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Dear reader

These notes represents a collection of BTEX-scripted pages are an illustrated
version of my personal notes for the purpose of preparation of the course
CIV-E4100 - Stability of Structures in the department of Civil Engi-
neering and more specifically, static elastic stability of slender structures.
These notes are in their raw state and provide as they are for those who
want to read them. They are one projection of my personal thoughts con-
ditioned by my engineering education, classical readings and exchanges on
the topic with my colleagues. So, this is not an obligatory course read-
ing material, and they cannot replace good textbooks. However I warmly
suggest the students to have, at least, a look to enrich their readings.

I decided to record and to share my paper notes after seeing so much
teachers starting their course of stability by formulating, first, complex
mathematical equations (or/and principles) without showing any physical
model to illustrate the phenomenon to be studied and then, claiming that
‘the underlying mechanics’ is a unavoidable consequence of these equations!
Even sometimes, of their own equations! At a general level of fundamental
physics, they may be a bit right! but at the pedagogical level, they are
completely ’a coté de la plaque’; wrong. This is why, I decided to show in
the class, small physical models to illustrate the mechanical behaviour we
want to study. Together with students we manipulate them and load them
gradually by our hand, observe and feel the sudden transition of equilibrium
states in our hands. We can even feel the apparent loss of rigidity at loss
of stability of the small reduced structure in our hands. This critical tran-
sition phase from resistance to no-resistance to additional tiny deformation
is what is mathematically mystified as the loss of positive definiteness of

Validated theories of physics as expressed by mathematics; they capture some invari-
ant (like symmetries) properties of the 'reality’. Thus such mathematical theories give us
access to remaining invisible part of this 'reality’ because of the invariant properties; so
we see the missing parts thanks to the general properties of symmetry captured in the
mathematics. For instance, the gravitational waves were ’seen’ by the mathematics of
Einstein’s gravitational theory, more than 100 years before they were actually observed.
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the tangent stiffness matriz. This is just the mystical name for the physical
condition for neutral equilibrium to exist. I will never stop calling a cat,
a cat, as French people say. We are ourselves small, but fine mechanical
sensing devises. After that physical class experiment, we pose the ques-
tion (physical problem setting). Then I present the physics of the related
key phenomenon, as naturally being observed, and then, and only then, we
start to formulate mathematical equations (Mathematical problem setting)
based on fundamental (general) principles of mechanics already known to
the students. Using this general principles, we arrive, mathematically, little
by little, to the buckling equations which provides the needed handles to
the reader. They will give the critical buckling load and the post-buckling
behaviour of the studied structure. After that, we make interpretations of
the solutions. This is for my pedagogical method.

Because of the bit chaotic history of these notes, the chronological flow of the
presented thoughts may be not enough continuous (not linear) from time-
to-time. My thoughts during writing often bifurcate forward and backward,
right and left, up and down because I do not intend to write a book. Some-
times, when inspiration visits me, I write a bit about dynamical stability,
even though this is not the topic of our course. There is plenty of good text-
books on stability, and also, unfortunately, plenty of bad textbooks too. I
wanted to make the course more attractive to our engineer-students and not
hide behind ’complex-looking’” mathematics neither to show how brilliant
the writer can be. I wanted also to write these notes as a story(more narra-
tive than written) and best stories are those which are told not necessarily
those which are written.

Consequently, this work cannot be complete. By recording my personal
study notes, my intention was not to write a textbook on Structural Me-
chanics. As was said, there is plenty of good textbooks in the air written
by legends of Structural Mechanics. My writing here is also intended to il-
lustrate with examples, grasp the relevant physics, and then and only then,
write the equations. The aim is to make the field of Structural Mechanics,
in general, more attractive to young people and encourage them to read
classical and also some ‘newer’ textbooks, if any.

Related to the language: as my mother-tong is surely not Oxford En-
glish, do not expect to read Shakespeare in my sentences. [ am writing
mostly my non-linear thoughts in my proper non-Sheaksperian English,
thus with mistakes in grammary, orthograph and style (as now). I hope
this will not add difficulties in reading. These notes are under review by
one of my retired and very critical professors, a legend. I will soon account
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"Virtaa sittenkin". The Last Mohicans 7 and o; Reijo and Djebar (2020,
Otaniemi).

for his comments and the reader will obtain an upgraded version.

Related to non-linearly flowing chapters and thoughts: as I write by
inspiration, and inspiration is not very often visiting my office, the reader
can find some repetitions or ’hole’s in the written text. While some repeti-
tions can be pedagogically helping in learning, others can become annoying
for some readers. If you find such, then either learn or skip it. However,
I will appreciate if you notice me with that. Also, you can find here and
there some small funny things that I hope will not disturb you from the
main serious reading. One student once called them positively distracting.
Sometimes, the writing is a bit boring, so [ can make some comments that
I usually make during in-vivo lectures or exercises cessions with living stu-
dents long time ago before the BC-IXX century.

The reader is encouraged to give me any feedback leading to enhancing
the quality of these lecture notes. Please, your comments and suggestions
are needed. Do not keep them for yourself. (many students already provided
me feedback and good questions leading to quality enhancing. I have even
written new sections to answer them because the some questions shows that
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I did not wrote enough explicitly or there is something important missing.)

Djebar Baroudi
Otaniemi, 4/02/2021



Chapter 1

Elastic Stability of Structures

1.1 Introduction

The concept of stability is fundamental in all branches of science. In this
'lecture-notes’-looking text, we specifically deal with its applications to
static stability of mechanical structures encountered in civil engineering.
Such structures can be, for instance, primary or secondary substructures or
elements of buildings and constructions including foundations and the sup-
porting soils and ground. The simplest structure can be a column which
may buckle under a certain load and looses its apparent rigidity: this is the
well-known problem formulated and solved for the first time in the 'mank-
kind’ history by Euler, the Great.

Dynamic stability is quit a wide subject and it is not the topic of this course
despite that static stability is simply a special case of dynamic stability.

This concept of stability is, as already said above, of primary importance
since it allows to determine if an equilibrium position is stable or not under
tiny perturbations. Consequently, quantifying stability provides a powerful
tool for structural engineers for robust structural design and reliable control
of mechanical structures. Figure (1.1) shows an example of a stability loss
in a simple ramp due to overload. The upper chord of the truss buckled
and consequently, the structure failed suddenly. No body was injured.!

Let’s explains in few words what does stability mean here:

e Static stability: (SS) Consider a structure (a system) being initially

n such case, already a first year master student can exactly determine the maximum
allowable load (= number of persons) for the structure to not fail in buckling (and also,
not fail at all).
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China (Jiujiang) foot (or ramp) bridge collapse - buckling
G aaa REf: hitps

* At once and global (in the whole structure or its member)
Unpredictable (you do not have time to see the signs that is too late
already) ... happens between 7t s and 9t" 5!

Figure 1.1: Stability loss in a foot ramp due to the simple buckling of the
upper cord of the truss.

in equilibrium. We introduce an arbitrary infinitesimal perturbation to the
system and follow what happens. If for any choice of such arbitrary per-
turbation, the structure sustains or comes back to its initial equilibrium
configuration or very close to it, after disappearance of the perturbation,
we say that, the initial equilibrium configuration is statically stable (SS) or
shortly just stable. Otherwise, the equilibrium is unstable. Mechanically
speaking, the stability loss of structure is seen, on the equilibrium path, as
a loss of apparent rigidity or as a its dramatic reduction.

Stability loss or transition from one state to another is dynamic by nature
To study Dynamic stability one needs tools from dynamical systems theory
especially, concepts as Lyapunov stability. This will not be the topic of
this course. We will focus on the study of static stability of structures which
will be in itself a challenging course. There will be provided a short section
introducing in details this concept after few pages. (For dynamic stability,
go and read about Lyapunov stability of dynamical systems)

e Dynamic stability: DS considers the time history of the motion after a
tiny perturbation. If the change in amplitude keep not enhanced in time,



1.1. INTRODUCTION 7

after such perturbation, we say that the system is dynamically stability.
It is well known that the static stability is a necessary, but not sufficient
condition to ensure dynamic stability.

This introductory course picks a side a bit directed toward structural
engineer students. The following specific topics will be addressed: flezural
buckling (nurjahdus), lateral-torsional buckling (kiepahdus), torsional buck-
ling (vaantonurjahdus), buckling of thin plates and buckling of cylindrical
shells (levyjen ja kuorten lommahdus). In addition, only slender elastic struc-
tures will be considered. This means that, plasticity, visco-elasticity, visco-

plasticity and material damage is left outside of this course?

The approach adopted in these lecture notes concentrates both on applying
systematically general principles on and the mechanics (=physics) of loss of
stability phenomena, deriving the buckling equations and on providing ex-
amples, both analytical and computational FE-based, respectively. I think
that such approach is an efficient method which enhances deep learning and
the self-confidence of the future engineer in that when he uses Computa-
tional tools he knows exactly what equations and what physics he is solving
in his daily work without forgetting that the last word is humbly reserved to
experimental validation and investigation. This is how should be a robust
engineer and not a Robot engine-joori.

Central concepts like Linear buckling analysis, post-buckling analysis and
sensitivity with respect to imperfections will become familiar as it is intro-
duced through examples.

Let’s be clear with the terminology of static and dynamic stability: the
stability loss is nothing else than the motion during transition of the struc-
ture from one equilibrium state to another one and therefore stability loss is

2For those interested in these advanced topics, you can start with the classical text-
book by Bazant and Cedolin. Stability of structures - Elastic, Inelastic, Fracture, and
damage theories. (2003) Dover publications, Inc.
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dynamical by nature as demonstrated by the extreme and very classical case
of the collapse of the Tacoma Narrows Bridge due to dynamical loss of sta-
bility (Fig. 1.2). Despite, that, under certain conditions one can recast the

Oscillation and subsequent collapse of the Tacoma Narrows Bridge

Flutter - 4
Coupling structure-fluid motion

Figure 1.2: Tacoma bridge - failure due to dynamical instability (flutter).

problem of stability loss in the statics framework (see footnote bellow). This
is specially true for conservative systems. To our chance, the set of conser-
vative systems is huge and covers many key problems of structural analysis.
On the other side, the set of non-conservative systems is also huge and of
importance even for civil engineers. An example of a set of such systems
are dissipative systems (path dependency) (all type of friction, dissipation,
plasticity, visco-plasticity, ...). Dynamical effects, like for instance flutter
phenomena in bridges (Fig. 1.2), stayed cable wind-induced vibrations, etc.
can be such systems (following forces, ...). Naturally, all such problems
and many other problems of stability must be set as dynamical problems to
be correctly solved. At the end, loss of stability is a dynamic process.

1.1.1 The big picture - Stabiilius pdhkindkuoressa

For conservative system, the stability analysis reduces to check the positive
definiteness of the tangential stiffness matrix of the structure thanks to the



1.1. INTRODUCTION 9

Lagrange-Dirichlet stability theorem (will be given bellow). The total poten-
tial energy of the the linearised system is quadratic and the critical load can
be determined from the stiffness matrix of the linearised system at points of
critical equilibrium. This linearisation leads to the so called Homogeneous
linearised equations of stability in the form of linearised eigenvalue problem
(lineaarinen omiaisarvotehtévé, see section 1.10).

The higher terms than quadratic of the total potential energy change,
expressed as a function of some generalised displacements, determine the
post-buckling behaviour. The basic types of post-buckling behaviour are
classified as follow (Section 1.6):

e stable symmetric - always imperfection insensitive
e unstable symmetric - imperfection sensitive

e unstable asymmetric - imperfection sensitive (more than in the sym-
metric unstable case)

Koiter’s (1945) power law describes all the initial post-buckling be-
haviour. According to this famous power law, for all elastic structures
with a (tiny) initial imperfection causes a reduction in the maximum load
is proportional either to 2/3 or 1/2 power of the amplitude of the initial
imperfection. This reduction in the maximum load (usually, expressed by
a knock-down factor) is specially severe in cylindrical shells under axial
loading or bending and spherical domes, due to the presence of unavoidable
initial imperfection; it goes down to about 1/8 to 1/3 of the theoretical crit-
ical load of an (imaginary) perfect structure (see sections 1.6, 1.18.2 and
1.18.5). For other structures like elastic frames, the reduction is usually
moderate.

Related to elastic frames, Roorda (1971) showed experimentally evi-
dence of asymmetric bifurcation where depending on the ’sign’ of the initial
eccentricity, the post-buckling behaviour suddenly changes between stable
and unstable. As plates have a symmetric post-buckling behaviour in their
first mode, they are insensitive to initial inherent imperfections. Adding
elastic supports can, for some critical ratio of relative rigidity of the struc-
ture and the supports, render the post-buckling behaviour unstable and
thus imperfection sensitive like, beams or plates on elastic foundations, for
instance (even in the first buckling mode).

This course is devoted to static elastic stability of slender structures. We will
use thorough these lectures the Lagrange-Dirichlet stability theorem (section
1.1.3), to derive the eigenvalue problem for studying loss of stability. This
theorem is valid for conservative systems. However, before going to the
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theorem and its application, some fundamental equations or principles of
mechanics will be recalled.

1.1.2 Fundamental principle of dynamics
This principle is known among the Ileople as the principle of virtual work

(ﬂ/vint + 5Wext = 5Wacca vavv (11)

which can be opened in its general form with no further comments as

—/a:é(Vv)dQ+/f-6de+/ t-avdsz/pﬁ-avdﬂ, Vév
Q Q 00 Q

6Wint 6Wext (SWacc
(1.2)
The virtual work of acceleration forces being defined as
OWaee = / pu - ovd2, Vov. (1.3)
Q

The remaining terms should be known to the reader from the previous basic
master course where we intensively used the principle of virtual work in its
static form.

Naturlich, this principle is equivalent to Newton’s motion law for de-
formable media (called Chauchy’s equations of motion). Keep in mind that
this principle is universal and holds for all type of systems, conservative or
not.

Propriety of conservative systems

It is worth to recall the following important propriety of conservative sys-
tems: for such systems total there exists a potential energy II[u] not de-
pending on time ¢ such that

SWint + 0Were = —0(I1[u]), Vou (1.4)

Consequently, for conservative systems, asking in the Lagrange-Dirichlet
stability theorem (following subsection 1.1.3), for stationarity of total po-
tential energy at equilibrium is equivalent, to say that the virtual work
vanishes as written in Equation (1.4). We will often use this equivalence
while applying it to find approximations for buckling loads.

Definition: an equilibrium position (configuration) u, is necessarily such
that
6 (I1[u]

w.) =0, You. (1.5)
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1.1.3 Lagrange-Dirichlet stability theorem

On a more general level, we will address stability of conservative systems.
A global energy approach will be systematically adopted through the use
of the Stability theorem of Lagrange-Dirichlet?.

Lagrange-Dirichlet Theorem: Assuming the continuity of
the total potential energy, the equilibrium of a conservative sys-
tem is stable if it corresponds to a local minimum of the total
potential energy of the system.

This theorem is known in the French literature by Théoréeme de Lejeune
Dirichlet.

The above theorem is a local energy criterion for stability. We will use
systematically to derive the all the equations of (loss) of stability we need
for any arbitrary elastic structure. The limit state of stability (stability loss,
Figure 1.3) will be identified by the transition condition between stable and
unstable states and which corresponds to the neutral equilibrium condition®
for which the total potential energy becomes indefinite (i.e., generically, we
have II”(u; P) = 0 or more generally, 6(AIl) = 0, where A(II) being the
increment in total potential energy).

The stability condition - positive-definiteness - for the total potential energy
II(u) means generically that its second derivative II” > 0 with respect to the
kinematic variables u of the system has to be positive at these equilibrium
points (local extrema points). Consequently, instability of an equilibrium
corresponds to the condition I1” < 0, respectively. So, to resume,

I1” > 0, stable,
II” =0, neutral, (1.6)
I1” < 0, wunstable.

The derivatives are the so called generalised derivatives and will be defined
later in terms of variations® for continuous and discrete systems.

3Cf., classical textbook by Bazant and Cedolin. Stability of structures - Elastic, In-
elastic, Fracture, and damage theories. (2003) Dover publications, Inc., for the proof of
this theorem. Just consider Lagrange’s equations 0L/dq; — d/dt (OL/d¢;) = 0, for con-
servative systems, and set the velocities @ and accelerations i to zero in them because of
equilibrium, and you obtain as a consequence, the stationarity (the minimum condition)
of potential energy at equilibrium 6(AIIl) = 0, automatically. The Lagrangian is defined
L =T -V, where T being the kinetic energy and V the potential energy of the system
(V =11, the total potential energy, for conservative systems). (u = q).

4Also called, criticality condition.

SEven these variation of total potential energy can be recast as simple one-variable

Trust us, we are not
politicians.
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Figure 1.3: Generic illustration of the energy criterion defining stable and
unstable ranges for some elastic structure. The loading P being the control
parameter. The kinematics of the system is defined by u. The transition of
the system between stable and unstable state occurs at the critical load P,
for which a neutral equilibrium is attained when IT” = 0; i.e., equivalently
when §(AIl) = 0, where AIl being the change in total potential energy
between initial equilibrium state and the (buckled) adjacent equilibrium
state.

About the energy criteria in the form §(AIl) =0

I hope to clarify the notations, for total potential energy change AII that I
will use thorough these lectures-like notes. We think that first, the system
is, under loading, in an initial equilibrium state (or configuration) corre-
sponding to the total potential energy II;. Often this initial state is called
initial pre-buckled state. Now the stability of such equilibrium state is in-
vestigated by perturbing it a bit in some manner and keeping the loading
unchanged. The system in the perturbed state obtains an increment AII
of the total potential energy. Therefore, the total potential energy of the

derivative with respect to a scalar parameter ¢, their meaning is different from derivatives
of functions. The total potential energy is a functional; a function of a function. The
meaning given by Lagrange is the correct one. Not because the pixels of the image of a
flower can be coded (described mathematically) by integers (0...255), one can claim that
the flower is just a collection of structured integers. The same thought holds between
the meaning of variation of a functional and the derivative of a function. Not because
such variation can be described by a one-variable simple derivative that it becomes this
simple derivative. Do not worry about this comment, it is more meant as an answer for
a colleague.
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system in the new perturbed, post-buckled state, is simply
IT =11, + AIL (1.7)

Now the question to pose is: is the perturbed state an equilibrium state or
not? If the answer is yes, then the system can find another equilibrium
configuration close to the initial one. This close equilibrium is called ad-
jacent equilibrium state and since it is an equilibrium state, by definition,
then we have 0Il = 0. Therefore, the stability loss, which corresponds to
the transition between these two states can be formulated, physically, as
the condition of existence for such adjacent of far equilibrium configuration
where the system can via a tiny perturbation can move without increase
of loading. This condition holds also to identify the existence of even far
equilibrium configurations such the one reached after a snap-through like
stability loss. In this cases, the condition identify what are called, on the
load-displacement diagrams, limit points. This condition is mathematically
written as is simply

Ol = 01, +d(AIl) =0, V perturbation dv (1.8)
=0, initial equilibrium
= 0(AIl) =0 at buckling, Vov (1.9)

Consequently, the condition

At buckling 6(AIl) =0, Vou (1.10)

as expressed by Equation (1.890), is the critical buckling condition. It is
also called, equivalently, condition for neutral equilibrium to exist. At the
end, it expresses the stationarity of the change of total potential energy as
said by the Lagrange-Dirichlet theorem.

