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Plate buckling 

• Introductory example
➢ Cylindrical plate buckling

• Deriving the Equation of loss of stability
• Some classical cases

➢ simply supported rectangular plate 
under one-side compression

➢ simply supported rectangular plate 
under in-plane bending and 
compression
➢ Shear buckling of a rectangular 
plate

• FEA linear buckling example
• FEA post-buckling example



N.B. Plate buckling starts
(ala-laipan lommahdus)

Clamped cantilever

Plate buckling 
(ala-laipan lommahdus)

Plate buckling 
Waking-up ... for me too

N.B. Here, we did elastic post-
buckling analysis as it is the 
topic of this course. 
The next analysis step is to add 
possibility for yield of the material 
(GMNA) postuckling analys.



• Here, we do  Geometrically 
Non-linear Elastic post-
buckling Analysis (GNA) as it is 
the topic of this course

• The next analysis step to do in 
is to  add possibility for yield 
or other types of failure of the 
Material. Such postuckling 
analys is known as GMNA .

Recall about GNA and GMNA 
a
t
e
r
i
a
l



Waking-up Example from my research work

axial shortening

lateral deflection



Homework #5



Energy principles to estimate buckling load ... example coming soon....

before  solving that, let's start from the begining



Pure torsional buckling and plate buckling

The primary mechanism the rotational mode of the thin-walled beam open cross section is  be 
the result of plate buckling. 



Must read classicsThis course textbook
e-book

Chapter 8. Buckling  of Plate 
Elements

Chapter 9. Buckling of 
Thin Cylindrical 
Elements 

Reading 
assignment

This week 

Next week 



STA   TS

Shear buckling of thin plates
Levyn leikkauslommahdus

2021 - Rhône (lyon)
Photo: D. Baroudi



Plate buckling 

Many structures or structural elements have plate 
elements or substructures that  under certain loading 
conditions can buckle

Examples of common structures



Cylindrical plate buckling

Analogous to  Euler column 
with unit width a

Initially flat paper 
sheet buckles under 
in-plane pushing



Introductory example
Cylindrical plate buckling

Analogous to  Euler column 
with unit width a

You and I will derive these equation very easily
Assume them, for the moment given.



Cylindrical-type buckling of plate slab

By analogy with Euler-buckling:

This stability equation will be derived 

What is beautiful is that we now 
discovered this complex looking formula 
just by understanding the analogy with 
Euler column buckling.  Such analogy is 
not visible and remains hidden to  
‘lookers’  not having the needed 
background in structural mechanics

‘slenderness’



Buckling coefficient
Lommahduskerroin

Euler column buckling:Plate buckling:

The buckling coefficient K depends on 
• Loading
• boundary conditions and 
• the aspect ratio length to width (for 

(for rectangular plates)      

Effect of boundary 
conditions 

‘slenderness’



From where these equations came?

Post-buckled 
configuration

Pre-buckled 
configuration

Huom.! Here, this         is not the  Laplace 
operator, it is just a difference = increment

Can be loading 
also edge shear

( loss of )

intial (membrane = in-
plane) stresses 

and



Quadratic part of strain increment (at buckling)

Buckling of plate

At buckling, the derivatives of displacement components  of the 
primary equilibrium are small  (can be ignored)
Recall column buckling where u,x was ignored since it doesn’t change during 
buckling (in the neighborhood of critical point) 



Initial (membrane) stress 
resultants satisfy 
equilibrium equation in 
pre-buckled state 

Refer to you course: 
Plates and Shells



Initial (membrane) stress 
resultants satisfy 
equilibrium equation in 
pre-buckled state 

Refer to you course: 
Plates and Shells

Non-linear (quadratic) part of strain 
increment:

Linear part of strain increment:



Initial membrane stresses work 
with their conjugate NL-strain 

increments (they are work-
conjugate)



Gives the 
mechanical 
boundary 
conditions

Equations 
of loss of 
stability:

The membrane 
stresses have to 
equilibrium 
equations in the 
pre-buckled state



“I think that you should be more explicit here in step two.”



Energy principle to estimate buckling 
loads with examples

2-D versus 1-D: Plate model 
versus beam-model for 
torsional buckling

1.

