate with respect to B as determined from the definition is To be useable, It 
should be 
normalised such 
that its static 
moment vanishes
(read the lecture 
notes)

arbitrary pole 



The sectorial coordinate graph Definition

Let’s shift or re-allocate the pole B to an other point  A. 
How the coordinate- is then transformed?

A



The sectorial coordinate graph

Let’s re-allocate the pole to the corner  point  C of the U-profile. 
How the coordinate- is then transformed?

C

normalized sectorial 
coordinate

Coordina
tes of SC:

the

The pdf-material by emeritus prof. J. Paavola 
provides detailed illustrative examples.





Example from the past: sectorial coordinate distribution and …

My own exercise-notes from the past… at TKK



Homework: a) analytically, b) Rayleigh-Ritz,  c) FEA – buckling analysis and 
post-buckling analysis



Example of table  giving shear center and the warping inertia moment

Shear 
Center 

• Now to stay 
realistic (6 weeks 
stability course) 
we will use tables 
for theses  cross-
section constants

• Torsion topic is a 
wide subject. 
Torsion of  beams 
with thin-walled 
open-cross 
sections 
deserves, at least, 
a full three-weeks 
course by itself



N



Experimental Validation 
of the FE-model

Material Aluminum: E = 70 GPa, n = 0.33

• Experiment:           63.5 N and  90.2 N 
(Southwell-plot)

• FE-model  (3-D):     64.6 N and 93.3 N
• Analytical (beam model): 59.8 N and 89.1 N

a = 0

Ref: Experiments by R. Kouhia & P. Hassinen (TKK)

Experiments 1-D Model 

a = 0

P







Post-buckling analysis using RFEM



Perturbation
Horizontal tiny force

Post-buckling analysis using RFEM



Stable nodes Unstable nodes

Lateral-torsional buckling

Application example: can you comment on lateral stability of the 
nodes of the stiffening  truss

Two design solutions for the stiffened-beam (jäykistetty palkki)
• Which one is better? 
• Which one need lateral supports for the nodes

Kirste criterion: Tells when the node need lateral support against stability loss

We can also use the general stability criterion Trefftz or the sign of the variation 
of the change in total potential energy Sign positive then stable of 



Stable nodes Unstable nodes

Lateral-torsional buckling

Application example: can you comment on lateral stability of the 
nodes of the stiffening  truss

Two design solutions for the stiffened-beam 
(jäykistetty palkki)
• Which one is better? 
• Which one need lateral supports for the nodes

Kirste criterion:  

Kirste criterion: Tells when the node need lateral support against stability loss

Kirste criterion:  

We can also use the general stability criterion Trefftz