I prefer to work directly with the increment of the total potential energy
to avoid extra 'ramifications’ with extra terms related to the initial state
while deriving the buckling equations, in general. So, in these notes we
use the notation 6(AIl) = 0, where AII being the change in total potential
energy between initial equilibrium state and the (buckled) adjacent equilib-
rium state. This stability loss is often referred as bifurcational. We will come
back to this concept while dealing with equilibrium paths and equilibrium
points. It worth to tell that the above condition for neutral equilibrium
holds and remain valid even to identify non-adjacent equilibrium state; far
equiltbrium configurations like those encountered in snap-through like sta-
bility loss. In this cases, the condition identify what are called, on the
load-displacement diagrams, limit points.

X ok k
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About Hessians, quadratic form and stability

For discontinuous systems with N configuration degrees of freedom® q =
[q1, @2, - - -, qn]", the second derivative IT" ~ H is simpler, and is simply the
Hessian H of II at q°, the initial equilibrium configuration. For instance
for a quadratic form, the Hessian H of II defined as the coefficient matrix

0?11

ii = ———-. 1.11
)] 3%8(1] ( )

In general, the leading terms (in amplitude) of the Taylor expansion of the
total potential energy

H(g” + 0q) =IN( URD SELIRIP A i S
- P T a3 o g 04:0q; T ...
- q > a i=1 an 4 ¢ 2! = 8%6(]] q° "94:94;
=H(q?)
(1.12)
o 1

~I(a’) + [VI(G®)] da+o;0q" [H(q")Joq +O(|dqll’),

=0, equilibrium

=6211
=611
(1.13)

where dq (or equivalently Aq) being an infinitesimal increment, is a quadratic
form in q. In such cases, the stability of equilibrium can be accessed through
the sign of the Hessian (the determinant of the Hessian matrix) or equiva-
lently the sign of the second variation §2I1(q") of the total potential energy
increment (Trefftz). Loss of stability occurs when the determinant vanishes
(the Hessian matrix becomes singular). Stability is therefore determined
by the sign of this Hessian which is also called stability matriz. If positive
then stability is ensured, if negative then no. The sign of the Hessian (the
determinant) is given also by the product of its eigenvalues. Note, for the
moment, that the expression for the leading term in the change in total
potential energy is

1
All = 6°11+ O([|ogf*) ~ o;da " [H(a")ldq (1.14)
at equilibrium (611 = 0). Just keep in mind how it looks like, no worry for

the moment. Let go back to our introductory generic story on the loss of
stability criterion.

6Lagrange coordinates.
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So, the sign of the second derivative of the total potential energy permits
to study the stability of structures. For instance, the sign of the second
derivative I1”(u) can be in particular” accessed in terms of the sign of the
second variation §°TI(u). Note that, here IT is the increment! AII of the
total potential energy. This last condition of neutral equilibrium (6%I1(u)
0) is known as the Trefftz condition for stability of an equilibrium:

6°TI(u) > 0, stable,
5°TI(u) = 0, neutral, (Trefftz criterion of stability loss) (1.15)
6?Il(u) < 0, unstable.

However, the sign of the increment AII of total potential energy between to
equilibrium states is a more general form of the stability condition. What
to do when 6%II(u) = 0?7 The Trefftz condition remains silent. Therefore,
we will prefer to use directly Lagrange-Dirichlet theorem and investigate the
sign of the increment

Al = 8T + 6% + 8T + §*TL + . .. (1.16)
to resolve the stability question. So, for instance, here, the sign §°II, when

non-null, will resolve the stability question. Otherwise, one takes higher
and higher terms to find out.

Before leaving this introductory paragraph, let recall that the Lagrange-
Dirichlet stability theorem mathematises the fundamental concept of min-
imum total potential energy principle known from physics. This general
principle says:

A conservative system deforms or moves to an equilibrium configura-
tion which makes its total potential energy stationary, and addition-
ally, the equilibrium is stable if the extremum corresponds to a local

In this transition toward new configuration, the total potential energy de-
creases and the loss being evacuated from the system in form of kinetic
energy and heat. The development of this principle took hundreds and
hundreds of years from the humanity to crystallise it into the theorem.

"as a special case of the Lagrange-Dirichlet theorem where the total potential energy

increment being expanded up-to its quadratic terms.

Loss of stability of
a column.  Origi-
nal temporary rein-
forcement method.

1 Vey often the sym-
bol A for increment
or change is dropped
to lighten the writ-
ing and to confuse
readers.
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Grasp the big picture

Thorough the text of this lecture notes, you will meet a general concepts
called energy stability criteria in the Brian, Timoshenko or FEuler forms,
etc. All these appellations are nothing else than direct applications of the
Lagrange-Dirichlet theorem. People likes giving thousands names for the
thing they love.

Can a structural engineer seriously use a mathematical theorem to design a
mechanical structure? Are you joking? Aren’t the Furocodes more powerful
for that? These are natural questions coming to mind. Yes, you can make
more serious and robust structural design when you rely also on a theorem
and experiments, and consequently, the robustness of the engineer itself
grows. Experiments are used both for validation of models and to uncover
the behaviour of the structure or its elements, joints, etc.

Assume we are interested to find just the buckling load of a specific
structure. So, our interest is to answer the question under which lowest load
the structure equilibrium loses its stability (bifurcation, or limit-point)? In
theses case, the above stability criteria, or more specifically, the Lagrange-
Dirichlet® theorem will be the correct tool. For that, it is enough to expand
the total potential energy increment up-to quadratic terms in the kinemat-
ics. Applying the criticality condition for neutral equilibrium, one obtains
a set of homogeneous linear equations (they are often in form of partial-
differential equation) forming an eigenvalue problem. This process is called
linearisation. The solution of such linearised problem provides the buckling
load and the corresponding buckling mode and higher modes. In addition,
the stability condition, sign of II”, can be used to determine the nature of
stability of the primary (initial) equilibrium branch which now the buckling
load (bifurcation point) divides into two parts.

No other information of what happens after the buckling point can be
extracted. How large are the buckling displacements? What is the post-
buckled configuration? Is it stable or not?

The above questions remain without answer because the linearised equa-
tions have lost all these information. The amplitude of the buckling shape
remains indeterminate. This procedure is known as linear buckling analysis.
In order to obtain further information on the proprieties of the system at

8This theorem holds only for conservative systems. However, the set of conservative
systems of practical engineering interest is almost infinite. For non-conservative systems,
we will adopt the dynamical approach and write directly the motion equations of dy-
namics and check for stability of the equilibrium in the time-evolution meaning (dynamic
stability). This last approach is versatile and contains, naturally, also the conservative
systems.
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the buckling point (bifurcation or limit-point) and to characterise the post-
buckling behaviour, one needs to account for higher terms than quadratic
ones in the expansion of the total potential energy increment. This type of
analysis is termed my post-buckling analysis.

We will come to all this and that in details and with examples in the ded-
icated parts of this notes. For the moment, try to get the big picture and
not its pixels.

Here the content of this course in four points through questions that will
be addressed:

1. can we predict the buckling (critical) load?

2. what happens at the bifurcation (or limit) point?
(i.e., after the buckling)

3. can we determine the post-critical branches?
What would be their shape? Nature of stability?

4. what imperfection-sensitive is the structure under study?

1.2 Structural design and stability

Structures are more and more designed to be lighter and thinner with using
high-strength materials. This tendency can be seen as a consequence of
aiming to reduce structural weight leading to economic saving at all levels,
in fabrication, construction and service life. In analysing such ’slender’
structures, linear analysis become inadequate even in the material elastic
range. For instance, an axially loaded cylindrical thin shell behaves in a
non-linear manner and can suddenly lose its load-bearing capacity even if
its constituting material being still deforming within the elastic range. Such
behaviour is characteristically non-linear, even more, geometrically non-
linear. Such ’slender’ structures are sensitive to imperfections. Therefore,
for such ’slender’ and ’thin’ structures, this non-linear behaviour should
be analysed to achieve a reliable and robust design. It is the stability and
the post-buckling analysis (or equivalently, the general non-linear analysis)
which permits to analysis such non-linear behaviour.

The idea of Loss of Stability as a concept and a phenomenon (Fig. 1.4)
is introduced and clarified in subsequent section of this chapter. Later,
examples from structures of civil engineering will analysed. Let’s exercise
some reverse Polish logic and introduce first some intuitive understanding



18 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

of such stability phenomenon. Here we focus mainly on the stability of
elastic solid structures of use in civil Engineering.

' ', ] Lateraltorsional  pagar domes s = .-‘il’ i Y I‘
[ by buckling Bucklingof a spherical shell  Buckling of a container Buckling afawlnestee
contalner, California, 1979

Local Buckling of

-2 PR
I'. . g =
{ | 4 2 plates -
I. . s T o o ke
— : Buckling of rails
- . Dus b heativave in country Victoria -
Buckling of columns .s.

Figure 1.4: Examples of various types of loss of stability in simple struc-
tures. From left to right: lateral-torsional buckling, buckling of spherical
and cylindrical shells, buckling of slender columns, buckling of a rail-road
rail bonded to a support and plate buckling represented by shear buckling
of the flanges and compressive buckling of web.

Mechanics? is the science investigating the motion of systems under the
various loading or imposed displacements. In statics we focus on the equi-
librium states. One main goal of theory of stability is to study under what
conditions a motion or an equilibrium state is stable or unstable. Figure
(1.15) demonstrate in images the key concept of stability of equilibrium.
Primarily important is equilibrium, vital is it’s stability.

However, restricting ourselves to determine only the stability limit through
study of neutral equilibrium state (loss of stability condition), provides us
with an incomplete map'®, (Figure 1.5) and (Fig. 1.6),

having only one single and only one point on it: the bifurcation'! or

9As an example of celebrities from this discipline, let’s cite few 'people’ names like
Galileo, Newton and Einstein.

10Tn the form of the solution of an eigenvalue problem rising from linearisation, close
to the critical point, of the full non-linear equations of equilibrium. The smallest eigen-
value corresponds to the buckling load A, and the corresponding Eigen-vector v, gives
the buckling mode up-to a multiplicative coefficient. So, in the figurative talk, I had,
the point P on the map corresponds to the pair P(A.-, Ver), S0 an entire surrounding
topography remains invisible.

At a bifurcation point, appearance of new one or more neighbouring equilibrium
state for the same load, occurs. So, solution branching takes place.
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Energy approach—the MAP__—,

Tols pe_-gﬁw.; 1D Barsnatl, 2018]
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Figure 1.5: Map of total potential energy AII of an elastic structure. Equi-
librium paths corresponds to locations where §(AIl) = 0 while keeping P
constant. Stable equilibrium is achieved there where §*(AIl) > 0. Note the
analogy with the topographical map of piece of Chamonix (Alpes).

limit point'2. The missing entire 'topography’ on the map will be provided
by the post-buckling'® analysis and which will provides the designer or the
analyst the relevant post-buckling behaviour of the structure. Knowing the
nature of such post-critical behaviour (stable, unstable) enhances the ro-
bustness'* and safety of the structural design by addressing sensitivity of the
design with respect to inherent imperfections'> and also allow the designer

12 At a limit point, no branching occurs, on the equilibrium-paths, beyond this critical
point, the initial equilibrium becomes unstable.

BLet’s demystify the 'label’ post-buckling analysis. Generally speaking, such analysis
is simply a non-linear analysis which can have both geometrical and/or material non-
linearities, with the specific purpose to investigate the pre- and post-buckling behaviour
of the structure while introducing arbitrary small perturbations to the initial state. So,
what structural engineers call post-buckling analysis is a specialised sub-class of the more
general non-linear analysis class. Post-buckling analysis is a special kind of sensitivity
analysis with respect to perturbations in material properties, geometry and loads as
deviations from the perfect design.

14Robust design "makes the structure’s or product’s performance insensitive to (inher-
ent) variations in material, geometry, manufacture and operating environment", (Phadke,
1989 or later). I can add that robust design is a stable design, and robustness is con-
ceptually the same as stability of the structure under ’all’ inherent perturbations (noise)
that indeed we can only quantify probabilistically. These inherent perturbations can be
qualified by noise. For those interested in reading, you can consult the book: M. S.
Phadke. Quality Engineering Using Robust Design. Prentice Hall PTR, 1995.

151t may be safely said that all real structural systems are imperfect in form, imperfect
in material properties, imperfect in the sense of residual stresses and imperfect in the
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The geometry of equilibrium
and stability
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Total potential energy [0, Baroud, 2015)
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Figure 1.6: 'Topographical Map’ of the total potential energy AIl. Geom-
etry of equilibria and stability.

to quantify the buckling deformations resulting from limit or buckling load
within a certain range of possible loading increase!®. Such excessive "buck-
ling deformations’ or more exactly non-linear effects in displacements and
rotations!” can consequently destroy joints of the buckling sub-structure to
subsequent structures and results in serious collapse, even when the post-
buckling behaviour being stable (Figure 1.8).

Let’s put the above ideas in pictures: finding the bifurcation or limit
point and consequently, the critical load, corresponds to discover the tiny
(10%) visible tip of an iceberg. Linear buckling analysis give you access to
such tip and only to it. What remains unseen, through the linear buckling
analysis, is the huge underwater (90%) hidden part of the iceberg which
can be only reached by post-buckling analysis.

way the loads are applied. Roorda (1980)

16When the post-buckling behaviour is stable

I"Better known to engineers as second order effects. In such popular language remains
ambiguous what is of second-order and compared to what.
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Schematic examples Buckling during c_nnstr.ucnf:ljluhase .

of complex buckling

Figure 1.7: Loss of stability more complex structures (refs: left - drawings
by Dr. R. Kiviluoma, right - flyer of Rakenteiden mekaniikan seura).

In short a correct design against stability aspects will be such 1) collapse
of the structural components or the structure resulting from buckling will
not occur at design loads, neither 2) will the buckling deformations will be
so large to damage or render components, their parts or nearby components
non-functional. Both design aspects are addressed through 1) buckling and
2) post-buckling analysis, for the first design criteria and second one, respec-
tively.

One of the challenges is to quantify and account for the inherent imper-
fections in the real structure a which deviates from the idealised planned,
manufactured and designed one , in order to achieve robustness of the final
engineering product. Good engineering final result should always provide
the product itself together with a quantified safety margin of it operation.

On the other hand, when performing structural design, often static sta-
bility analysis sufficient for many design purposes (when the knowledge of
critical load is sufficient). In such analysis, the study of stability of equi-
librium state is enough since the designer wants to avoid the very first
occurrence of loss of stability. This being said, knowing the post-buckling
behaviour a the structure under design may be vital when accessing ro-
bustness (read: safety). This is because the type of stability the structure
have after buckling, stable or unstable, determines how safely it is sensitive
to inherent imperfections and other perturbations. When the post-buckling
behaviour is stable, the structure is not sensitive to small imperfections (safe



Frame Buckling.

22 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

Stability loss of
primary structure

Non-linear analysis Joints
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T,

Figure 1.8: Illustration of possible consequence of too large rotations or

displacements after stability loss.

Figure 1.9: Accidents: Loss of stability.

behaviour). On the contrary, it becomes sensitive to imperfection (unsafe

behaviour) when post-buckling is unstable.
However, in many other situations (aeroplane, rockets, rotor dynamics,

structures under some special dynamic loading, etc.), one should consider
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the dynamic nature of stability (dynamic stability) to resolve stability issues.
In Figure (1.10) a simple case of dynamic buckling of a column is repro-
duced for illustration purposes only. In short, this course, quantifies the
behaviour depicted in the three consecutive images: initial stress-free state,
pre-buckling state and buckled state by answering the question: "What is the
general (or invariant) condition for the transition'® between pre-buckling
state to buckled state for any arbitrary elastic structure?" Naturally, some
other aspects will be also studied.

The Dynamic of Buckling D. Baroudi, 201

Buckling under self-weight

&
54581

Buckling Post-Buckling '. Time in ms

Figure 1.10: Example of dynamic behaviour of a column buckling under its
self-weight. Numerical simulation using discrete Hencky-type chain model.

In structural analysis we study the stability of various type of structures
as, for instance, rods, beams, plates and shell. For instance, stability issues
are critical in design of steel structures since, by definition, steel structural
elements are usually slender and thin. The number of standards (Figure
1.11) related to stability issues in design of steel and wooden structures
remind us of their importance.

For instance, the standard EN 1993-1-6 is completely dedicated to struc-
tural design and analysis issues of shells and shell-structures. This is be-
cause, these type of structures are known to be highly imperfection-sensitive
and thus their stability issues and non-linear behaviour with and without
imperfections is crucial and should be accounted for in design and analy-
sis. When, in addition to geometrically non-linear behaviour, the material
non-linearity is involved in the above analysis, the increase in complexity
of the problem make the computational and experimental approaches the

18Such transition is called a bifurcation and is possible only for perfect structures. For
instance, when a column eccentrically loaded, it start directly to have a flexural mode,
in addition to the compressive one. So, the bifurcation will not exist as such. In other
cases of practical importance, the loss of stability occurs through a limit points. (we will
come back to these basic concepts in details.)
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only feasible and practical way to have useful quantitative answer on actual
loading capacity or limiting displacement response.

Material non-linearity cannot be avoided because when structure or its
parts starts to have large displacements and rotations. In these cases,
the material behaviour becomes non-linear and such phenomena as local
damage, delamination, plasticity, with small or large deformations, visco-
plasticity, partial contact regions, local friction, ...) become determinant in
the overall behaviour. In such cases, the physics becomes dissipative. There
is also other additional complexity rising from complex geometry, presence
of stiffeners, holes, supports, junctions, etc. which are, in practice, impos-
sible to tackle analytically to obtain reliable quantities. However, qualita-
tively, analytical approach provides the concepts and handles in terms of
the non-dimensional products (variables) of the problem. In many practi-
cal cases, isotropy is the exception and engineers love to uses materials or
composite-materials with sub-structures. Examples can be cases including
anisotropic plates or laminates, laminated skew plates, fibre-reinforced com-
posite laminates and so on. So, Niet Scape'® for the need of computational
tools.