2.

3.



Energy principles to estimate buckling load

loading plane



Energy principles to estimate buckling load

loading plane

Trial bucling modes



Energy principles to estimate buckling load





Less accurate ... but good



% Energy method to approximate buckling load

% for a stiffened thn plate with in-plane compressive Nox along one side

% the Poisson expansion is not restrained by the supports.

% ----------------------------------------------------

%    Author: Baroudi D. 2021

% ---------------------------------------------------

syms x y

syms delta_P delta_W

syms w w0

syms L b D EI nu

syms N0x

% ---------------------------------------

% Displacement approximation  (you can use better approximations)

% ----------------------------------

%% w(x, y, w0, L)    =  w0 / ((L^2) * (b^2)) * x * ( L - x) * y * (b - y)  % 

less good than the trigonometric

w(x, y, w0, L)    =  w0 *  sin(pi* x /L) * sin(pi* y /b) % best one

d1x_w(x, y, w0, L, b)  = simplify( diff(w, x) )

d2xy_w(x, y, w0, L, b) = simplify( diff(d1x_w, y) )

d2x_w(x, y, w0, L, b)  = simplify( diff(d1x_w, x) )

d1y_w(x, y, w0, L, b)  = simplify( diff(w, y) ) 

d2yx_w(x, y, w0, L, b) = simplify( diff(d1y_w, x) )

d2y_w(x, y, w0, L, b)  = simplify( diff(d1y_w, y) )  

% Strain energy (plate alone)

delta_U(L, b, D, w0) = 0.5* D * int( int(d2x_w * d2x_w, x, [0 L]) , y, [0 b]) + 

...

0.5* D * int( int(d2y_w * d2y_w, x, [0 L]) , y, [0 b]) + 

...

nu * D * int( int(d2x_w * d2y_w, x, [0 L]) , y, [0 b]) + 

...

(1 - nu)* D * int( int(d2xy_w * d2xy_w, x, [0 L]) , y, [0 b]) 

% Strain energy (stiffner beam alone)

d2x_w_beam = d2x_w(x, b/2, w0, L, b)

%% delta_U_beam(L, b, D, w0) = 0.5* EI * int( int(d2x_w_beam * d2x_w_beam, x, 

[0 L]) , y, [0 b])

delta_U_beam(L, b, D, w0) = 0.5* EI * int( d2x_w_beam * d2x_w_beam, x, [0 L]  )

% Work increment of initial stresses (applied N0x along the boundaries x=0

% and x=L

%--------------------------------

delta_W(L, b, w0, N0x) = 0.5 * int( int(N0x * d1x_w * d1x_w, x, [0 L]) , y, 

[0 b]   )

%% Note that here Nox is negative

% ------------------------------------

% Total increment of potential energy

% -----------------------------------

delta_Pi = delta_U(L, b, D, w0) + delta_W(L, b, w0, N0x) + delta_U_beam(L, b, 

D, w0)

delta_Pi = simplify( delta_Pi)

% Equations of neutral equilibrium

% ------------------------------------

delta_Pi_w   = simplify ( diff(delta_Pi, w0) )

% ----------------------------------------------

texti = 'Remember Nox is now negative : = - Nox_ref'



2-D versus 1-D: Plate model versus beam-model for torsional buckling

Task:  use sationary total  potential energy 

principle and estimate buckling load 



2-D versus 1-D: Plate model versus beam-model for torsional buckling  1(3)

Trial:
Task:  use sationary pot. energy principle and estimate buckling load 

Energy-approximation:

This is a good analytical approximation:

buckling stress in pure torsional 
buckling for an angle cross-section

Buckling stress for this plate



2-D versus 1-D: Plate model versus beam-model for torsional buckling  2(3)
Trial:Task:  use sationary pot. energy principle and estimate buckling load 

This is a good analytical approximation:

model
This a better result than with the 
quadratic approximation in y.



2-D versus 1-D: Plate model versus beam-model for torsional buckling  3(3)
Trial:Task:  use sationary pot. energy principle and estimate buckling load 

This is a good analytical approximation:

This a better result than 
with the quadratic 
approximation in y.
There is a reason.



