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• What makes shells imperfection-sensitive structures? Why Plates are not? 
➢ Recall: types of bifurcational instabilities

• Buckling of axisymmetric cylindrical shells

• Equilibrium equation of axisymmetric cylindrical shells
➢ Large deflection Donnell-type theory

• Energy criteria for stability loss of thin cylindrical shell
• Deriving stability loss equation
• The linear stability loss equations

• Axisymmetric buckling of  circular cylindrical shells  under  uniform axial compression
• Buckling solution using Donnell’s equations for axially compressed thin cylinder

• Computational Linear buckling analysis 
➢ Finite Element Example Buckling of thin-walled cylindrical shells

• Post-buckling behavior of thin shells
➢ Effect of imperfection on post-buckling behavior
➢ Effects of initial geometric imperfections on stability of thin shells

• FE-based (non-linear) F.E.M. analysis of imperfection sensitivity

DO NOT MISS this course:
❑ CIV-E4080: New course on material modelling – constitutive modellings
❑ CIV-E4080 - Material Modelling in Civil Engineering L, 15.04.2019  to  27.05.2019
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Must read classicsThis course textbook
e-book

Chapter 9. Buckling of 
Thin Cylindrical 
Elements 

This week 



http://theses.insa-lyon [J. Didier], [2014], INSA de Lyon

• many launchers of space structures 
such cryogenic containers  made of thin 
aluminium shells with extreemly light 
thick insulating material (thick foam). 
This is a sandwich-type of 
(multilayered) thin cylindrical shells. 

• the ratio R/t  can be more than 650  

• various load combinations: internal
pressure, wind load (bending & shear), 
own weight and weight of the liquid 
oxygene and hydrogen (axial load) in 
the static regime. For dynamic regimes, 
we should add acceleration forces

Thin shell example - Ariane

Buckling of thin shells in 
aeoronautics  



• The nature of post-buckling behavior determines 
to a large extend safety and the robustness of 
the structural design

Basic types bifurcations

• Stable symmetric
✓ Structures having this type of behavior are 

always imperfection insensitive and have 
consequently a reserve of resistance

• Unstable symmetric
✓ This gives  imperfection sensitive structures

• Asymmetric or unsymmetrical
✓ This gives much more imperfection sensitive 

structures than above

• Snap-through
✓ Such dynamic behavior is pathological not 

desired behavior and is locally like an 
asymmetric branching on equilibrium path
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stiffer supports
(additional local 
bending)

Localised point 
forces

Brutal local 
changes in 
rigidities or 
curvatures



onsequence

Stiffer supports
(additional local bending)

Localised point forces

Brutal local 
changes in 
rigidities or 
curvatures

cylindrical shells
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Limit load = Perfect * reduction factor 

Reduction factor =
knock down factor

Deflection of-mid-plane

cylindrical shells

A key experimental fact about buckling of thin shells





Plates (& columns) are not imperfection-
sensitive structures



Shells are imperfection-
sensitive structures

Experimental evidence

Thin Cylindrical Shells
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Buckling of axisymmetric 
cylindrical shells
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a) 
axisymmetric 
buckling mode

Buckling of axisymmetric cylindrical shells

b) asymmetric buckling 
mode





Buckling of axisymmetric 
cylindrical shells

Deriving loss of stability equations



Buckling of axisymmetric cylindrical shells

Coordinate system, 
displacements and stress 
resultants



Equilibrium equation of axisymmetric cylindrical shells
Large deflection Donnell-type theory

Isotropic elastic material:
Constitutive relations

Kinematics: membrane 
deformations and curvatures:

Physical problem: thin-walled tubular shell with both axial 
loading and transversal pressure p



Equilibrium equation of axisymmetric cylindrical shells
Large deflection Donnell-type theory

Physical problem: thin-walled tubular shell with both 
axial loading and transversal pressure p

• given the external pressure p (external loads) we can 
solve uniquely all the displacement components and 
internal force from the non-linear coupled equilibrium 
equations for elasticity and given the kinematic 
relations + boundary conditions

• This set of coupled non-linear equations represents 
large-deflection equilibrium equations which are also 
valid for the post-buckled configuration, naturally.