The system described above is not no any more a conservative and thus
static equilibrium framework becomes invalid. Therefore, path-dependence
dependency and inertia forces have to included. In one word: it is now time
do a non-linear dynamic analysis.

This being said, the knowledge of theoretical fundamentals and under-
lying theories become even more crucial for doing reliable and responsible
structural design. This first master course is dealing with elastic stability,
only. So, in the following, the structure are all assumed made of elastic
material.

Note that, in the assumed 'planar’ arch (Figure 1.12), the out-of-plane
motion should be prevented or the 3D stability behaviour should be anal-
ysed too. However, it may be easier to prevent the out-of-plane motion by
additional supports.

Of course, depending on the complexity of the structure under consider-
ation and on the material behaviour, computational approach may be the
only feasible approach. However, understanding the underlying theory is
necessary. Even when doing computational stability analysis one should
understand what are the key content of such analysis: determination of
the critical load and the sensitivity analysis with respect to imperfections

901d web browser. Here, I am playing with words, as I recall the saying of one of
my Russian ex-colleague: "NiET Scape" he was saying for the browser name Netscape.
In Russian language NET means nay or simple no. here I used in the meaning that we
have no other option beside the experimental approach.
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Standards: design of steel structures

*  Local buckling .......cccovverenvurnirninns EN 1993-1-5
*  Flexural buckling .......... . EN 1993-1-1 hot rolled columns
* Lateral torsional buckling .......... EN 1993-1-1 beams

* Lateral

* Flexural torsional buckling ........
* Local-global EN 1993-1-3

+ Distortional EN 1993-1-5

* Shear buckling

¢ Shell BUCKIINE oovreree v EN 1993-1-6
Linear elastic Bifurcation Analysis (LBA) (= linear buckling analysls)
= Geometrically Non-linear Analysis (GNA)
Geometrically Non-linear Analysis with Imperfections

* ok &

Standards: design of wood structures
* Stability issues & imperfections......... EN 1995-1-1

Standards: design of concrete structures

+ Sect.5.8 Second order effects with axial load..... EN 1992-1-1

Figure 1.11: Some standards related to stability issues in structural design.

L, 1400
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a) loading is symmetric b) loading is antisymmetric

Example of initial shape imperfections in an
arch (Standards: design of wood structures - EN 1995-1-1)

Figure 1.12: Example of initial shape imperfections (muotovirheet) in
wooden arches to be accounted in the structural analysis. The geometric
imperfection can be introduced into the non-linear analysis as linear combi-
nation of first buckling modes of the structure with amplitudes quantifying
the discrepancy between planned and realised geometry. a) represents a
symmetric imperfection mode and b) anti-symmetrical one.

(geometry, load eccentricities, ... ). In other words, How much the loading
capacity or critical load will be decreased by the effect of such imperfections
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when compared to the mechanical response of the ideally perfect structure.
Figure (1.12) shows an example of proposed initial shape imperfections
(Standard EN-1995-1-1) for wooden arches to be accounted for in the struc-
tural analysis and in the geometrically non-linear analysis. Figure (1.13)
reproduces a slide from my lectures-notes illustrating the basic difference
between linear buckling and non-linear (buckling) analysis (GNA).

Linear Buckling Analysis

Non-Linear Buckling Analysis (GNA) Linear Buckling analysis

Ideally perfect (For ideally perfect structure)

. Ll_near buckling analysis = splwngan structure , Provides the Buckling Load
Eigen-value problem. Provides the F srnallest Eigen-value
smallest Eigen-value (buckling load) Force A . /
for ideally perfect structure Buckling load of [fbifumaﬁnn point (critical)

* Anon-linear buckling analysis = a ideally perfect N, | @y e ——

eometrically nonlinear analysis Stmm”ej 5 3
aepme ! - 88 Non-Linear Buckling Analysis (GNA)
which is not anymore an Eigen-value- ¢
: s = Buckling [or limit) g R e e e e i e e
problem provides limit-load (or foad of imperfect N, : T gl 4
loosely called buckling load) for the structure ¢ \\ ;nsrcrllical
imperfect structure and the e L \
lisplacement-logd curve = _i';‘_;‘ l Lo .
. WX TR el T ———
* How to do GNA? Non-linear static+ /.. N struciure | §
radually increasing the loads + ¥ = ', actual
B! y s B 5 1) Montiagi syewatric f Structure Struciure
accounts for initial geometrical e with imperfections
imperfections (in real probie e i N
kst .rﬁ-; geametric imparfection Displacement
\'\\ N,
b) laading is antisyremetric N . n
Example of initial shape imperfectionsinan Introduce the 'mperfe‘:tmns

GNA = geometrics Non—linesar Analysi
arch {Standards: design of waod structures - EN 1595-1-1) i i

Figure 1.13: Hlustration of te basic difference between Linear and non-linear
buckling analysis (GNA).

There is also other geometrical imperfections®* to be quantified and ac-
counted for and which come from the geometrical tolerances in the initial
non-mounted structural members and connections, and additional toler-
ances resulting from mounting the structure.

On the subject of geometrical non-linear analysis, more will be told in
coming sections. Now back to basics, first.

In such structures, the stability loss has the next terminology which
corresponds also to engineering names for the macroscopic structural insta-
bility 'phenomena’ (Fig. 1.14).

e Flexural buckling (nurjahdus)

e Lateral-torsional buckling (kiepahdus)

20Muotovirheet (sf).
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Some typical loss of stability in structures
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S 4 F Buckling-of plates 4] Buckling of shells

1. Mikkola

Figure 1.14: Typical instabilities in structures. (Figure adapted from BW-
drawings in lecture notes by Emer. prof. Martti Mikkola.)

e Torsional buckling (vddntonurjahdus)

e plate and shell buckling (lommahdus)

In the following, we introduce the concepts of static stability of con-
servative systems through simplified illustrative example of a rigid ball in
gravitational field with constraint to move on the ground (yellow in the
Figure) without interpenetration. Note that, the following concepts are
general and independent on the complexity of the structure under consider-
ation. There exist three different types of equilibrium: stable, unstable and
indifferent (neutral) (Figure in margin).

1.3 Basic concepts

The main idea is the make the study of stability in terms of general vari-
ational calculus applicable to the more general case of continuous cases
where the displacements u(zy, xq,x3) are continuous functions instead of
finite number of scalar kinematic variables. For the scalar case one can
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directly use the derivatives instead of variation and obtains the sign of IT”
deciding for the stability. Let’s illustrate these three forms?! of equilibrium
by considering intuitively?? the initial equilibrium of the ball in the following
three cases: The shape of the surface on which the ball is moving is given
by the graph y = y(z), where the initial position of equilibrium is xy = 0.
The equilibrium points for which one investigate the nature of stability are
called critical points.

e perturbing a bit the initial equilibrium by displacing slightly the ball
on the conver surface (valley). Intuitively, we know that it will return
to its original position after removing the disturbance. Such equilib-
rium is called stable.

The Question o

e,

_ Equilibrium? Yes Al
' But, isit stable?—-No‘;’—g' S2(AID < O

Figure 1.15: Equilibrium and Stability - the difference.

e now, on the contrary, the ball is locally at equilibrium on the top of the
concave surface (hill). If now one perturbs slightly this configuration

2INature of equilibrium - Tasapainon laatu (Finnish)

22We have such a perfect and correct intuition which is educated by daily experiencing
mechanics since we are ourselves macro-mechanical living devices mechanically interact-
ing with our surrounding. Further, however, the type or nature of equilibrium will be
investigated using the language of mathematics since we are engineers and such language
is quantitative.
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then the ball will continue to move farther away from the original
position without returning to its initial configuration. Such initial
equilibrium (or behaviour) is said to be unstable.

e assume that, locally, the ball is in equilibrium on a horizontal plane.
If one displaces it slightly, the ball now remains at the position to
which the small disturbance has moved it. Such equilibrium is called
neutral or indifferent.

Let’s now illustrate the basic stability types 1 — 3 mathematically, keeping
the simplified example of the rigid ball. As the ball is perfectly rigid, the
total potential energy of the system consists now only potential energy of
gravitation II = Iy + mgy(z), where Il = II(zy = 0) is a constant at
the initial position of equilibrium xq. Locally, the shape of the surface is
described by the graph of y(x) = ax? which is the first term in the Taylor
series for the surface around the initial point of equilibrium. The scalar
a > 0 for convex, a < 0 for concave and a = 0 for the neutral equilibrium
cases, respectively. Therefore,

(z) = Iy + mgaz?. (1.17)
Now think that the initial equilibrium configuration xy = 0 is perturbed

slightly by an infinitesimal amount dx. Thus, the perturbed total potential
energy is

dIl(x) 1 d?TI(x) , 1 d*TI(x) 5
IT =1I = — e
(xo + o) (o) + T |20 + 5 da? |z (02)° + TR |20 (02)° +
(1.18)
1 1
EH@@+5mm+§ﬁmm+§ﬁﬁmyh“ (1.19)

Since zy is an equilibrium then d1I|,, = 0. Rewriting the above in a con-
densed form as

1 1
AH:H@Mw@—H@@ziﬁm%+§?mm+”. (1.20)

which provides us the sign of the increment of the total potential energy
AII between the perturbed and the initial equilibrium states. The study of
stability of the initial equilibrium is conducted by studying the sign of the
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increment AIL. First, keep only up-to the second order? term:

1 d*MI(x)
All = 2 da?

Hessian of II

|20 (62)% = mga(dz)* + O(6x)>. (1.21)

Consequently, the initial equilibrium z; is stable when a > 0 (locally convex
surface), unstable for a < 0 (locally concave surface) and indifferent when
a=0.

Bellow follows a résumé: At the critical points (equilibrium points),
studying the sign of the increment of total potential energy AII, makes it
possible to make statements on the nature of the actual equilibrium:

1. stable: (stabiili) AIl >0

2. indifferent : (indiferentti) AIl = 0. Often, the total potential energy
increment Al is expanded to second order only (squares of small
displacements). In this case, AIl = 0 and therefore, higher order
terms should be included in the Taylor expansion to decide of the
sign of AII to disclose the character of indifferent equilibrium.

3. unstable: (labiili, epéstabiili) AIl < 0

Follow some terms:

e initial state: (perustila)

e perturbated state: (héritty tila)
e perturbation: (hairio)

e increment: (poikkeama)

Note that, for this trivial discrete case with very limited number of
discrete kinematic parameters (only one x), one can have the sign by direct
use of Lagrange-Dirichlet stability theorem as

11" = 2mga. (1.22)

So, the stability of the configuration is dictated directly by the sign of a.

231f the second order term vanishes then higher order non-vanishing terms, for in-

stance, %%\m (6z)3, will be used when %%'Io (6z)? = 0 to decide the sigh of

the increment AII of total potential energy.
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1.4 Study of Elastic stability - the method

This chapter covers static elastic stability of some common elastic structures
as beams, frames, trusses, plates, cylindrical shells of revolution and open
thin-walled beams. before bifurcating to stability directly deriving equa-
tions of stability loss for such structures,’let’s stop a while’ and turn and
return a bit the word stability?* to discover its meanings in the engineering
context. So, patience.

1.4.1 Methods of stability analysis

In short, there is three (analytical) methods for studying the stability of an
equilibrium: 1) the bifurcation approach, 2) the energy approach and 3) the
dynamic approach. The dynamic approach is versatile and holds for both
conservative and dissipative systems. The energy method in the form of
the Lagrange-Direchlet theorem (stable equilibrium corresponds to a local
minimum of the total potential energy) is limited to conservative systems
only. In these lecture notes, we systematically use the energy approach.

There exits three (analytical) methods for studying the stability of an
equilibrium:

1. Bifurcation approach - write the equilibrium equations in a de-
formed configuration and determine the onset of buckling

2. Energy approach - the change of total potential energy of the system
between two neighbouring equilibrium states is used to derive the
equations of equilibrium and to study its stability

3. Dynamic approach - the equations of motion of the system are
established. i) Natural frequencies decreasing to zero, correspond to
the onset of instability or ii) investigate how an initial perturbation
develops with time

4. Computational method (numerical simulations) For design pur-
poses, detailed stability behaviour of structures can be analysed nu-
merically by performing a geometrical and material non-linear (GNMA)
analysis on the real structure with the inherent real and possible im-
perfections using capability of the Finite Element technology. Such
analysis provides full load-displacement curves which are used to iden-
tify bifurcations or/and limit points for determining the limit loads

24There is a complete branch of mathematics, Stability theory, which is devoted to
study the stability of solutions of differential equations and of trajectories of dynamical
systems under tiny perturbations of initial conditions.
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5. Experimental approach is necessary since models are only approx-
imations and very often, they are a very incomplete approximations.
For some structures, experiments are of primary importance

So, to say it another time, in a (may be!) shorter way: The first method
consist of writing the equilibrium equations in a deformed configuration
and determine the onset of buckling. In the second one, the change of total
potential energy of the system between two neighbouring equilibrium states
is used to derive the equations of equilibrium and to study its stability. In
the third method, the equations of motion of the system are established.
Natural frequencies decreasing to zero, correspond to the onset of instability:.
Let’s come back to what is stability.

1.4.2 What is stability as a phenomenon?

Stability or more clearly stability of equilibrium describes the nature of the
equilibrium of structures. Is such equilibrium stable, indifferent or unstable.
The transition from stable to unstable equilibrium (or reversely) occurs al-
ways through an indifferent equilibrium. Stability loss can occurs through
bifurcation points or at a limit point. The point (u, P) refers to a critical
point on the load-displacement curves (called also load paths).

Usually, stability is a concept related to systems having more than one
equilibrium state. This means that there exist adjacent equilibrium config-
urations. In such cases some equilibrium paths (load-displacement curves)
intersect in the configuration space (the graph of u = g(P)) . These in-
tersections are called bifurcation points. We speak then of bifucational sta-
bility loss. On the (total potential) energy-space representation (the graph
of AIl = f(P,u) ) such special points (critical points) correspond to local
extrema. Stable equilibriums corresponds to local minima: this is exactly
what the Lagrange-Dirichlet theorem says in short.

There is also systems with no bifurcational stability loss. Such systems
have only one equilibrium path in the configuration space. The loss of
stability can occur at a special point (on the load-displacement) curve called
limit point. At this point the apparent rigidity of the structure vanishes.
The classical example of such unstable behaviour (snap-through) is a shallow
arch under compression. However

Simplest examples for bifurcational stability loss are the bistable systems,
with two equilibrium states where the system can rest in either one two
states (Figures 1.16 and 1.17) . We will study, later, an idealised example
of such mechanical system known as Mises truss.
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These equilibrium states correspond to local minima in potential energy
of the system. A tiny external perturbation, in term of input energy, can
make the system switch to another equilibrium state if enough energy input
is given to jump the barrier separating the local minima. Between two local
minima a local maximum should exist. The state at this critical point
is unstable. This local maxima is termed as potential barrier. An other
example of such bi-stable mechanical simplest system is the mechanical light
switch device. It has two equilibrium states, and it switches between them
upon input of a tiny external energy input when your finger initiates pushing
slightly the lever making it switches trough snap-through to one of the on-off
positions and remains there.

Simple bi-stable simple mechanical system Dynamics of
snap-through with initial stable pre-

F buckled shape
M/QL\‘ {Numerical simulation, Baroudi 2019)
P_) (_E

i
a) 1F

P>P, /,.-—e»—-—..\
Transverse stable W) @ 4 0ms

force F
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‘M st

Vertical tip-pasition
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Total potential 4

energy
unstable

unstable .W 14 ms

Vertical tip-position

; stable (#y . 19ms
stable stable V

c)

Bi-stable states El

Figure 1.16: a) Simple example of bi-stable mechanical device. ¢) a slightly
pre-buckled beam to its first mode (a shallow slightly pre-stressed arch)
is a bi-stable system. c¢) and e) Transition between the two-equilibrium
stable configurations occurs through higher modes (full dynamic simulation
of snap-through. The model used is dissipative).

Another example of such systems with multiple equilibrium states, that
the reader may recall from his high school education, is related to conditions
of existence of phases of water (ice, liquid and gaseous). Of special interest,
is the critical point named the triple point on the phase stability diagram
(Figure 1.18). At such point all the three phases can co-exist! Such diagram
shows on a graph having the pressure P as z—axis and the temperature 7'
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Figure 1.17: Stability of a shallow arch. The arch is an example of bi-stable
systems: the transition between the two-equilibrium stable configurations
occurs dynamically.

as y—axis, which are the control parameters of the system, the boundaries
separating stable regions for the stable existence a given water phase: liquid,
solid or vapour. At such critical point which corresponds to a bifurcation
point, all the three possible states of water phases co-exist at such point. A
tiny external energy input, a perturbation, makes the water ice, vapour or
liquid. For instance, a supercooled water: a pure water can be cooled below
zero degrees Celsius without freezing even up to —40 °C?. Any impurity
in the water acts as a perturbation. That is why it was purified to make it
close to ideal pure. Now, if you hit the bottle’ with your small finger, all the
water freezes at once and becomes ice. The system bifurcated to another
equilibrium state. These example above were just to immerse the reader
into the meaning of the word stability. In this course, we will concentrate on
stability of conservative systems. The stability of elastic structures such as
beams, frames, trusses, plates, shells will be addressed during this course.
Now stability, as a concept, is not just a word but much more than that;
the nature of the response of a structure (a system) to a tiny external
perturbation being encoded into this word.

We can say that emergence of our actual universe including us, is a con-
sequence of loss of stability of the primary universe. Such loss of stability

25such supercooled water naturally exists in the clouds as droplets. Any perturbation
can initiate ice crystals formation
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Water phase diagram
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Figure 1.18: Phase diagram of water. Can be called also [phase stability
diagram.

is called by physicists symmetry breaking. According to the principle*® of
supersymmetry it is believed that just after the big bang, all of the forces
of nature were identical and all elementary particles were the same. But
within an ’instant’, this symmetry was broken ...and the universe emerged.

In physics, loss of stability (bifurcational type) belongs to the class of
symmetry breaking phenomena where action of infinitely small perturba-
tions (fluctuations) on the system being close to a critical point leads to
sudden branching through bifurcation to some other possible neighbouring
state. At the bifurcation point multiple possible states emerges (branch-
ing routes). Such behaviour will be treated in details when investigating
the stability of equilibrium paths, especially in cases of bifurcational loss of
stability of elastic structures. Such concept as equilibrium paths will of be
defined properly subsequently.