Reation between plate bucklng and pure torsional buckling of thin plates

Why we obtained a very good approximation?





% Energy method to approximate buckling load

% for a stiffened thn plate with at y=b (free end) in-plane 

compressive Nox along one side

% the Poisson expansion is not restrained by the supports.

% ----------------------------------------------------

%    Author: Baroudi D. 2021

% ---------------------------------------------------

clear all

syms x y

syms delta_P delta_W

syms w w0

syms L b D EI nu

syms N0x

syms n m

% ---------------------------------------

% Displacement approximation  (you can use better 

approximations)

% ----------------------------------

%% w(x, y, w0, L)    =  w0 / ((L^2) * (b^2)) * x * ( L - x) * 

y * (b - y)  % less good than the trigonometric

%% w(x, y, w0, L)    =  w0 *  sin(pi* x /L) * sin(pi* y /b) % 

best one

w(x, y, w0, L)    =  w0 *  sin(pi* x /L) * (y*y) / (L*L) 

d1x_w(x, y, w0, L, b)  = simplify( diff(w, x) )

d2xy_w(x, y, w0, L, b) = simplify( diff(d1x_w, y) )

d2x_w(x, y, w0, L, b)  = simplify( diff(d1x_w, x) )

d1y_w(x, y, w0, L, b)  = simplify( diff(w, y) ) 

d2yx_w(x, y, w0, L, b) = simplify( diff(d1y_w, x) )

d2y_w(x, y, w0, L, b)  = simplify( diff(d1y_w, y) )  

% Strain energy (plate alone)

delta_U(L, b, D, w0) = 0.5* D * int( int(d2x_w * d2x_w, x, [0 

L]) , y, [0 b]) + ...

0.5* D * int( int(d2y_w * d2y_w, x, [0 

L]) , y, [0 b]) + ...

nu * D * int( int(d2x_w * d2y_w, x, [0 

L]) , y, [0 b]) + ...

(1 - nu)* D * int( int(d2xy_w * d2xy_w, x, [0 

L]) , y, [0 b])   

% Strain energy (stiffner beam alone)

ystiff = b;

d2x_w_beam = d2x_w(x, ystiff, w0, L, b)

delta_U_beam(L, b, D, w0) = 0.5* EI * int( d2x_w_beam * 

d2x_w_beam, x, [0 L]  )

% Work increment of initial stresses (applied N0x along the 

boundaries x=0

% and x=L

%--------------------------------

delta_W(L, b, w0, N0x) = 0.5 * int( int(N0x * d1x_w * d1x_w, x, 

[0 L]) , y, [0 b]   )

%% Note that here Nox is negative

% ------------------------------------

% Total increment of potential energy

% -----------------------------------

delta_Pi = delta_U(L, b, D, w0) + delta_W(L, b, w0, N0x) + 

delta_U_beam(L, b, D, w0);

delta_Pi = simplify( delta_Pi)

% Equations of neutral equilibrium

% ------------------------------------

delta_Pi_w   = simplify ( diff(delta_Pi, w0) )

% ----------------------------------------------

texti = 'Remember Nox is now negative : = - Nox_ref'

The Matlab code that produced 
the previous result



Some classical 
analytical solutions

of
the 

partial differential 
equations of buckling



simplifies

Can move 

C
an

 m
o

ve 

We look for a solution in this form



Buckling occurs when:

n = 1  gives the smallest 
critical (the buckling) stress-
resultant

Buckling stress-resultant [N/m]

N.B. Stability loss Criteria: here it 
is asked from the trial to fulfill the 
eigenvalue problem



Buckling occurs when:

n = 1  gives the smallest 
critical (the buckling) stress-
resultant

Buckling stress-resultant [N/m]

take the closest integer m

Buckling stress-
resultant [N/m]

Buckling coefficient

Let’s make a graph to see how many buckles 
(half-waves) we have depending on a/b



Buckling stress-resultant [N/m]

Buckling stress-
resultant [N/m]

Buckling coefficient

Buckling coefficient

Let’s make a graph to see how 
many buckles (m half-waves) we 
have depending on a/b

m number of half-waves

At the limit kc = 4

Buckling stress-resultant [N/m] 