• known as Large-deflection Donnell-type equations 
(some time the name of von-Karman is associated 
(see also von-Karman large deflection plate theory)

Large-deflection Donnell-
type equilibrium 
equations  for the analysis 
of cylindrical shells

N.B. Now, membrane
stress-resultants depend 
on the deflection w and 
the displacement 
components u and v as 
well [coupling].







Stability equations



Loss of Stability 
equations:

• The unknown displacements u, v and w are  now coupled

• This is a set of three coupled partial differential equations for the u, v and w

• Eliminating u, v from the third equation of equilibrium using the reaming 
two equations leads to the well-known Donnell-type large-deflection 
equation (ref. Donnell report):

+ Constitutive relations

Similar equation for torsion buckling of 
thin-walled tube by Donnell, see ref: 

Cf.  To buckling equations of rings and 
arches in the Emeritus prof. J. Paavola pdf-
material



Some classical solutions



Axisymmetric buckling 
of 

circular cylindrical shells 
under 

uniform axial compression

Buckles
wrinkles

Classical results



• Isotropic thin cylindrical
shell of radius R under 
uniform axial  compression 
buckling

• In general, the out-of-plan-
mid-plane displacement is  

• To derive the formula for of 
Euler buckling stress we 
investigate separately ring 
patterns and  chessboard 
modes separately

• The Euler buckling stress 
will be the smallest of the 
two

For the geometrically ideally 
perfect shell

We assume that the length of the 
shell is enough for the boundary 
conditions to not perturb such 
buckling patterns to form.



• Isotropic thin cylindrical shell of radius R
under uniform axial compression buckling
in an axisymmetric mode (ring mode) 

1(3)

Ring mode

Chess-board 
mode

Cf. the textbook, there they solve the critical 
stress from the Donnell-equations.  The result 
for this case is the same as when solving these 
simplified Equations

Chess-board 
mode:

cylindrical shell under uniform compression 

This means that both solutions
are also mathematically similar

Timoshenko



• consider an isotropic thin cylindrical
shell of radius R under uniform axial 
compression (N > 0)

• consider  buckling in an axisymmetric
mode (ring mode) 

(N > 0,  compression)

Trial solution in the form
(kin. admissible)

(Ring patterns)

Ring mode

= 0.6 (steel)

1(3)



• consider an isotropic ideally perfect  
thin cylindrical shell of radius R under 
uniform axial compression (N > 0)

• consider  buckling in an axisymmetric
mode (ring mode) 

(N > 0,  compression)

Ring mode

• The critical stress  does not depend on the length for 
relatively long cylinders (L > 2R)

• Using the chess-board mode as a trial, one obtains the 
same result as above (exercise)

Obtained using
Ring patterns 
mode as trial

= 0.6 (steel)

This is a famous classical result 1(3)



• consider an isotropic thin cylindrical
shell of radius R under uniform axial 
compression (N > 0)

• consider  buckling in an axisymmetric
mode (ring mode) 

Timoshenko

(N > 0,  compression)

Trial solution in the form
(kin. admissible)

(Ring patterns)

Ring mode

Note the ring 
mode of the 
wrinkles in this 
experiment



• consider an isotropic thin cylindrical
shell of radius R under uniform axial 
compression (N > 0)

• consider  buckling in an axisymmetric
mode (ring mode) 

(N > 0,  compression)

Trial solution in the form
(kin. admissible)

chessboard
patterns
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2(3)
Very shallow surface in m and n:  Note the mode accumulation



= 0.1

Very shallow surface in m and n :  
Note the mode accumulation

Note that many buckling 
modes are close to each 
other (yellow region)

This explains partly
Imperfection-sensitivity 

Practically the 
same buckling 
stress of many 
modes

Mode accumulation - sensitivity





Kinimetaically 
admissible trial:

This is a famous classical result
3(3)

The relative length is reflected 
well in this parameter





Ref: Doctoral thesis - FR





Finite Element Example 

Buckling of thin-walled 
cylindrical shells



Computational example

A relatively 
longer shell

Note how close to each other 
the Eigen-values are 

imperfection-sensitivity 



A shorter shell

FE Computational example

Note how close to each other 
the Eigen-values are 

imperfection-sensitivity 



Effect of imperfections

All real structural systems are imperfect

✓ in form, 
✓ in material properties, 
✓ in the sense of residual stresses 
✓ in the way the loads are applied