From the point of view of mechanics, the phenomenon of loss of stability
is dynamic by nature. The snap-through of a shallow arch, resonance in
parametric excitation of stay-cables of a bridge or cable of guyed tower and
in flutter are such examples. Generally, inertia forces should be accounted
in such analysis using classical method of dynamics stability (Lyapunov®’

26This principle is not yet validated (25.2.2019). [The supersymmetry is a general
principle and not a theory.]

27Tt can be shown than that for conservative systems, the energy criterion for stability
can be derived through the more general Lyapunov dynamic stability criteria. (tarkista,
ettd viitteet)
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stability, for instance, Lyapunov (1893).

Dynamical systems are generally described by differential®® or difference
equations. There exist various types of stability for their solutions. The
stability near to point of equilibrium?® (critical points) is may be one of the
most important. Theory of Lyaponov addresses such stability very simply
in terms of initial state perturbation (Figure 1.19):

Lyaponov stability: If at an equilibrium point x., two solu-
tions (time series) having initial conditions close to each other
remains close to each another for ever then the equilibrium point
xe 18 Lyaponov stable.

Non-linear dynamic systems are generally described by an n—dimensional
non-linear evolution equation

(t) = f(z,t;N), £ >0

2(0) = o, (1.23)

Where A being a control parameter. The system posses equilibrium points
z. (states) defined by f(z.) = 0. Now rises the nature of stability of such
equilibriums points z.. In terms of mathematics, equilibrium point x. is
Lyapunov stable, (Figure 1.19), if

Ve > 0, 39 such that ||z(0) — z.| <6 = [|z(t) — x| <€ VE>0.

The discrete equation of motion of a mechanical system, can be recast
in terms of a canonical non-linear dynamical problem (Equation 1.23) by
introducing the velocity v = u as a change of variable in addition to dis-
placements u. The discrete equation of motion being

Miu + Ca + Ku = f, linear case

. , (1.24)
Mi = f(u(t),t), non-linear case.

28Like non-linear dynamic system () = f(z(t)), (0) = o, for instance. The equi-
librium of such systems is given by points z. such that f(z.) = 0. Now the stability of
such equilibrium points is of interest. For that, Lyapunov stability is often used.

P They are critical points such that @(t) = f(x(t)) = 0. Note that at such points the
rate ("velocity’) is zero. So, one have no motion. This, if we think of our mechanical sys-
tem, means that in the vicinity of such point we have static equilibrium. Assuming that
the external forces f = Afy and applying mechanical energy conservation principle when
i = 0,u = 0, and linearising the obtained equations in the vicinity of the equilibrium
point one obtains a linear eigenvalue problem for determining the critical (buckling) load
and the corresponding eigenmodes (buckling modes). However, this is an ad-hoc way
to say that one can may be approach stability problems, for conservative mechanical
systems, by studying the stability at static equilibrium. A full prove is out the scope of
this lecture.
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Figure 1.19: Lyapunov stability.
Consider the more general case with non-linearity®’; second equation in

(1.24). After change of variable and accounting for that v = i one re-write
the equilibrium equation in the non-linear ode form

RN Uw 1

So, we see that general discrete equations of motion are reducible to the
non-linear evolution equations of dynamical systems (Equation 1.23). So,
Lyapunov stability criterion can naturally be applied in structural dynamics
(Figure 1.20).

Let’s now return to the main subject of this writing which is focused on the
static stability of elastic structures. Elastic structure posses strain energy
functional. 1f in addition, the work of external forces do not depend on the
taken path then they are conservative. Under these two conditions case our
system (structure and loads) is conservative.

For conservative systems a strong stability theorem by Lagrange (1788)
and Dirichlet (Lagrange-Dirichlet stability theorem) exists. This theorem
will be our main tool for deriving loss of stability equations for the whole
variety of structures like columns, frames, arches, plates, shells and so on.
The generic name energy criteria of stability is nothing else than the many
applications of this theorem saying that system is stable if its potential en-
ergy is positive definite’’.

30This is valid also for the linear case (linear coefficients), where now f := f — Cu—Ku
31More generally, this means that the second derivative of the total potential energy
increment should be IT” > 0. The derivatives are to be defined in terms of variational
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Lyapunov dynamic stability criteria
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Figure 1.20: Tacoma Bridge collapse, a classical example of dynamical in-
stability (flutter). Flutter: a coupling between bending and torsional modes
through aero-elasticity exists.

This theorem allows to approach the stability problem as a static one by
investigating the 'shape’ and curvature of the total potential energy surface.
So thanks to this theorem, stability analysis reduces practically to a study
of the positive definiteness of the tangent stiffness matrix of the structure.
Consequently, the stiffness matrix of the linearised system determine the
critical loads. The linearised homogeneous system is obtained from the total
potential energy which is quadratic in displacements. To study the post-
critical behaviour, higher terms than quadratic ones should be incorporated

~ into the total potential energy.

For our luck, in many civil engineering structures, static approach -
ignoring the effects of inertia forces - leads to the same results as when using
dynamics, in terms of loss of stability (determining the critical load). This is
true when the system under consideration is conservative (elastic structure,
ideal constraints and the external loads are conservative). Therefore, in the
following, we limit our selves to such conservative systems and terms this
approach by static elastic stability.

In one word, performing stability analysis is to answer the fundamental
question "does the structure sustains its current equilibrium configuration
or not, after any arbitrary infinitesimal perturbation?" So, Stability analysis

calculus with respect to the kinematics. The criterion 62I1 > 0 is a special case for up-to
quadratic terms expansion of the total potential energy functional.
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Generic equilibrium path

Critical points

Figure 1.21: Generic equilibrium paths and types of critical equilibrium
points as bifurcation or limit points. (Haarautumis- tai rajapiste, (sf))

investigate next things3?:

e Equilibrium configurations existence of multiples equilibriums or
of limit points

e Stability of these equilibriums with respect to small perturbations

e Sensitivity with respect to imperfections as for instance, shape,
geometry, Loads (eccentricity) and material imperfections

In other words, one try to answer questions like:

e can we predict the critical load? the smallest value is called the buck-
ling load. Such analysis is known as linear buckling analysis

e what happens at the bifurcation (or limit) point or at its neighbour-

hood?

e can we describe or determine the post-critical branches? Nature of
stability?

e what about imperfection-sensitivity?

32The purpose of stability analysis is 1) to determine the critical points and 2) to study
their sensitivity to small perturbations (Corridor conversation with R. Kouhia, 2018).
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To answer the above questions one needs to do continue the linear buclkling
analysis with post-buckling analysis or a full non-linear analysis.

How to test an equilibrium state for stability?

I included the question in the title to answer in a written mode for the
n—th time, the question of a good master student during the class. From
his question, one see that the concept of equilibrium, stability of an equi-
librium and testing for stability need time to be deconfused correctly. The
student wondered why an cantilever beam of I-cross section which is only
loaded in the transversal plane of symmetry loses its stability, after the load
has reached a threshold value, and buckles with a combined lateral deflec-
tion and a torsion? There is also a detailed explanation given following in
sections (1.4.2 and bellow)

The student was apparently puzzled and he reformulated his question
again while I was waiting for him to recall the answer by himself: "How the
I-profile knows to twist and the deflect laterally while it was only deflecting
first only in the vertical plane of loading without knowing anything about
torsion?"

"Why the I-profile have a combined twist and lateral flexural modes in the
post-buckled state despite that in the initial state pre-buckled flexural mode
in plane of the Loding?" The answer is to recall what is stability? How the
linearised equation of loss of stability are derived? How to study it as a
phenomenon?

A short recalling answer: The stability of an equilibrium, or shortly the
stability can be studied or tested experimentally, theoretically and numer-
ically in the same way: we consider a physical system being in an initial
equiltbrium and then we introduce a small perturbation to the system and
check does the system returns to its initial equilibrium state after removal
of the perturbation or does it find another (than initial one) equilibrium
state?

The perturbation can be introduced to the pre-buckled system in the
form of a tiny perturbation of the initial configuration or a tiny force per-
turbing the initial configuration. So, in the example of I-beam cantilever,
the information about post-buckled torsional and lateral-flexural modes,
do(x) and dw(x), respectively, is already injected by as perturbations or
post-buckling modes into the buckling equations or the change in the total
potential energy of the system between pre- and post-buckled state (Figure
1.22).
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Figure 1.22: Look and see by your-self: testing for the nature of an equilib-
rium by introducing tiny perturbations d¢, dw and dv.

About the stability equations and Adjacent-equilibrium criterion

What are the physical basis and how are derived the stability equations?
Physically speaking, we use the criteria of adjacent-equilibrium. What does
it mean? We consider an initial equilibrium state in which the structure is
already. Then, the structure is slightly perturbed from this initial configu-
ration and moves a neighbouring state. The criteria of adjacent-equilibrium
requires that the neighbouring state is also an equilibrium state (Figure
1.23). It is based on this criterion, that the stability equations are derived.
The criterion of adjacent-equilibrium is also known as stability criterion.

Usually, there is two approaches to use this criterion: a) a variational (La-
grange) and b) a vectorial (Newton) form. In the vectorial form, the local
equations of equilibrium are imposed for the perturbed configuration for an
elementary differential element of the structure. In the variational form,
the equilibrium at the perturbed (deformed) configuration of the structure
is imposed globally through stationarity® of its total potential energy. In
both approaches, the geometrical non-linearities of the deformations should
be accounted for, explicitly.

The variational form of the criterion for the existence of and equilibrium
adjacent state (Figure 1.23) can be written formally or generically in the

33Provides the weak form of perturbed equilibrium equations.
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next way:
Equilibrium initial state = 5% =0 (1.26)
(Requirement) Equilibrium perturbed state — §S* =0 (1.27)
3 Adjacent-equilibrium state = §(AS) = §(S* — §°) = 55* - §5° =0

(1.28)

where S- total potential energy (or action) and AS = S* — S% being the
change between the two neighbouring states. The initial state (with S°)
being an equilibrium state. The perturbed state (with S*) is thought to be
achieved trough a virtual perturbation d¢; of the Lagrangian coordinates
q; of the system while keeping the loading unchanged. So, in short, AS
can stand for the increment of total potential energy AII of the system
which corresponds to the virtual variations dg; of the initial equilibrium
configuration g;.

So, generically, the criterion of existence adjacent-equilibrium state im-
plies that

65" =0 A 05* =0 = §(AS) =0. (1.29)

The criterion (1.29) is quite general. It is known by energy criterion of loss
of stability.

About the energy criterion of stability

Here follows an introductory word** to have the smell, the colour and the
Formula for the criteria in studying stability of an equilibrium. In further-
coming section, they will be treated in the level of details they deserve.

For now, just keep in that the critical condition §(AIl) = 0, (Cf. Fig-
ure 1.25), is a general and that the well-known classical Trefftz condition,
§(0%T1) = 0, for loss of stability, can be derived as its corollary for special
case when %I # 0 (as it will be shown later).

Notation and basic concepts: AIl has a physical meaning; it is the
increment of the total potential energy of the system between a perturbed
u* = 4 + 6« and the unperturbed state @ (primary equilibrium) (Figure
1.25). Here, the (virtual) infinitesimal perturbation ¢4 is thought to occur
while keeping the loading unchanged.

In general, the perturbation du of the initial state @ can be arbitrary

(Figure 1.24). However, in practical cases when one is interested only by

341 probably, will merge this paragraph with the one coming later addressing energy
criteria of stability.
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Figure 1.23: Generic illustration of the adjacent-equilibrium criterion in its
variational version (up). (Au is an infinitesimal perturbation corresponds to
w on the lowest plot). Finite element post-buckling analysis (Lower figure).
Note the initiation of combined lateral and torsional motion of the cross-
section. Note that at buckling (zoom the infinitesimal neighbourhood of the
bifurcation or limit-point) the load P does not increases. So, the value of
P (external loads) remains unchanged between S° and S* (Cf. horizontal
tangent at buckling, see margin figure)

the critical load, the increment AII is linearised in the neighbourhood of
the critical point to obtain the so-called linearised homogeneous equations
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of elastic-stability (They represent an eigenvalue problem).

As a consequence of linearisation, we loose the information on the nature
of such critical point and have no information concerning the post-critical
behaviour (Figure 1.21). One cannot determine the buckling or deforma-
tions, for instance. Note that the reference configuration has not to be at
a critical equilibrium point. Any other equilibrium configuration can be
chosen as a reference state to be perturbed.

About perturbing the initial equilibrium state: what are II° and
IT* in AII?

These few lines came out to clarify one question I got during a yesterday
(4.3.2019) lecture. The question ... does the value of P changes between S°
and S* when I form AIl? (See Figure 1.24).

1. Real loading sequence: One way to think how form the incre-
ment of total potential energy is through a real loading sequence where
the load increases quasi-statically and monotonically from zero to the
buckling load Pi = Py + € where the real imperfect structure buckles,
and where € being infinitesimally small > 0. The primary non-buckled
configuration (primary equilibrium) corresponds to Py = Pr—e¢. Now
one can form the increment of the total potential energy between these
two real states IIY and IT* and takes the limit when e — 0. Taking
the limit is to say that we are at the bifurcation or limit-point where
now the critical load being Pg. (Figures 1.23 and 1.24)

2. The thought experiment: the other more classical way (varia-
tional) We consider first, the initial pre-buckled equilibrium state
(configuration) (generically, u # 0 - axial displacement and v = 0
- bending deflections) under membrane loading only (generically, ax-
ial load P). The total potential energy in this state is denoted IIj.

Then, keeping the loading unchanged, we introduce a tiny ’lateral’
perturbation v* such that, generically, v = 0 + v* and u does not
change. This state is called post-buckled state. The total potential
energy for in this state is now II*. Now, the increment or change of
total potential energy is defined as AIl = IT* — IIy. It is this incre-
ment that we consider in these reading material. Now come the time
to check if this new perturbed configuration is an equilibrium state or
not. If it is an neighbouring (with respect to the initial equilibrium
state) equilibrium state, then, the structure can remain in this this
new equilibrium state. If it so, then this motion from the primary
equilibrium to the adjacent equilibrium state, is what is called loss
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of stability. Now rises the question how to check if the perturbed
configuration v # 0 is an equilibrium? The answer: we introduce
an arbitrary virtual displacement dv to this infinitesimally perturbed
state v and require that the virtual work thought ezperiment® of all
forces vanish (see margin figure and Fig. 1.24).
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Figure 1.24: How to form AII? This is one strong way to visualise the
procedure of perturbation: The initial primary equilibrium state v° is per-
turbed into an adjacent state v* = v+ dv, in a thought-experiment by a tiny
virtual displacement dv while keeping the load P constant. Then the energy
criteria for loss of stability 0(AIl) = 0 requires the perturbed state to be an
equilibrium state too. The load level P can be also chosen arbitrarily, even
above the buckling load Pg.

35 Cf. to the virtual displacement concept in the classical theorem of virtual work. The
virtual work principle is fundamental in analytical mechanics and Lagrange developed his
Lagrangian mechanics through the use of such principle while accounting for the virtual
work of acceleration forces (= -inertia forces) by D’Alembert’s principle . Lagrangian
and Hamiltonian methods together with the least action principle can be derived from
this principle. In one word, all these three principles lead naturally to Newton’s law of
motion. By curiosity, the Hamiltonian Principle directly follows from the virtual work
principle, dW = 0, Yéu, by asking — tf OW - dt = 0 where the virtual displacements
have kinematically admissible.
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Figure 1.25: Stability of an equilibrium by energy criteria. A physical inter-
pretation of the general critical condition §(AIl) = 0. Al is the increment
of the total potential energy between a perturbed (post-buckled state) and
the unperturbed state (primary equilibrium or pre-buckling state). Note
that at buckling (zoom the infinitesimal neighbourhood of the bifurcation
or limit-point) the load P does not increases (horizontal tangent at buck-

ling).

About post-buckling analysis

In post-buckling analysis one need to solve or trace the load-deflection his-
tory while the structure is loaded incrementally in a monotonic way. Per-
forming such task is far from trivial. Quasi-static or static analysis can
be often sufficient. However, for some structures (as thin imperfect shells,
shallow arch, ...) there can be some snap-back which makes the displace-
ment control 'not correctly working’ (multiple solutions for one given dis-
placement) or snap-through making force control mot correctly working’
(multiple solutions in displacements under one same load) . If we are inter-
ested in the complete load-path history, it may be wise (expensive one) to
perform a dynamic analysis while introducing artificially over damping to
the structure when needed.

Physically speaking, the structure suddenly loses its effective rigidity at
the critical points since on the equilibrium path (curve representing imposed
force versus displacement) when such points has horizontal tangents or they
correspond to points with a dramatic change in the apparent rigidity. This
is the reason why a small lateral force in a support, in the direction of
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buckling, is enough to prevent efficiently against buckling.

About computational analysis of stability

Addressing stability issues (buckling load and post-buckling analysis) of real
structures which can be made by assembling many structural elements in
a complex way, can be done only by numerical simulations (Cf. margin
figure). However, fundamentals of stability should be learnt well in order
to obtain results which are reliable since, the engineer should also provide
(experimental) validation of his results or at least a quantified estimation of
the validity range of the obtained results. providing validity ranges is one
of the hardest and most laborious task since experimental work is usually
needed to obtain practical answers of use for cases with high consequences
for safety. Even, participating to planning such experimental work an en-
gineer needs good knowledge of fundamentals.

Traditional courses deal, usually, with stability of basic single structural
members as beams, column-beams, frames, lateral torsional buckling of
beams, buckling of plates and cylindrical shells, etc. .... In addition, such
courses focus more on the determination (linear buckling analysis) of the
smallest critical load (= buckling load). The post-buckling analysis some
of its aspects are not dealt with, independently how critical they may be in
structural design®®

Numerical approach should be given (allocated) equally attention than
the traditional basic theoretical content for such course since the computa-
tional technology as, for instance, FEA | is our days available and of every-
day use. The students, during this course, should focus more on the concepts
to understand the phenomena of stability in order to make more reliable
numerical simulations. Therefore, making models and asking the correct
questions to be addressed and solved computationally, is the second core of
the learning-outcomes.

1.5 Equilibrium paths
The basics of stability concepts can be accessed by studying illustrative

examples of simple elastic systems having one, two or more degrees of free-
dom. This means that, these concepts and approach is valid as such for more

36As a side note, there is a good reading material about post-buckling
analysis and its technical aspects, by full professor Reijo KOUHIA at
http://www.tut.fi/rakmek/personnel/kouhia/teach/ named Computational
techniques for the non-linear analysis of structures, 2009."

1
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Figure 1.26: Buck-
ling of axially
compressed thin
shell. Computed as
a full 3D geomet-
rically  non-linear
problem for illustra-
tion purposes. (3D
model just to avoid
the question what
shell-theory to use?)
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complex structures as frames, trusses, plates, shells and so on (structural
elements and structures). The concepts to study are equilibrium paths, bi-
furcation and limit points, critical load, linearised homogeneous equations
of stability, energy criteria for stability loss.