(alin verhokäyrä)



Buckling stress-resultant [N/m]

Can be written in 
this canonical form

Buckling coefficient
Lommahdus kerroin

Lin
e

ar B
u

cklin
g A

n
alysis



Buckling coefficients forsome boundary conditions and axial edge load



Buckling stress reduces to 3/4
Reaction stress 
resultant:

No restraints:





A
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L
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A - A        



Example from exam 11.4.2019 Solution



Mathematica script



concept of effective-width in local buckling resistance of plates

local buckling of plates



concept of effective-width in local buckling resistance of plates



concept of effective-width in local buckling resistance of plates





This problem can be found in Timoshenko's textbook

Boundary conditions:
• simplification:  insulated panel a x b simply supported at all 4 edges
1. This is an approximation leading to a lower-bound for the critical buckling load
2. In reality, the upper and lower edge-connections of the web-plate to the flanges correspond   to those of 

rotational springs due to their rotational rigidity while the web buckles.  This type of boundary condition 
is not impossible to address even theoretically.   

Trial solution:



N.B. Stability loss Criteria: here it 
is now energetic; 

n – number of half-wave s in x-direction
m – number of half-wave s in y-direction

Example:



B
u
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k - Buckling coefficient depends of
• ration a/b, 
• boundary conditions and
• loading case

Lommahdus kerroin

– number of half-wave s in y-direction



Buckling stress

Lommahdus kerroin



Buckling stress

Ref. Timoshenko & Gere

Buckling of simply supported thin rectangular 
plate in pure bending

NB.  About 6 times higher buckling load (buckling 

strength) than for compresses rectangular plate



• Similar tables are provided our-days for practical design in standards related to structural design of metallic 
structures

• For instance, the standard EN-1993-1-5, Table 6 (2006), provides similar buckling coefficients k tables for 
combined compression and bending of thin plates for various boundary and loading conditions

I still admire the clarity and non-ambiguity of this table from old B7



Physics of the 
phenomena

Principle stresses under edge sharing: 
tension weaken the buckling strength in the 
orthogonal compressive direction

F

F

F



Exact solution is available only 
for an infinitely long strip  (Brush & Almroth (1975)).

For infinitely long strip: 

For finite strips:





For infinitely long strip: 

For finite strips:

However, from where comes 
this PRACTICAL design 
formula? 



Linear Buckling Analysis

Buckling  stresses and  modes 

Simply supported rectangular plate

….. 77 MPa

…..  105 MPa

….. 147 MPa

1

1.1

1.5

2.1

….. 70 MPa

thickness = 10 mm

3D-FE model



Because I used 
force-control 
solver… one 
should switch to 
displacement 
control to catch 
the unstable 
branch

Post-Buckling Analysis

Simply supported 
rectangular plate Displacements are multiplied by a scale factor which varies 

to make the deflections visible, especially, the first buckling

1st bifurcationRemains in initial flat state 3rd bifurcation2nd bifurcation
was not 
observed in 
simulation 
(unstable mode)



2nd bifurcation (unstable)
was not observed in simulationPost-Buckling Analysis

Remains in initial 
flat state

3rd bifurcation

1st bifurcation

2nd bifurcation
(unstable)

Remains in initial 
flat state

U
n

st
ab

le
 

St
ab

le
 

Voima-ohjattuna



Computational Post-Buckling 

Analysis
How to do?
• How to give easily (lazily)  initial 

tiny displacement shape as a 
perturbation? Usually, a combination 
of Eigen-modes is used. A random 
combination can be also used.

• One idea is to use equivalent tiny 
combination of loads resulting in   
equivalent deformations

Voima-ohjattuna

Generating a tiny perturbation 
of the primary equilibrium 
configuration



Appendix
&

Miscellaneous

In a bit disorder now … will be updated





Criticality means that the determinant

vanishes. The roots of the quadratic 

polynomial in P gives the critical loads. 

The smallest one is the buckling load.

Lateral-torsional buckling by Rayleigh-Ritz

Exact analytical solution:





B
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0
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Plate buckling 