• consider an isotropic ideally perfect  
thin cylindrical shell of radius R under 
uniform axial compression (N > 0)

• consider  buckling in an axisymmetric
mode (ring mode) 

Timoshenko

(N > 0,  compression)

Trial solution in the form
(kin. admissible)

(Ring patterns)

= 0.6 (steel)



Deflection of-mid-planeAxial displacement

Buckling modes

Snap through



Cylindrical shell



Tests by A. Niemi and 
V.A. Hakala & J. Piironen 
(Civil Engineering 
department, Otaniemi)

Shells are 
imperfection-
sensitive 
structures



Shells are imperfection-
sensitive structures

Mode accumulation
makes imperfection-
and 

perturbation sensitive



Shells are imperfection-
sensitive structures



Shells are 
imperfection-
sensitive structures

Mode accumulation
makes sensitive

Experimental evidence

Euler buckling stress for 
an ideally perfect shell

Collapse stress for real 
imperfect shell





or

Ideally perfect 
cylindrical shell:

Shells are 
imperfection-
sensitive structures

Euler buckling stress for 
an ideally perfect shell

Collapse stress for real 
imperfect shell

imperfect shell



Koiter:

Relative amplitude of the 
geometrical imperfection



Effects of initial 
geometric imperfections 
on buckling load

REF: https://www.google.com/search?q=koiter+imperfection+effect&client=firefox-b-
ab&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiQ-
YfLwJbhAhWt5aYKHcE4CQ8Q_AUIDigB&biw=1322&bih=894#imgdii=-
0mMZY5cHanl2M:&imgrc=cbVas1JWSyUzdM:
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Experiments

Empirical lower bound:

Ideal strength: classical 
elastic critical stress

Example: cylindrical thin shell under uniform 
compression: lower bound:

Collapse stress for real 
imperfect shell

Experimentally measured values of knockdown factor and empirically defined 
lower bound curve, as a function of the radius to thickness ratio (Jones, 2006).

Effects of initial geometric imperfections on stability of thin shells

https://www.sciencedirect.com/science/article/pii/S0020768315000025#b0110


Shells are imperfection-
sensitive structures
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Thin Cylindrical Shells
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Example of initial shape imperfection patterns [Ref 1]  

• as separate buckling modes or a combination of them
On this figure, geometric imperfections are amplified to render the visible to the reader

• Use the real geometry when available: the real geometry 
can be our days obtained very accurately through direct 
laser scanning of real geometry when available or digital 
image correlation techniques.

Ref 1: 

FE-based (non-linear) F.E.M. 
analysis of imperfection sensitivity

• analysis the post-buckling behavior
• estimate the lime-load
• … and to obtain knockdown factors 

(reduction factor for imperfect 
structures)

• non-linear: this course only 
geometrical 

• non-linear: for more realistic FE-analysis 
include material (plasticity , …) and all other 
relevant non- linearities as friction, …

• To follow, for every choice of the initial 

imperfection pattern, the unstable post-
buckling path after the limit-point an 
incremental  static analysis FE-
simulation a solid way: ABAQUS non-
linear code is  well-proven to do 
reliable job (RIKS algorithm).   [of course 

other specialized software can do also a good job …. 
But I am not familiar with them]

After experimental validation of the FE-model, it 
can be used to make predictions

Typical imperfection 
sensitivity results

FE-simulation: example of 
axial loading collapse

Elastic
buckling

Plastic
buckling
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relative 
imperfection value 

Robust 
knockdown 
factors



https://mycourses.aalto.fi/course/view.php?id=20530

New course on material modelling – constitutive modellings

Lecturer:   Dr.   Djebar BAROUDI
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&

Miscellaneous











Enjoy for coming 
spring
I hope this course 
helped to you to learn 
what is about in 
stability and made you 
curious toward 
scientific based civil 
engineering 



Enjoy for coming spring

Photo: Djebar Baroudi, 2021
Lyon, 6/4/2021

The course Ends here ...Long before the beging of the begining, there was the endless sea of waves for eternity than came the bubble of our 
universe for a laps as long as is the life of the sparks.