Equilibrium path(s) is a curve or curves describing the relation between
the displacements at some specific locations of loaded structure and the load.

In general, apart from this one or few degrees of freedom rigid bars-
springs systems, more complex structures are not tractable analytically.
In general, equilibrium paths are derived computationally? through a full
non-linear analysis (post-buckling analysis) for a given structures (see Fig.
1.176). Solving analytically equilibrium path (load-curves) for even a simple
slender elastic rod (Elastica) is impossible. The only way to solve it is
by doing geometrically non-linear Finite Element Analysis®”. However, the
general concepts and the general methodology to study stability loss are not
dependent on the degree of complexity of the examples used to illustrate
them. The main peculiarities of the behaviour of the structure can be
studied by considering the equilibrium paths at some characteristic points
(equilibrium points).

It will shown further that the bifurcation points of the initial equilibrium
state can be determined without solving the post-critical®® state. For this
purpose, the non-linear equation will be linearised in the neighbourhood
of a critical point (Figure in the margin). The set of equations is called
homogeneous linearised equations of elastic-stability and is in the form of
an eigenvalue problem. Solution of such eigenvalue problem provide us
the critical load (as the smallest eigenvalue) and the corresponding new
equilibrium configuration up-to a scaling factor (eigenvectors or buckling
modes). It should, however, be stressed that such linearised equations of
stability cannot provide any information on the type of the critical point
nor give the post-critical state (finite displacements). For these purpose,
one should perform (geometrically) full non-linear analysis.

Note that, linearised analysis is not applicable when the structure has
significant non-linearity already before the critical load.

As previously concluded, basics of stability concepts demonstrated by
studying simple elastic systems with few degrees of freedom. However, for
educative purposes and to immerse the student in reality, I produce next

37This is also one scope of this course.
38which can be obtained by solving the non-linear equations for arbitrary displace-
ments.
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figure (Fig. 1.27) to illustrate equilibrium paths (load-displacement curves
(wo, p/per) of more complex structure, namely, spherical shell caps. Stability
of shells will be treated later. Here, the pressure is p [Pa] and the deflection
at mid-span wy [m]. If there is one thing to retain about thin shells then
it will be that their behaviour is very sensitive to imperfections; especially
shape imperfections. This aspect will be quantified once we get there.

Picture and text legend are from the reference bellow: Load deflection curves for externally
page 38.himl | (2018) pressurized spherical caps

hito/ishellbuckling. com/presentationsbuckledSh

Load deflection curves for Yp i ical caps

This slide demaonstrates the transition in behavior from that of a flat plate under
uniform pressure to that of a deep spherical cap or a complete spherical shell
under uniform external pressure,

Limit point
snap-through

The flat plate (a) exhibits increasing stiffness as the pressure is increased and
membrane tension develops as the flat plate bends downward under the
pressure.

Avery slightly curved plate [b) initially softens, then stiffens as the external
pressure is increased, but there is no local maximum load-carrying capacity.

------ Linear Prebutkiing ® = Complete Spherical Shall
The somewhat more curved plate (c] exhibits the type of nonlinear buckling Bifurcation Buckling Pressure
called “snap-through”; The plate softens until it has zero stiffness, then "snaps” ———— « Manlinear Presuckling * « Spherical Cap Rifurcation
into an inverted position, after which it stiffens with further increase in pressure, Pressure

h E
A plate with more curvature yet [d] exhibits non-axisymmetric bifurcation P ' o ) bty N\
buckling (black points) before axisymmetric “snap-through”, The bifurcation ¥ . H_;__m
buckling load fram linear theary is samewhat higher than that fram nonlinear o

)

’ [
theory in this example. ol Pes

Mer
“II (d) (e) (f
=1 A+l AN
Pl
— ‘-...._____..-'o — "

Figure 1.27: Load deflection curves for externally pressurized spher-
ical caps. (Picture and text legend are from the reference bel-
low: http://shellbuckling.com/presentations/buckledShells/pages/page_38.html
(2018).

Deeper [or thinner) plates yet (e, f] exhibit the same type of behavior as {d), with
the characteristic equilibrium paths having an increasing degree of the "doubling
back™ feature typical of shells the behaviors of which are extremely sensitive to

iniial impesfections Shell depth H/h ~ radius/thickness

1/4 ymy /2

Lambda is a "shallowness® parameter A = 2[3(1 - 92] 1

1.5.1 Example of full non-linear and the linearised ho-
mogeneous problem

Here follows an illustrative example clarifying the main difference between
linearised equations of elastic-stability loss (eigenvalue problem) and the full
non-linear equations describing the post-buckling behaviour.

Consider the Euler’s Elastica (Cf. Chapter 4) which consists of a slender
elastic road loaded with a conservative non-following end load P, (F =
(0,—P)). Just imagine the pole used by Serguey Bubka, the legendary
pole vaulter. Assume a conservative compressive loading P of such pole
at one of its ends. The second end being rigidly clamped. The pole he is



3 Derived by Leon-
hard Euler in 1757
while investigating
buckling of columns.
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using is an perfect example of such Elastica. The problem is to determine
the configuration (or the shape) of the pole as the loading changes. Such
problem is naturally a non-linear one and is given by the the classical Euler’s
Elastica problem (Fig. 1.28).

For elastic behaviour the bending moment-curvature relation M = Elx =
—FE160' holds. Derivations are with respect to the arch-length s. From equi-
librium consideration written in the flexural deformed configuration (post-
buckled state), the non-linear post-buckling equation is obtained

EI10" 4+ Psin(6) = 0. (1.30)

After accounting for the boundary conditions M (¢) = 0 and 6(0) = 0,
the above equation can completely be solved®?. The solutions (Left part in
Fig. 1.28) describe fully the post-buckling configuration as a function of the
load P. Therefore, as a conclusion, we can see that the entire post-buckling
behaviour is captured explicitly by this non-linear problem (Eq. 1.30 and
Fig. 1.28). Thus, one can now address naturally the stability nature of
such post-buckled configuration and solve the configuration for any given
value of the load P (Figure in margin for such configurations for various
loadings.).

Now let’s see what will be the linearised version of these non-linear
equilibrium equations (1.30).

In order to derive the classical Euler’s buckling equation as an eigenvalue
problem? which constitutes a linearised system of equilibrium equations for
(1.30) in the vicinity of the critical buckling load P = P, which remains con-
stant during buckling. In addition, the Euler-Bernoulli kinematic, § = v/,
is naturally assumed. The equilibrium non-linear equation (4.6) linearises
in the following manner

EI6"(s) + Psin(6(s)) =0, (1.31)
EI0"(s) + PO(s) = 0, (1.32)
EIV"(z) + Pv'(x) = 0, (1.33)

when we consider small displacements®® z(s) ~ X(s), y(s) ~ Y(s) and
rotations for which sin(f) ~ 6 = v'. Thus now s ~ z ~ X. Derivation once
again the last equation above with respect to x, on obtains the classical
familiar Euler’s buckling equation

Elv®(z) + Pv"(x) = 0, (1.34)

39Please refer to classical textbooks.
40Capital letters refer to the initial coordinates while the small letter, to the actual
configuration, respectively (Material / spatial coordinates).
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x4+ Ax

X

Finite displacements and finite rotations

Figure 1.28: Euler’s Elastica as a geometrically non-linear problem. The
finite curvature being k = ¢’. The deflection being v. In the actual example,
we have ' = (0, —P) a compressive conservative load.

which is the linearised homogeneous equation of elastic-stability and, math-
ematically, represents an eigenvalue problem. Therefore, only the critical
buckling load can be solved and no information for the post-buckling be-
haviour can be extracted from the solution of such equation (1.34) using
appropriate boundary conditions. In addition, the corresponding Eigen-
vectors (buckling modes) provides some information about the the corre-
sponding new neighbouring and infinitely close equilibrium configuration
up-to a scaling factor. On the contrary with the full non-linear equilibrium
equation of the post-buckling of the Elastica, now, no information about
the nature of the new equilibrium can be extracted.

X %k %

1.6 Types of bifurcational instabilities

The nature of post-buckling behaviour determines to a large extend its
safety and the robustness of the structural design. The basic type of post-
critical behaviour of a structure can be classified into next classes (Figure
1.29):
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e stable symmetric. Structures having this type of behaviour are always
imperfection insensitive and have consequently a reserve of resistance

e unstable symmetric. This gives imperfection sensitive structures

o asymmetric or unsymmetrical. This gives much more severe imper-
fection sensitive structures than above

To the above post-critical behaviour, one should add the snap-through be-
haviour. Such dynamic behaviour is pathological not desired behaviour and
can be seen as asymmetric branching on the equilibrium path.

So, to summarise, bifurcational stability "loss’ can be classified into one
of the types of instability shown in Figure (1.29) with examples of structure
having such post-critical behaviour.

These types of bifurcations are not just nice drawings on paper but such
behaviour has been observed, experimentally, in real structure as shown, for
instance, by Figure (1.30).

Koiter (1945) have shown that for all elastic systems, the initial post-
critical behaviour follow the famous asymptotic power law*!: the reduction
of the collapse or maximum load Ayax/Aer = Pax/ Per, for the perfect struc-
ture, is reduced proportionally to the 2/3 or 1/2 power of the imperfection
magnitude??. Usually exponent 1/2 and thus, a higher reduction, is related
to asymmetric unstable post-buckling behaviour which more ’sensitive’ to
perturbation than the symmetric unstable one, for wich the exponent is
2/3%. In some frames, the reduction can be moderate. However, for cylin-
drical shells, it was found that the reduction is significant: the maximum
collapse load can be reduced by a factor 1/8 to 1/3 as compared to the buck-
ling load of the perfect structure. In shells such imperfections are inherent
and inevitable. (more of this in the Section dealing with shells).

41Known as Koiter law or Koiter’s 2/3-power and 1/2-power laws.

42Do post-critical study and plot the maximum post-critical load versus the chosen
imperfection parameter . The imperfection parameter can be, for instance, eccentricity,
relative initial shape imperfection, etc. It is practical to draw Pmax/Per OF Amax/Aer
versus the logarithm of the relative imperfection «, for instance a geometric imperfection
relative to thickness , in the case of shells. This way, the slope of the straight line will
give you the exponent of th power-law.

43Cross-check this; RK?
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Figure 1.29: Type of loss of stability in buckling (bifurcations) for ideally
perfect geometry and with imperfections. Illustrates also the effects of initial
imperfections. The load parameter is A , A, the critical (buckling) load and
w being displacement at a control point.
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1.6.1 Equilibrium paths for simple rigid bar systems
with springs

As told previously, the basics of stability concepts can be accessed by
studying examples of simple elastic systems having one, two or more de-
grees of freedom. With rigid bars, all the strain energy concentrate in
the springs. With such systems, we also demonstrate, in addition to the
equilibrium paths (load-displacement curves), critical points and so on, the
principle difference between full-non-linear equations describing the post-
critical state and their linearised homogeneous versions in the vicinity of
critical points. For comprehensive readings, the reader is encouraged to re-
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_ Roorda’s (1971) experimental verification
of calculated posteritical response in asymmetric
bifurcation of a I'-frame.

Roorda, 1971, An experience in equilibrium and
stability, Techn. Note No. 3, Solid Mech. Div.,
University of Waterloo, Canada.

Figure 1.30: Experimental evidence of asymmetric bifurcation in structures.
Roorda’s (1971) frame experiments (dots and circles). for positive eccen-
tricity e > 0 stable behaviour, and unstable for e < 0. (e > 0 in the
Figure)

fer to textbooks!. (see the footnote for proposed examples of readings, in
addition to classical Timoshenko’s classical textbook on Theory of Elastic
Stability, 2nd Ed. or later).

In the following, we present the general types of equilibrium loss be-
haviour in terms of ’geometrical’ considerations on special points (criti-
cal) on equilibrium paths (load-displacement curve) and in terms of critical
points on the hyper-surface representation of the total potential energy.

To make it tractable, by hand, the models will have only few degrees of
freedom. On the energetic surface, equilibrium points correspond, geometri-
cally, to points on the surface having horizontal tangent- planes (§(II) = 0).

441, N. A. Alfutov, Stability of Elastic Structures. Springer 2000 (translated from
Russian). 2. H.G. Allen. Background to Buckling. McGraw-Hill Inc., US (May 1, 1980).
3. J. Robert, Buckling of bars, plates ans shells. Bull Ridge Publishing. 2006, 4. S.P.
Timoshenko & J.M. Gere. Theory of Elastic Stability.
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Stability at such points, stability of the local equilibrium, is thus recast as
geometrically examining the sign of the curvatures at that point. If the cur-
vature is positive in all horizontal directions (convex) then the equilibrium
is locally stable, otherwise, if one of the curvatures is negative (concave),
the the equilibrium is unstable. The sign of the generalised curvature will
be studied in terms of signs of §%(IT) (Fig. 1.35).

1.6.2 Stable-symmetric bifurcation model

We are interested to exactly determine all its equilibrium configurations:
pre-buckling and post-buckling configurations. For that, we do an full non-
linear analysis in analytic form. This task is possible for such simplified
rigid bar-springs system. The full-non linear description is necessary since
we want also to capture the post-buckled configuration(s). We will see after
this example, linearised version of this analysis (linearised buckling problem)
which, of course, will provide us with the buckling load (bifurcation point)
but the post-buckled configuration will remain undetermined because of the
linearisation.

In the following, the initial reference state is stress-less. The total po-
tential energy of the system in its initial configuration is Il and is constant.
Since we will deal with changes AII = IT — Iy and changes of its changes
with respect to the reference configuration, we decided, in this section, to
drop-off the sign A from writing to make it a bit lighter.

Axially loaded perfect structure

Let’s consider the axially loaded ideal structure in Figure (1.34) which is
initially perfectly straight (no-imperfections, yet).

It is sufficient to consider only it’s half as in the margin figure or Figure
(1.35). The total potential energy change IT between the straight initial
equilibrium configuration (yellow) and the perturbed one (blue) is

1
1= 5092 — PU(1 — cos ). (1.35)

For illustrative purposes, the surface representing total potential energy
is reproduced in Figure (1.31). Now, everything becomes geometrically
more clear: equilibrium corresponds, on the topography, to local extrema:
points having a horizontal tangent plane (— 61 = 0, not varying P). Stable
equilibrium configurations corresponds to local minima (convexity — §*I1 >
0), and so on. Just walk, or let a small ball rolling on this surface and

Matlab-code used to
produce the energy
surface.

y

Straight equilib-
rium configuration
(yellow), perturbed
(blue).
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Figure 1.31: Total potential energy represented by a 3D-surface having a
topography. The local extrema (big dots-lines) corresponds to equilibrium
configurations. (Try to recognise the load-displacement curves (equilibrium
path) on the level-curves on the horizontal plane).

feel where you’re naturally will go. The equilibrium paths correspond to
configurations for which

=0 = ?;:H’:cﬁ—PﬁsiHQZO. (1.36)

Consequently, equilibrium configuration is achieved for

c 0
0= P=--—— 60+#0. 1.
0 or 7 s’ #0 (1.37)

The trivial equilibrium # = 0, corresponds to the initial straight configura-
tion (no buckling), branches AB and BC. The primary equilibrium path,
prior to buckling, corresponds to branch AB. The remaining equation

_c 0 P 0
P,  sinf’

with notation - = P,, (1.38)

O

( sinf

corresponds to the secondary equilibrium branches BD and BD' and de-
viates from the vertical configuration since # # 0.*> Because 6 can be

451f we are interested in what happens, after buckling, in the vicinity of § = 0, one
should take the limg_,o+[P] = limg_,o+[c/€ - 8/sin 6] — ¢/¢ = P.,. This is a linearisation
at the bifurcation point.
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positive (the move to right side of the vertical) or negative (moves to the
left side), we see that both solutions are possible. So now at the point
(0 = 0,P = ¢/f) the number of equilibrium configurations changes from
one (straight, 6 = 0) to two: # > 0 or § < 0. This point, on the equilibrium
path (load-displacement curve) is called a bifurcation point*®. The critical
value of the load at this point

P= % =P, (1.39)

is called the buckling load (Fig. (1.33)).
Now comes the question of stability of the equilibrium points and branches.
For this purpose, the sign of the second variation

2 d2H "
Ol = @EH =c— Plcos?. (1.40)

has to be investigated on the primary path 6 = 0 and on the secondary
path where P = (¢/{) - (6/sin 0), respectively.

Let’s study the sign of the second derivative
sign I1"|g—0?  sign II"|p—c/r.0/sin0? (1.41)

and rewrite it in the form after dividing by the positive spring coefficient
¢ > 0. let’s check, for instance, for stable branches the sign of

" =c¢—{cosh =c(1 —6fcosh/sinf) > 0, where ¢ > 0 (1.42)

on the post-buckled path (secondary path) is shown graphically in Figure
(1.32). Therefore, that the second derivative II” > 0 for all the secondary
path. The double-prime meaning twice derivative with respect to . The
whole equilibrium paths is reproduced in Figure (1.33).

Stability of equilibrium
Let’s study the sign of the second derivative II"(0) = ¢— Pl cos 6 (Eq. 1.40)

e trivial case: # =0 (branches AB and BC)
— so0 the sign of the second derivative I1”|s—g on the primary path
6 = 0 should be considered:

1.) 1" =0) =c— Pl =0 = P, = c/l (we have a bifurcation
point at B since the second derivative II” changes sign) (P, is called

the buckling load).

46The number of solutions changes from one to two or more.
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I1"(6) = ¢ — Plcosf > 0

Stability of Equilibrium on the
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Figure 1.32: Stability of an equilibrium: Sign of the second derivative of
the total potential energy.

e 1.2) AB,0=0: 1I"(0) =c— Pl >0 = P < P,.. (AB stable)
e 1.3) BC,0=0:1I"(0) =c— Pl <0 = P > P, (BC unstable)

e post-bucked case: ¢ # 0 (branches BD and BD’)
— so, the second derivative should be evaluated on the secondary

branch P = § - 6/sin0:

Eq. (1.40) — II"(d) = ¢ — Plcos® > 07 = the sign of II" =
c—Llcosf =c(l —60cosf/sinf) > 0, where ¢ > 0, so we have always
11" > 0 for 0]€ 0, 7| (see Fig. 1.33)

So — BD and BD' stable).



1.6. TYPES OF BIFURCATIONAL INSTABILITIES 29

Equilibrium paths
Stable symmetrlc bifurcation

™
S\rmmetnc bifure atnon

0 i i i i I
180 -150  -100 -50 oA 50 100 150 180
0 [degs]

Figure 1.33: Symmetric bifurcation. Note the stiffening effects close to

0| — 7
i

Figure 1.34: Ideal rod-spring structure exhibiting stable-symmetric bifur-
cation. (a re-dessiner).

A v

Linearised model

Let’s now linearise the total potential energy (Eq. 1.35) around the neutral
equilibrium position # = 6y = 0 and see what is the fundamental the differ-
ences we obtain as regarded to the full non-linear analysis performed just
above in which all the equilibrium branches were completely determined.

Expanding in Taylor’s series the work of external forces with respect to
6 and retaining up-to the quadratic terms gives

1 1 2
I1(0; P) = 5092 — Pl(1 — cosf) =~ 5092 Pe- 92 (1.43)

Now the equilibrium condition §(AIT) = 0 leads to

' =cf — Pl = (c— Pl)-0 =0 (1.44)




60 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

Equilibrium paths
Stable-symmetric bifurcation
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Figure 1.35: Equilibrium paths. Stable-symmetric example.

which represent the homogeneous linearised equation of (loss) of stability in
the vicinity of 6y = 0. We see clearly that the linearised problem (1.44) be-
came an eigenvalue problem. Compare them to their non-linear expression
(Eq. 1.36). This means that, one can only solve for the eigenvalue (the
smallest one correspond to the buckling load P..) and the corresponding
) -¢ ecigenmodes (the buckling modes). The amplitude of the buckling modes re-
"]:_J‘;r,p mains, naturally, undetermined as a consequence of the linearisation. Recall
& ¥1=0 that for the full non-linear model, both pre-buckled*” and post-buckling®®
g. v | _w©=0 behaviour was exactly solved (Eq. 1.37).
b @
!

)

~1

_‘x
Unstahle

¢  Let solve the stability loss problem: (¢ — P¢) -6 =0, (Eq. 1.44)

e no buckling: 6 = 0, is a solution (trivial initial straight A — B — ()

Linearised criterion.

e buckling: § #0 = ¢— P{ =0 = P, = ¢/{ (buckling load)

47the primary initial equilibrium configuration
48the behaviour after the bifurcation point
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So, we see that one can determine the buckling load from the criticality
condition on the linearised problem as det(c — P¢)) = 0. However, as you
see, we cannot determine the amplitude of #, we just know that it is non
zero (Figure in margin). However, we can check for the nature of stability
of the critical point B and of the initial straight equilibrium of branches
AB and BC. for this, we study the signs of the second variation §II of the
linearised version

" = ¢ — Pt (1.45)

Consequently, 11"(0) = ¢ — P{ > 0 = P < P.. (AB stable). On the
opposite, branch BC' is unstable, since there ¢ — P¢ < 0 for P > P,,.. One
question still unresolved! What is the nature of stability at the bifurcation
point B for § = 07 Can we decide by the criteria of the sign of second
variation? Let’s see:

H"(ezo;P:Pcr):c—Pcre:c_%.e:o. (1.46)

One may wrongly or too fast, conclude that the equilibrium is indifferent.
However, this is not true and this result is an artefact of the linearisation.
We should take higher order?® (than quadratic) terms in the expansion of
Wep (0; P) = —PU(1 — cosf) with respect to 6, in order to decide (the
sign) of the stability at the bifurcation point. For instance, the expansion
cosf ~ 1—0%/2+6*/4! can solve the sign problem. This, physically, means
that we use a asymptotic expansion of non-linear equations and capture the
moderate rotations and displacements around 6 = 0.0 What should be re-
tained? The homogeneous linearised equations® cannot give information on
the type of bifurcation point (stable? unstable? indifferent?) nor they can
provide the amplitude of the finite displacements (Cf. the right-side small
figure in Fig. (1.36).) (known only up-to a multiplicative coefficient). How-
ever, they provides us with the buckling load and the associated buckling
modes, exactly. For normal structural design, this knowledge is sufficient,
since, subsequent failure is very probable to occur as a consequence of buck-
ling. Failure may occur in buckling element, or at the joints or elsewhere
as a consequence of excessive displacements and rotations. So, on need to
quantify these post-buckling displacements and rotations to do the correct
structural design.

O+ 4 S+ 5L+ ..

%0The total potential energy will be IT = 1/2¢6? — P62 /2 + P£6*/4! and II' = (c —
P0)0 + P0g3/3). 1 let the reader continue solving the problem. I have no time for this
now.

Slobtained through linearisation of the energy criterion



62 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

Equilibrium paths
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Figure 1.36: Equilibrium paths. Full non-linear model (black), asymptotic
non-linear model (orange) and the linearised model (right side).

Post-buckling analysis - asymptotic non-linear approach

Taking up-to fourth-order terms in cos @ leads to the total potential energy
and it’s first derivative (= 0(AIl))

IT = 1/2c0* — PLO?/2 + PLo* /4! (1.47)
dIl/dd = (c — P0)0 + PL9?/3! = 0. (1.48)

The above non-linear equation (the second one), as for the full non-linear
system (1.37), has two solutions:

PC?"

QZO,VP or P:Tw7

P, =c/l, 6 +0. (1.49)

Now, Equation (1.49) provides the post-buckling configuration for moderate
rotations. One sees that P = ¢/{ = P,, is indeed a bifurcation point, since a
non-trivial equilibrium exist in vicinity of trivial primary equilibrium (6 = 0,
vertical bar) for a tiny deviation from 6 — 0*2, as given by P/P,. =
1/(1—6%/3)).

The overall comparison of the various models used is summarised in Fig-
ure (1.36). One sees that the asymptotic non-linear model permits to follow

520* is the closest real to zero without being itself zero.
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rotations up-to 75 degrees (visually estimated). This is what is about in
post-buckling analysis and this is a post-buckling analysis. So what we did?
Firstly, we did analytically post-buckling analysis. secondly, this general ap-
proach, asymptotic analysis, permits to study analytically (or numerically)
the post-buckling behaviour of more complex structures. In this lectures
note, some illustrative examples will be provided. [to do: 22.1.2019]

1.7 Effects of imperfections

1.7.1 Symmetric Stable bifurcation

Axially loaded structure with imperfections: Consider the axially
loaded structure in Figure (1.37) having initial imperfection in its horizon-
tality or a tiny transverse load F, < P).

f@ — _EU_ =i

o |

e L Nl

B

Figure 1.37: Axially loaded structure with initial imperfection y. the ro-
tational spring stiffness is c. (symmetrical stable).

- ;c[z(e — 00)]2 — 2Pl (cos 0 — cos By). (1.50)

Stationarity condition

I1 P — 2
a

oM=0 = a9 P., sinf ’

The effect of lack of straightness (initial imperfection angle 6, = [0, 0.1, 1, 2, 5]
degrees.)

Should remind, students from time to time that for real structure, rota-
tion over elasticity range lead to damage or plastic yielding. This makes the
Load-displacement curve in Figure (1.38) having a limit-point (the dashed
grey line in the figure) for the maximum load-bearing capacity before fail-
ure.
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Effect of initial shape imperfection on the
maximum compressive limit load

1.6F ¥
|
1
1.4} 1
: Ideally perfect structure
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Figure 1.38: Load-displacement curve. Effects of geometrical imperfections
as deviation angle 0y [degrees| from straightness for structure in Figure
(1.37) (symmetrical stable). For real structure, rotation over elasticity range
(elasto-plasticity, for instance) leads to damage or yielding making load-
displacement curve having a limit-point (dashed grey line in the figure).

1.7.2 Unstable-symmetric bifurcation model

Axially loaded perfect structure: Initially perfectly horizontal configu-
ration. No imperfections are present. The translational degrees of freedom
u,v can be expressed in terms of the rotation 6 as v = Ay = fysinf and
u=A; =20y(1 —cosf) (Fig. 1.39) and obtains

1
= 51602 — Ply(1 — cosb) (1.52)
1
= 5]{:@8 sin? @ — 2P¢y(1 — cos ). (1.53)
The equilibrium paths correspond to

dIl
=0 = W = k(%sinf cos — 2P/y.sinf = 0 (1.54)
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Figure 1.39: Equilibrium paths. Unstable-symmetric example. (re-dessiner
a la main)

Equation (1.54) defines the equilibrium paths (load-displacement curves).
Equilibrium is satisfied for § = 0[r]| (= zero modulo ), or for

P= ]{;260 cosf = P,.cosf, whereP,, = /fgo' (1.55)
Let’s check for the stability of the obtained critical point P,.. = kfy/2. This
is achieved by inserting the value of the critical load in Equation (1.54)
and then taking again the derivative d(dIl/df) = d?I1/d6? and check for
the sign. If the second derivative vanishes, then one should take higher
derivatives till non-zero® value is achieved, for this case, for the sign of
J(AILL).

The stability of branches on the equilibrium curve is determined by
studying the signs of §?IT which are given by the second derivative d*I1/d6?.
One see (1.40 that bifurcation® of the equilibrium occurs for § = 0 at the
critical load P.. = kfy/2. The vertical branch, for § = 0 until P < P,, is
stable and for higher P > P.. becomes unstable. The symmetric branches
0 < |f| < 7w are unstable. so after the bifurcation, all the possible three
paths (AB’, AB and AD) are unstable. Therefore, the structure from the
critical point P,,., even when the load is kept constant, will directly collapse
to configuration § = m where it becomes stable. However, it is too late) for
the structure. This sudden (unstable) transition to this end point can be
seen as a snap-through.

Axially loaded structure with imperfections: Consider the axially
loaded bar-spring system of Figure (1.39) which had no imperfections. Lets
add to it now an initial imperfection or a deviation from a perfect straight
geometry, let’s say an initial angle 6 as shown in Figure (1.41). We have
now introduced a tiny imperfection in its horizontality: Such imperfection
can also be introducing a small transverse load F, < P.

S3Indifferent equilibrium is not possible as shown by the derived graphs (equilibrium
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Figure 1.40: Equilibrium path. Unstable-symmetric.

Ot P

Figure 1.41: Axially loaded structure with initial imperfection (symmetrical
unstable). The spring stiffness is k.

The total potential energy is now
1
1= §k€g(sin0 — sinfy)? — 2Ply(cos By — cos ). (1.56)

The equilibrium condition dr/df = 0 leads, after some algebraic manipu-
lations, to the equation

P sin 6,
P (1 ~ g ) cosl, P. =kly/2. (1.57)

paths).
54Means existence of more than one equilibrium configurations.
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which is graphically reproduced in next Figure (1.42) for various values
of the imperfection parameter 6y. The locus of maxima are at the points
(0, P/ P,.) such that

sing = (sinf)'/*,  P/Po = [1 — (sin )" (1.58)
These points are found by finding the maximum of function defined by

Effect of initial shape imperfection on the maximum
compressive limit load

it

By = 0° : ldeally perfect structure

Locus of maxima:

10° ;
2 | sinfl = (sin )3
| a3
/ P/Pur = [1 - (sin0)*?] %
ot { i i 5 i '

D 5 10 15 20 25 30 35 40 45 50
0 [deg.]

Figure 1.42: Load-displacement curve (unstable symmetric-bifurcation).
Effects of various values of initial imperfections for the structure in Fig-
ure (1.41). Initial behaviour for the ideally perfect structure (Black line).
The remaining continuous lines correspond to the response of the imperfect
structure. The reduced axial capacity is the locus of maxima (red-dotted
line).

Equation (1.57).

In addition, to bifurcation analysis with imperfection, the maximum
loading capacity P/P.. (maximum axial load that can be carried) as a func-
tion of the relative magnitude of the imperfection 6,/6,.s will be produced
analytically and graphically (Figures 1.42 & 1.43). The reduction of the
maximum axial load increases with the increase of the relative size of the
imperfection. This reduction follows the well-known Koiter 2/3-power law
for the imperfection effects on the collapse load. The curve of the reduced
axial capacity correspond to the locus of maxima shown by the red-dotted
line in Figure (1.42). The reduction of the maximum axial force with re-
spect to the amplitude of initial imperfection is shown in Figure (1.43). So,
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initial shape imperfections reduces the maximum axial load; the reduction
is already by half for 8y =~ 12.5. This is why, in structural design and anal-
ysis, such effects should always be included. The critical load of the ideally
perfect structure P.. = kfy/2 was obtained in the previous example.

1

0.9

0.8

0.7

06F

0.5

04

0.3

0.2 . . L : .
0 5 10 15 20 25

Initial imperfection EI'[_\ [deg.]
Figure 1.43: Maximum axial force reduction with respect to the amplitude
of initial imperfection. P, is the collapse or buckling load of the perfect
structure.

Good to keep in mind: The behaviour depicted in Figures (1.42) and
(1.43) is also analogous for thin shells in compression. Thin-shells are
imperfection-sensitive structures. Both structures, the column with an ini-
tial imperfection (angle 0y of departure from the axis of compression) and
a thin cylindrical shell, for instance, having initial shape-imperfection wy/t
(a relative departure from ideal cylindrical geometry) behave the same way
after the bifurcation points (buckling). Just after this point, there is a rel-
atively ’long’ unstable branch (snap-through). Consequently, the absence
of a stable branch after the bifurcation points render such structure sensi-
tive to imperfections. (More about this topic in the section dealing with
shells.). On the contrary, for instance, flat plates, are not imperfection-
sensitive since their post-buckling behaviour is symmetric-stable type. This
means that there is a stable branch immediately after bifurcation.

1.7.3 Asymmetric bifurcation model

Two examples to illustrate the concept of limit-load will be given. The
key point is that there is no bifurcation point where the primary equilib-
rium branches to neighbouring equilibriums. Now, the critical-point is a
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limit point with no-branching. Beyond this point, the nature of equilibrium
changes from stable to unstable (or reciprocally).

The first example is a simplified model of the Mises truss and the second
example is the Mises truss, itself. (may I will change the order, later).

Snap-through model

We consider here a model of structure having a snap-through behaviour
(Figure 1.44). This physical model is similar to the classical simple two-
bars elastic truss (von Mises truss®) in which the stretching of the elastic
bar is accounted, here, by the spring k. Note that, especially whe reading
the diagram in Figure (1.45), the angular deformation is o — 6 and initial
value for (P =0) = a.

The total potential energy increment is

1= ;k(ZL)2(COSQ —cosa)® — PL(sina — sin §). (1.59)

The equilibrium dIT/df = 0 gives

P
iL(sinaz — sin 0)
Lsina -
Lsinf ¢ ' . Lsing@
A A

2L cosa u= 2L(cos0 — cosa)
ik ]
|

2L cos@ i

Figure 1.44: Truss for demonstrating similar snap-through behaviour of
shallow arches and shells. (Ref. Emer. prof. M. Tuomala. Rakenteiden
Stabiilisuusteoria.)

WL = sinf — tan # cos o = sin #(1 — cos v/ cos ) (1.60)

Equilibrium and stability of the truss illustrated in Figure (1.44) will be
investigated. Such simplified model represent well the stability behaviour
of shallow arches and shells. The characteristic loss of stability phenomenon
is known as snap-trough.

55Tn von Mises truss the support do not move. The axial stiffness of the elastic bars is
EA/(£/ cos a), where £ being the length of the bar.
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Figure 1.45: Snap through illustration. Note that the starting value for 0
is not 0 but o > 0, so (P = 0) = «a and when 6 = 0 the truss achieve
a horizontal configuration. This graph becomes easier to read if you make
the variable change a — 6 which correspond to the angular deformation
N.B. To be able to follow (capture) the unstable branch (dotted-line) when performing
computational (static) linear buckling analysis, one should use displacement-control. In
general, adequate numerical schemes to capture the complete equilibrium path (modified
Riks method) are implemented in good FE-software. In addition, since the phe-
nomenon of snap-through is transient, only full dynamic analysis will reveal
what happens really between to consecutive stable configurations.

Snap-through is by nature a dynamic phenomena where the external
forces are not any more equilibrated by the internal forces generated by
deformation of the structure. The unbalanced difference in forces generates
accelerated motion according to Newton’s law of motion (At points B and
B’ in Figure 1.45). The structure or its part will have a dynamic motion till
the internal forces are again equilibrated by the internal forces generated
by an excess of deformation. After that, it behaves quasi-statically when
the load is applied very slowly. At this stage the structure works more like
a membrane. It is this dynamic behaviour which is called snap-through.

The equilibrium path for (Equation 1.60) is schematically drown in Fig-
ure (1.45). The stability of the equilibrium is determined by the sign of the
second variation

d*I1/d6* = 4kL*(cos o/ cos § — cos® 6). (1.61)
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The zeros of the second derivative are

6 = +arccos|(cos )% = £65 (1.62)

Therefore
11" > 0, when 6 <0 and 6 > 05, (1.63)
" < 0, when —0p < 6 < 0p. (164)

To fix the ideas, we have for instance, for an initial angle a = 30°, g =
+17.6° a bit more than half of a and consequently, P = £0.028 - 4k L.

This example is incomplete [TO DO]

Snap-through model of Mises truss

The following example illustrate the concept of limit-load. The idealised
structure, known by Mises Truss, consists of two straight elastic bars of
equal length connected to each other by a hinge and to the fixed supports.
The supports allow free rotations only (Figure 1.46). The truss considered
here is shallow®® h/¢ in order to obtain the snap-through and demonstrate
the limit-load concept. The load P is kept increasing quasi-statically and
we want to solve the force-displacement curve (equilibrium paths). So, let
k = EA/( the elasticity coefficient of streaking. Here, we assume® the bars
designed such that flexural buckling will not occur. Through equilibrium®®
considerations one can directly determine the internal axial member force
(equal in the bars)
P Pl

T 2sing 2(h —v)’

(1.65)

where B
0 =12+ 02 — 20h. (1.66)

wher the axial shortening (stretching) is

AW) =€ —0=1{— 2 +v2—20h. (1.67)

56For non-shallow truss, one should consider both displacement components u and v
for the tip. Dependently on the relative height h/¢ the stability loss can occurs through
bifurcation or snap-through, for high and shallow truss, relatively.

57This 2D truss is only a simplified example used to illustrate the general concept of
limit-load. So, be careful to not mix general concepts and the examples used to illustrate
them. The concept is very general, the example is particular mean helping passing the
concept.

58T DO: Treat this example by energy method, otherwise, it becomes practically
‘intractable’ to treat the stability of equilibrium branches.
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Mises truss

Limit-load buckling model

Figure 1.46: Snap through illustration

Finally, the load-displacement ’curve’ is given by (in the long version)

V2 + 02— 20h
P =0 — VI 2 — 2vh 1.68
2%(h — o) et (1.68)
One should make the above relation non-dimensional by dividing (scaling)
P by kh®/0?. However, for shallow trusses® we have h < { , so we can
simplify®’, and obtains the needed equilibrium relation
Pr?
=20 — 38 +4° 1.69
where § = v/h. We see already, based on our high-school studies, that
this third order polynomial behaviour is rich in limit- and inflection-points.

% Snap-through becomes important for shallow structures; arches, trusses.

O/TEen1+e/2.
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Let’s express all this graphically (Figure 1.47). During increase of load P

, Mises truess: limit-load and snap-through (Baroudi, 2019)

pPe?

kh3

0.5
Limit-load —+

Limit-point

0.5 25

Figure 1.47: Illustration of limit-load. Load-displacement curve, stable
continuous line(black) and unstable, dashed-line (red). (Curve valid for
shallow truss.)

from 0 the maximum point 1, the structures resists (stable path). beyond
the point 1 (till 3) the behaviour becomes, suddenly, unstable. The critical
point 1 corresponds to a limit-point and the critical load is called limit-load.

Study the stability of the paths shown on the figure using energy crite-
rion.

Asymmetric bifurcation of a two degrees of freedom rigid bars-
springs system

In this example we will study the stability of an ideally perfect system
in two steps: 1) linear buckling analysis, to determine the buckling®! load
(eigenvalue problem) and 2) asymptotic post-buckling analysis, to inves-
tigate the post-buckling behaviour and to see is the bifurcated branches
stable or not. In the post-buckling analysis the problem is not any more an
eigenvalue problem but becomes a geometrically non-linear (GN) problem
of static where the loads are increased step-by-step and the displacement-
curves being solved (in the force-control®? version). In such analysis, we are
interested only in the first bifurcation neighbourhood corresponding to the

61Such buckling load for the perfect system is called Euler buckling load.

62We can also have a displacement-control version where displacements are imposed
at some locations and the reactions at these points being recorded to obtain the force-
displacement curves. It is on these curves (in both force- or displacement control versions)
that the limit-points are identified.
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Figure 1.48: Generic illustration of Euler buckling load and limit-load.

lowest buckling load (or smaller eigenvalue). The stability of this neigh-
bourhood (branch) is crucial for the real load-bearing capacity. If one have
instability then the Euler load will be reduced. How much?

Usually, the Euler buckling load over-estimates the actual buckling (limit)
load for the system with imperfections (Figure 1.48). To find out how much
the reduction is, one should perform a non-linear buckling analysis (GNA)
accounting for the imperfections. Sensitivity with respect to such geomet-
rical imperfections can be analysed numerically as shown for Abaqus (Fig.
1.49), for instance.

The effect of such imperfection was studied previously (Cf. Figure 1.42),
so the reader should refer to that. Despite what was said above, in the
current example, we consider only the perfect structure.

Consider the system depicted in Figure (1.50). The bars being infinity rigid
connected by hinges to elastic supports. The springs are linear elastic. The
continuous equivalent structure can be, for instance, a column with elastic
supports. A pertinent design question can be what should be the ratio of
stiffness of the elastic supports k as regard to bending rigidity £, in order
to ensure stability? Since, if the post-buckling behaviour is unstable, then
the Euler buckling load (for the perfect structure) will be reduced to the
lower limit-load when accounting for initial imperfections. Imperfection can
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Nonlinear Buckling Modeling in Abaqus Standard

Build Model
*EBuckla

3, s 6, 300 Linear Buckling = Add Node Fil

SROLE FIL
igen Value and mode,

u.
Nonlinear Buckling

S

Abaqus Standard: Nonlinear Buckling Example (Cylinder buckling)

Figure 1.49: Generic flow chart for doing non-linear buckling analysis in
Abaqus. (a non-linear analysis)

Rigid bar Pin
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= \“ / A‘_P

X

¢ L B B
|

Figure 1.50: A simple system having two degrees of freedom.

be geometrical as for instance, small deviations from straightness or initial
eccentricities . .. So, in structural design, one should continue to step to and
perform (GNA) non-linear buckling analysis including the imperfections in
order to determine the actual limit-load.

Geometrically non-linear equations of equilibrium: Let’s measure
the deflected configuration by v; and vy, the two independent transversal
deflections.

The total potential energy increment (TPEI) between the initial equi-
librium (perfectly straight configuration; v; = v, = 0) and the perturbed
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configurations being

1 1
All(vy,v9) = ikvf + ik‘vg — Pu(0). (1.70)

Geometrical consideration (Pythagoras’ theorem®) on triangles rectangles

provides the ezact total axial displacement u(0) - cumulated nodal displace-

ment - as
U1 2
= 1—4/1—-|—
#(0) g[ <£)

Uz—U12
1—+4/1—
reim - ()

+ (1.71)

- (1.72)

b1y 1 (“;)2] (1.73)

Consequently, the total potential energy increment will be

1
ATl(er, e) = 2k£2(e§+e§)—m([1 1o eﬂ + [1 1= (e — 61)2} 4 [1 ~J1- eg]) |
(1.74)
where the relative shortenings are defined as ¢; = v1 /¢ and e; = vy /¢. Note

that, the obtained expression is exact and no assumption was done on the
relative magnitudes of ¢; or €, as compared to /.

1) Linear buckling analysis: We want to determine the Euler buckling
load. In such analysis we have, by definition, both relative shortening of
the column ¢; < 1 and €; < 1, so as the reader may recall, one expands
the total potential energy increment into Taylor expansion up-to quadratic
terms in vy /¢ and vy /¢ (or €1 and €3). So,

I TR 1T /v\2 1 /vg—wv\?2 1 /vg)\2
All(v1, ) = k(vi + vp) = Pl [z () 2 () 2 () |
(1.75)
Requiring the neutral equilibrium condition d(AIT) = 0 (for loss of stability)

one obtains the eigenvalue-problem

[A _P2P A - 2P1 Lﬂ - m (1.76)

where A = kl. The eigenvalues being P, p = kl/3 and P, p = k(¢ and
the corresponding buckling modes [v1, v5] = [1, —1], so (v; = —wvy) and
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""aﬁn _________________________________________ A
: é Pop = kit

@ v = Uy

_:& --------- = '-; ----------- e A—
f{: k Pp=k{/3

{b) V1 = —U2

Figure 1.51: Buckling modes.

[v1, vo] = [1, 1], so (v1 = vg), respectively (Figure 1.51). On can note that
the corresponding buckling mode is the asymmetric one.

Let’s go further and investigate is this mode, for small increment of
deflection, stable or unstable? As you remember by now, one cannot use
the criteria of the sign of the second variation of the total potential energy
increment, since the linearisation will return us the soundless identity 0 = 0
for the bifurcated (buckled) equilibrium branch. So, we cannot decide,
based on linear buckling analysis, what is the stability nature for the buckled
branch at buckling load P, g = k¢/3, for instance. To capture the sign, one
should add higher terms in the Taylor expansion of the energy functional.

Recall the Hessian story: Let illustrate the formalism we presented in
the introduction part for the criterion of loss of stability in the form

0" (v1,v2) = 0 ~ det{H} = 0, (1.77)

when now the problem has more than one degrees of freedom q = [vy, vy
The question: how do I take the second derivative now that we have more
than one degree of freedom? Here comes to help variational calculus or,
even more simply, classical linear algebra with the Hessian of a matrix.
Let’s chose this simplest tool, for the moment, since every master students
has completed such prerequisite course but few only studied variational
calculus. Rewriting the change of total potential energy, in a matrix form,
one obtains

I

1 Lol P2 —11|[w
AH(Ul,UQ> = 5 [Ul Ug} [0 k‘| — ? [_1 9 ‘| [UQ] (178)
K S(P)
H(0,0)

63Yet another theorem very usual even for a structural engineer!
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So, one obtains the quadratic form

1
All(q) = 5q' Hq, (1.79)

where q being a tiny deviation from trivial equilibrium configuration q° = 0

and
A—2P P
a2 ) .

We can also write directly the loss of stability condition in its variational
form §(AIl) = 0 and obtain

1 1
d(AIT) ziéqTHq + iqTH(Sq =6q'Hq = 0,¥dq = (1.81)

—> Hq = 0, which is linear eigenvalue problem. (1.82)

Note that the coefficient matrix of the associated eigenvalue problem
(Equation 1.76) is the same® than our Hessian matrix So loss of stability
occurs when

" =0~ det{H} = 0 (1.83)

and one sees that this criterion of stability is the same as for the associated
eigenvalue problem (Equation 1.76) to require existence of non-trivial solu-
tion (buckled shape) by asking the determinant of the coefficient matrix, in
the eigenvalue problem, to vanish.

2) Post-buckling analysis: What is the nature of the bifurcated branch
just in the near neighbourhood of the bifurcation point P,y = k(/3? For
that, we do an asymptotic analysis and take up-to the fourth-order in the
Taylor expansion of AII. In addition, since we are in the neighbourhood of
the buckling load, the ratio v; = —wvy as given by the corresponding buckling
mode, remains unchanged if we limit ourselves to very small additional
deflections v; and vy from the neutral configuration. (so ratios v;/¢ < 1
and vy/¢ < 1). Consequently,

1 1 2 1 4
AT(vr, 02) = k(0] + ) = PL| 5 (? - (?) 4 (1.84)
1 Vo — U1 2 1 Vo — U1 4
— — 1.
+3 ( ; ) T3 ( ; ) + (1.89)
1 Vo 2 1 () 4
w5 (%) +5(7) ] (1.86)

64Candide: tout va pour le mieuzx dans le meilleur des mondes.
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Inserting the relation v = v; = —wv,, one finally obtains

ATI(v) = ke? (Z)Q 3Py (2)2 - ZP€ (2)4 (1.87)

The stationarity condition gives us the the equilibrium equation of the bi-
furcated branch as by

SIATI(v)] =0 = [AII =0 (1.88)
s ke (Z) _3p (Z) - gP (Z)S ~0 (1.89)
BTN - IR
— ke (5) :1 - PI:E - ‘;’;E (Zﬂ ~0 (191)
— ke (Z) 1—]§E<1+2(2)2>] —0 (1.92)

So, the equilibrium solutions are the primary and secondary paths, respec-
tively,

v/l =0,VYP or
3 (02 (1.93)
P/Pip=1/ {1 + 5 (%) ] , v/l #0 where P, p = k{/3.
and
1.01+ el é P/P g = I{[l . ,l(:?)]
O Pog=kt)3
0.99+ L
o
E:_ 0.98
Ry
OIQT.' Vo L TN i
0.96 - fi _% l':.];-:- “r: |
| v/l =0
0.95
Fi -0 005 005 01

't'(}f

Figure 1.52: Equilibrium path (assymptotic post-buckling analysis)
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The nature of stability of this branch is provided by the sign of the
second derivative (Lagrange-Dirichlet stability theorem) which gives

(ATD) = k — 35 - 229 (Z)Q (1.94)

and inserting, in the above, the expression of P (second Equation in 1.93)
on this branch on obtains that this bifurcated branch is unstable. The result
of this post-bucking study is shown on the graph (Figure 1.52).

1.7.4 Example of stability of discontinuous system with
many dofs

We now study the stability of a discrete system of five degrees of freedom
(dof). The idea is general and extends to any number N of dofs. Let’s
assume that we have a ’column’ with end load P (Fig. Cf. margin). In
such multi-degrees of freedom structures, the buckling load corresponds to
the smallest eigenvalue and the corresponding eigenmode gives the buckling
mode. let’s have an example. Note that the discrete structure converges
to the corresponding continuous one for N — oo. It is worth to note that,
if we would want to account also for bending strain energy (3=, 1/2¢;¢?,
¢;— relative rotations between bars 4,7 — 1), then we add simply rotational
springs between the rigid bars. The spring coefficient will be ¢; = EI,;/¢;.
Also, stretching strain energy can be added through axial spring coefficients
k; = EA;/¢;. This way, the discrete structure (a Hencky-type discrete chain)
converges to axially loaded elastic beam-column.

In the current example, the transversal springs k£ may correspond to
there straining effects of a Winckler-type elastic foundation. Therefore, the
physics of our rigid bar chain is the next: straight rigid bar-chain bounded
to a Winckler elastic foundation (modelled by the transversal springs k)
connected by hinges is axially loaded.

The change% of discrete total potential energy of the deformed perfect
elastic system under axial load will be

1N
AH(SL’l,QZQ, e ,.’IN) = 5 Z ]{JZQI? + V(P, T1,T2, ... ,.CL’N>, (195)
i=1
where after assuming moderate rotations of bars (cosf; ~ 1 — 6%/2) one

obtains
N (1751 - 1’171)2

1 .
V(P)=—P- 33 == ap=0, i=12...N  (L96)
=1 ?

65— change between straight configuration and slightly buckled one.
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Asking for stationarity at the critical equilibrium point

AIl
&ND:QV%J:LZ”w::éEm)Zo, (1.97)

gives next equilibrium equations

O(AIL p
(81‘1 ) =kiz, + ?(ZTI - $2)7 (198>
O(AIL P
(891:2 ! = kywy + ?(—351 + 22y — x3), (1.99)
a(aAH) et IZ(_M 42w —wia1), i=2,3,...,N—1, (1.100)
X
AL o+ Loy +am), (1.101)
alL‘N 14

rewritten into a canonical in a matrix form one obtains the linear homoge-
neous system and recognise the eigenvalue problem setting:

[K—iﬂx:o (1.102)

The stiffness matrix K = diag(k;), ¢ = 1 : N. For constant spring coeffi-
cient, one gets K = kI, where the identity-matrix notation is evident. Both
matrices are real and symmetric. So, the eigenvalues are real too. The
geometrical stiffness matrix is

2 -1 0 0 O
p -1 2 -1 0 0
S = 7 s (1.103)
0 0 -1 2 -1
0 0 0 -1 1]
So the full eigenvalue problem to solve now is:
ky 0 0 ... 0 0] (2 -1 0 ... 0 O]\[ o1 |
0 ke 0 ... O 0 -1 2 -1 ... 0 O T
o . R S :
e : : AR : : . : :
0O 0 ... 0 kyo1 O 0 o ... -1 2 -1 TN_1
10 0 0 0 kx| 100 0 -1 1 TN

©(1.104)
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Numerical example

Let solve it for a constant k for N = 6, for instance, in Matlab using the
eigenvalue problem solver function [V,D] = eig(A) or [V,D] = eig(A,
B).% The solution is reproduced in Figure (1.53) and the numerical code
written in Matlab to solve it is shown in Figure (1.54).

Buckling modes and loads [D. Baroudi, 2018]

o

1 .1"\ \1\\/-«| i

osft 4 oer - o8| 4 osF - 08p - 08r

~

08 -1 08f 1 08B 1 08 - 08 n 08p N
07 1 o7 1 o07f o7 1 07 el s 1
06 1 06 1 08 1 06 T 06 1 06 |
—_
a
=
=
05 4 osF 05 4 o 4 o5F 4 o 8
1=
T
E =

041 - 04 04 o 04 1 04r q 04 8
03 -1 03F 03 1 03 -1 03 o 031 1
02 1 ez 1 02 1 ez2f J ozr o0z 1

q D P

01 H4 o1 1 o1 A o1 4 ear a4 01

Ll % L B I o L ol
0.5 05 05 -0.5 05 0402 02 04 -05 05

€ i) -4
05 -05
A=0.059 0.503 1.291 2242 3137 3.771
Figure 1.53: Numerically simulation. Buckling modes and the correspond-

ing scaled eigenvalue A = P/kf. Now, N/ =1 m and N = 6. The buckling
load is now P = 0.059/k¢

We can note for shortness the eigenvalues (buckling loads) A = £ cor-

responding x are the Eigen-vector (eigenmodes). Since the stiffness matrix

is invertible, one can recast the problem into the canonical form®7:
I-AK'S]x =0, (1.105)
=A

The criticality condition, is of course, still

det [ K—AS] =0 = Py(\) =ap+aA+aX+...+...+axAV =0
(1.106)

66 These Matlab functions produces a diagonal matrix D of eigenvalues and a full matrix
V whose columns are the corresponding eigenvectors (see Matlab functions reference
manual).

67This not obligatory to do, you can solve directly the problem in its original form
(1.105)
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However, instead of trying to solve for the roots (zeros) of the polynomial
in A (Eq. 1.106), we solve, directly by standard methods ( QR-decomposition
family algorithm) the corresponding eigenvalue problem (1.105), which is,
indeed, much easier and much stable to solve than to find the correspond-
ing roots of the polynomial of order N in A given by (eq. 1.106). Recall
that the Eigen-vectors (buckling modes in Figure (1.53) are known up-to a
multiplicative factor in amplitude. However, the rotations (relative displace-
ments z;/x; are well determined) are given by the modes in their amplitude
correctly. The indeterminacy in absolute values of the displacement results
from the linearisation of the equilibrium equations at the critical point (neu-
tral equilibrium).

® Eigen-value problem:

Brr = min{lanbas) f

= clearvars;

- ae

= B= g |
10 - L coc = ip .
- = Ltom/e* serainate (for prestinggaw 2> [V 2, D 2] = eig(5, K)
13- LS L ronfe %1% Bar j/. e
13 L
18- B o= ey N )2 = e
15
W~ Se48 -1 0 0 0 0% geometric stiffoess matsix -0.1327 0.3678 —0.5187 0.5507 0.4565 -0.2578
i ShEl Ly e g ~0.2578  0.5507 -0.3678| -0.1327 -0.5187  0.4565
1% i . ~0.3678  D0.4565  0.2578 ) -0.5187  0.1327 -0.5507
0 T -0.4585 0.1327 0.5507 0.2578 0.3678 0.5187
22‘1 K i ! -0,5187 -0.2578 0.1327| 0.4565 -0.5507 -0.3678
23 v " o T -0.5507 -0.5187 -0.1555" -0.3678 0.2578 0.1327
24 % S e r—rrr 1 }-
2= A= dovi ¢ 5 na | |
20 - Vo1, 011 = edghds % O 1i oovn igen-value
27 ¥V L LR
/- Perizl 4 disg(n i) A L o
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30 .- - = LA G *
31 b form 2) ed form of the eigen-value problem
31 = [¥.2, D21 = eigl5, X o ar ar
= ™
38

s e ar
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Figure 1.54: The Matlab-code used to do the numerical simulation above.

The key idea in the linearisation is to construct a quadratic form in terms
of kinematics for the total potential energy. So, consequently, after taking
the first variation of the total potential energy increment, one obtains a
set of linear equations (eigenvalue problem) with respect of the kinematics.
So, with this approach one can address only the value of the buckling load
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and the corresponding modes. for instance, one should keep in the work of
external force P -vy = PYN ly(1 — cos ;) =~ PN 0(62/2 4+ 01 /41 + ..),
ly being the length of a bar segment at least up-to cubic terms. Naturally,
cos §; should be expressed in terms of the Lagrange coordinates z; (There
may be a homework on that: determine the buckling load and investigate the
nature of the post-buckling behaviour corresponding to the buckling mode.) .

Higher terms than quadratic, for the kinematics, will be needed to ac-
count for in the total potential energy of the system when we need to inves-
tigate the nature of stability of the post-buckling behaviour (after branching
at the bifurcation points). One need to form the second variation which
will not, a priori, be any more trivially zero (not indifferent).

For the discrete system, the second variation will give a quadratic form
62(AIl) = u?[K(u)Ju > 0 — means positive-definite and that the path is
stable. The matrix is the stability matriz. It is positive-definite only if all
its eigenvalues are positive.

1.7.5 Combined loading and stability regions

Very often, all the applied loads to an elastic structure, and especially,
gravitational loads P can be expressed as varying linearly with respect to
only one parameter P = APq, where P, being a reference load. However,
in general, the applied loads can be regrouped into subgroups of reference
loads which vary independently from each other.

Let consider two examples®® illustrating the concept of region of stability.
How knows, may be some future engineer will be happier learning this,
too. So one can have more than one independent systems of loading acting
simultaneously on our structure. How to handle by hand?

One degree of freedom spring-Rigid bar system
[TO DO]

two degree of freedom spring-Rigid bar system

[TO DO]

68Ref. Section 1.7 Stability of Elastic Structures Under Combined Loading: Boundary
of Stability Region. N.A. Alfutov, Stability of Elastic Structures. Springer-Verlag Berlin
Heidelberg 2000.



1.7. EFFECTS OF IMPERFECTIONS 85

Thermal buckling

[TO DO] Initially uniform temperature 7y. Uniform rise AT. No other
mechanical loads. What will be the buckling temperature®? o« thermal
expansion coefficient.

After thermal elongation the length ¢ of a bar become

lr = (14 aAT)¢ (1.107)

due to thermal elongation. Therefore the axial displacement ur for a rota-
tion 6 at support will be

up =201 (1 — cos0) (1.108)
=20(1 + aAT)(1 — cosf) (1.109)
=201 — (1 4+ aAT) cosf + aAT] (1.110)

Typically, « is a small value of order 107> 1/°C for most of solids, so the
square (aAT)? of the relative thermal elongation (strain) may be ignored
when compared to unity.

Total potential energy change:

AIL(0; AT) :ic(ze)2 + ;mfh (1.111)
2
=2c6” + ;k 1201 — (1 + aAT) cos + aAT] (1.112)

Atn

The axial component of the overall thermal elongation is (check below Tay-
lor expansion)

92 4 92 94
Ath = 2@[1 — (1+OZAT)COS€+CYAT] =~ 2€ 5 +ﬂ —&AT(—Q‘l— 5 +ﬂ)
(1.113)

[DBA DO correctly| Taylor expansion for the axial displacement without
ignoring the square of the thermal strain.
Stationarity at the critical equilibrium point
O(AII)
OAT

provides the equilibrium paths (primary and secondary).

S(ATT) =0 = =0, (1.114)

69This example is inspired from the textbook by Croll J. G. A. and Walker A. C.
Elements of structural stability. Macmillan 1972
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Figure 1.55: Thermal buckling of a bar-system.

1.8 Energy criteria for determination loss of
stability of elastic structures

The general™ Trefftz (1930, 1933) criterion says that the loss or change
in stability of an elastic structure occurs when the variation of the second
variation™ of the total potential energy II of the structure vanishes, i.e.,

§(6%I) = 0. (1.115)

Later, while discussing about bifurcational loss of stability, it will be shown
that Trefftz stability condition (Eq. 1.115) is essentially an energetic crite-
rion saying that during loss of stability and for the critical load, the equi-
librium holds also in the perturbed state u* = u°+ du, i.e, then 6(AIl) = 0.
It will be discussed later that, indeed all these energy criteria for loss of
stability: (AIl = 0; P = Pe.), the more general criterion §(AIl) = 0
and the Trefftz criterion §(§2I1) = 0 - which look at first glad different, are
indeed equivalent™ I was few hours ago discussing with one student and he

was puzzled with the seemingly arbitrary use of the stability loss™ criterion

7ON.B. Trefftz is not a general, neither is his stability condition, general!

"So what to do when §%II = 0 and 6II = 0?7 Answer: one need to take higher order
of non vanishing variations; §°I1, 6°IL, . .. of AII) to decide on stability of an equilibrium
(sign). So, the Trefftz condition is not general.

"2With the emphasis that the criteria 6(AIl) = 0 being more general than Trefftz
criteria which is a consequence of §(AIl) = 0.

"3Stability loss through bifurcation or limit-point
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AIl = 0 and §(AII) = 0. Are they the same? So, Figure (1.56) shows now
why, these two conditions are equivalent; just call the function f by AIIL.

3=56)

§i4 B =0 = f/(=) =0 ,uhn b8

o, -
[ & .f'(x. -0 = A..H; o ’wl\u_n ,a.:c-n5¢ He derlved the
tl[ aE L = = T, = = theoretical
! 27 critical load for
{ A{-\“v: °: ¢ JJ: (GCQJ = buckling of a
tobin dson -y D':/_ g - eh eolumn already

in 1774 b ths

Figure 1.56: Why saying that f'(xo) = 0 is equivalent to say that A f]|,, = 0.

Sometimes, to emphases this in Equation (1.115) the variation operator
is denoted & to emphasis that it is the perturbed state u* = u° + du which
is varied since it is its equilibrium which is investigated.

Energy method are effective for analysing the stability of complex struc-
ture.

1.9 Energy criterion for bifurcational insta-
bility

This section deals primarily with fundamentals of bifurcational instability
where the critical points is at a bifurcation. However, the theorems and
energy criteria presented here hold also when the critical points are limit
points™. Therefore in cases when the initial equilibrium path is non-linear

TN. A. Alfutov, Stability of Elastic Structures. Springer 2000 (translated from Rus-
sian)
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and not linear as it is in the bifurcational case, the energy criterion de-
tects the limit points and points of inflection since the energy criterion is a
condition for neighbouring equilibrium modes.

Equilibrium path and
stability loss

»
e
0
i

o
=

<

Figure 1.57: Stability of an equilibrium fo a compressed elastic column. The
blue dot-lines corresponds to the graph of total potential energy II(-, v; P)
for the given load P at that section. Assuming linearity of the initial state,
the total axial displacement given by u(L) = u™ +u™F) = [fu/ + %vﬂ]dx.

Let’s consider that the structure under consideration, the loading are
conservative and the constraints being ideal. So we have a conservative
system for which the total potential energy is well defined and such that

I=0U+W. (1.116)

where U being the change in strain energy and W being the potential of
external loads (= -W,,; work of external loads with a minus sign). In ad-
dition, assume that all rigid-body motion are prevented by the kinematic
constraints (boundary conditions). This means that the system is not a
mechanism and that is cinematically stable). We consider proportional load-
ing, i.e., which depends only on a single parameter P.
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According to the Lagrange theorem™, the total potential energy (Eq.
1.116) is stationary at equilibrium (6II = 0) and that this equilibrium is
stable if and only if (1ff) the increment total potential energy

AIl >0, You (1.117)

for any small perturbations from initial state. In other words, the stationary
point is a local minimum.

Consider that the structure is first in initial equilibrium state and de-
scribed by the theory of linear elasticity. It is clear that for P = 0 the
equilibrium is stable (AIl > 0). Therefore, by increasing P till some finite
critical value P > P, this initial equilibrium cases to be stable (AIl < 0).
The smallest load P.. for which loss of stability occurs at the first time
is called the critical load. Therefore this transition condition is the criti-
cality condition for loss of stability since in case of stable state one have
AIIl > 0 and for unstable case AIl < 0. Therefore a transition from stable
to unstable state or vice-versa occurs when

All=0; P, =P (1.118)

Example of use of stability criteria in the form AIl =0

In the following, we illustrate how the energy criterion for stability of an
equilibrium written in the form AIl =0; P.. = P,,;, can be used. Assume
that for compression P > 0. Consider an illustration example for the use
of the energy criterion of loss of stability in the form of equation (1.118).
The problem: bifurcational flexural buckling of a cantilever column under
a load P it’s free end. Determine the critical load P,.. The increment (the
change) of total potential energy of an elastic column between the initial
equilibrium state (perfectly straight beam, pre-bucking state) with only
axial deformations and the buckled flexural state (small flexural deflection)
will be

Lo 01,
Aﬂz—/ EL dm—P/ Zo%dz (1.119)
2 Jo 0 2

and using explicitly the criticality condition AIl = 0; P., = P,,;, at the
equilibrium point v (Eq. 1.118) leads to the critical force

JEEIv?de

_ 1t 2 ‘1 12 _ _ —
Allv] == | Elv"“de — P | —v"de =0 = P.,. = Ppin = 7
2 Jo 02 Jy v"2da

(1.120)

minimum total potential energy
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which the well-known minimisation principle of the Rayleigh quotient™
¢ 2
EIv'd
v Jo v'°dx

It is well known that Rayleigh quotient \; = min, R(v) = R(v;) at the
first eigenvector v; has a stationary point which is indeed a minimum. The
above result (Egs. 1.120 and 1.121) can be used to obtain good numerical
estimations for the smallest critical load P,.. by choosing some even simple
but adequate approximations for the modes. In addition, the Rayleigh
quotient is flat near a minimum and consequently, substantial errors in
eigenmode (or approximation of buckling mode) leads to only small errors
in eigenvalue Ay or, here the buckling load P.,,.

Example of use of stability criteria in the form 0(AIl) =0

Assumes that one have compression P > 0 and that the initial reference
state is the perfectly straight configuration with only axial deformation.
We are studying the stability of a bifurcated infinitely small neighbouring
flexural mode v. Such infinitely small flexion is assumed to happening with
keeping all external forces constant. Therefore, the membrane state is to be
taken from the reference state. Let now derive the stability equations for
the same problem as above using the other form of the energy criterion (the
Lagrange variational equation) as §(AIl) = 0, Vou , where the increment of
total potential energy AII is being according to equation (1.119) given by

S(ATI[V)) = 0,Y0u = 6 (3 fy EIv"*de — P f§ Jodz) = 0,V5(1.122)

2
= [{EN6v"dx — P [{v'0v'de =0 (1.123)
Integrating twice by parts and accounting for the boundary conditions in

the boundary-terms leads to the well-known FEuler-Lagrange equations of
stability of a column

(EIV")"+ Pv"=0 & 4 BCs. (1.124)

The above homogeneous differential equation describes the stability problem
and its solution provides us the critical buckling load together with the
associated buckling-modes once the relevant four boundary conditions are
specified.

76This quotient or ratio is named after Walther Ritz and Lord Rayleigh. Math-
ematically, this quotient is defined by R(M,z) = x*Mux/(z*z) where M is a complex
Hermitian matrix and x non-zero vector. For real matrices and vectors, Hermitian means
symmetric and z* = zT. It can be shown that, for a given matrix M, the Rayleigh quo-
tient reaches its minimum value A; for the corresponding Eigen-vector v;. Similarly, the
ratio has a maximum too.
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Example of use of stability criteria in the form §(5%I1) =0

Now arrives the turn to use Trefftz stability criterion 6(6I1) = 0. Again
solving the same buckling problem for the elastic columns. Recall that the
stress state in the initial state is assumed not changing at the moment of
buckling. In particular the axial internal force N(z) =~ N°. In order to not
make the repetitive reading not boring and more challenging, I will write
directly the stationarity of total potential energy in the form of the virtual
work principle. So, then

Ol1 = — [Y[Mér + Née|dx + Péug (1.125)
oTI = Jy Mév"dx — N [y 8[u’ + v"%]dx + Pouy  (1.126)
Ol = [f Mév"dx — N [{v'6v'dx — N [ u'dx + Pouy =.127)
6211 = 4(611) = [L6Mov"dz — N [ 6v'dv'dz = 0 (1.128)

The initial (membrane) state was an equilibrium state, therefore —N [ du'dz+
Nduy = 0. This is accounted for in the integrations above by cancelling this
term. So, now from above the Trefftz stability criteria reads:

B JEEIsv" 50" dx

¢ ¢
5211 = —/ EI5v"6v"dzx + P/ Wo'de =0 = Py =P, =
0 0

JEsv'v'da
(1.129)
In the above we accounted for N ~ N® = —P < 0 and for linear elasticity
and constitutive model M = —FEIv”. The last result is nothing more than

the Rayleigh-Ritz quotient obtained earlier using the first energy criteria
AIIl = 0. In the above, since the virtual displacements dv are arbitrary, one
then can technically choose dv = av,a — 07 to obtain Equation (1.120).

Overall: All the three energy criteria for stability, AIl = 0, §(AIl) = 0
and §(6IT) = 0 evaluated at the critical point are indeed equivalent.

)k

The Lagrange theorem (minimum total potential energy) will be system-
atically used to investigate or derive the Euler-Lagrange loss of stability
field equations.

Physically speaking, the critical condition

S(AIT) = 0, (1.130)

means that the adjacent configuration next to initial one, is an equilibrium
state. In other words, this equilibrium condition states that in the vicinity
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of the initial-equilibrium state, there is an other new neighbouring equilib-
rium state. Therefore this is a condition for bifurcation (Trefftz) and it’s
defines the bifurcation point of the initial state™. Condition (Eq. 1.130)
is the energy criterion for loss of stability. It will be systematically used
throughout this study.

Let II(ug) = IIy be the total potential energy of the initial equilibrium
state one hopes to study the stability. Let this initial state u° be perturbed
a small amount du to a new position «* such that u* = u® 4+ du such that
[I(u*) = II; = II* (Fig. 1.25). Now one can write the increment of total
potential energy between the two configurations (states) as (Fig. 1.25) and
(Fig. 1.58).

All = IT* — 11" = 11, — 11°, (1.131)

therefore asking for the adjacent state u* to be an equilibrium state leads
to

S(IT*) = 0 = 6TI° — 6(AIl) = 0 = §(AI) =0, (1.132)

since the initial state u° is an equilibrium state for which holds naturally
S11° = 0.

Critical condition for loss: ‘ o(am)=0c

Figure 1.58: Stability of an equilibrium. The energy criterion for loss of
stability.

"TThis section is inspired by ideas from textbook by N. A. Alfutov, Stability of Elastic
Structures. Springer 2000 (Translated from Russian)
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To show that the above more general criticality condition (1.132) leads
to Trefftz condition™
§(6%I) = 0, (1.133)

the total potential energy increment from the initial state to the neighbour
new state is developed into Taylor series (to the second order and higher)
in the vicinity of the initial equilibrium configuration v° and gives

1 1
ATl = TH(u® + du) — T(u?) = 6T |y += 0T |y + = 6°T|yy + ... (1.134)
_ 2 3!
=0
1 1
S(ATI) = 0 —> § <252H|u0 b Tl + ) —0  (1.135)

where the first variation 611° = 611|,, = 0 (u° -equilibrium initial state) and
therefore, keeping only the quadratic terms, one obtains the energy criterion
(Eq. 1.133)

S(AIl) =0 = §(6%I1) = 0, (1.136)
which is known as the Trefftz condition for stability loss. So, we see that the
energy criterion for stability is physically the same as the Trefftz criterion
(Fig. 1.58) when keeping till second-order terms is sufficient to decide on
the nature of stability™.

It is not useless to recall that equation (1.136) is indeed the criticality
condition for loss of stability since in case of stable new state one have
AIl > 0 and for unstable case AIl < 0. Therefore a transition from stable
to unstable state or vice-versa occurs when

A:Hluo - 07 Pcr = Pmm;

(1.137)

u’ — equilibrium point.

The nature of the stability of an equilibrium?, more particularly in
our context of a static equilibrium can be assessed through second and higher
order variations of the total potential energy of the system. Otherwise, for
more general dynamics, the engineer should use the versatile Luyaponov
stability criteria.

4 Give an infinites-
imal  perturbation
Su: stable §2I1 > 0,
neutrally stable:
§’I1 = 0 and un-
stable: §%I1 < 0.
IM[u] is the total
potential energy.

1.10 Homogeneous linearised equations of sta-

bility

Assume the system is in known initial equilibrium. We are interested to
determine the bifurcation point of this initial state. The sufficient condi-

"8 Which follows from more general energy criterion for loss of stability (Equation 1.130
™80, one has not 6%I1|,,, = 0 at the critical equilibrium point .
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tion for the bifurcation point is the existence of a close adjacent equilibrium
state to the initial one, not far from it. Therefore, it is not necessary to
consider a large deviation from the initial state of equilibrium; a sufficiently
infinitesimal departure from it is sufficient. Therefore considering the [in-
earised equations of elastic-stability around the critical point is to determine
the bifurcation point. These equations are those of a linearised eigenvalue
problem. The smallest eigenvalue corresponds to the critical buckling load
and the corresponding eigenmodes gives us the configuration of the system
in the new equilibrium configuration up to a multiplicative scalar in the
vicinity of the bifurcation point.

The homogeneous equations of the elastic-stability can be derived based
on the following three basic methods®’:

1. applying, systematically, the energy criteria®! for bifurcation sta-
bility loss; §(AIl) = 0 at the critical (equilibrium) point. Note that
the increment of the total potential energy AII should be, at least,
expanded to the accuracy up-to second® order (the squares®3.

2. directly writing the equilibrium equations in the deformed con-
figuration which stability we are investigating and adjacent to the
initial equilibrium state.

3. of course, one can derive first the full (geometrically) non-linear
equations in the vicinity of the critical point and then linearise
them near the initial equilibrium point.

As seen previously, the linear strain-displacement relation is not sufficient
for stability analysis. It come out that non-linear effect up to second order
should be accounted for.

80Ref: Alfutov . Stability of elastic structures

81This is the approach which will be use systematically in our current course of sta-
bility: CIV-E4100 - Stability of Structures L.

82 At least up-to the 2% order. When needed, higher order terms should be included.
For instance, in cases when the second variation vanishes or its higher orders. Since the
sign of AII will be given by the non-zero term of the Taylor expansion.

83This idea is used systematically by professor Juha Paavola in his lecture notes when
using energy method to derive stability equations in the additional written material he
distributes for the course - CIV-E/10 Stability of Structures (2018). The written material
by J. Paavola (Structural Stability) is valuable with plenty of examples: it is systematic
and general methodology (which represents a generalisation and an extension of Bryan
and Timoshenko forms type of the energy criterion) to derive the basic equations of
stability for any type of elastic structural basic elements, like for instance, beam-columns,
torsional buckling, lateral-torsional buckling, buckling of plates and cylindrical shells.
Have a look to the material.
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1.10.1 The energy criterion

In the following three general and most common forms of energy criterion
will be presented in short. The so called Bryan®* form of the energy crite-
rion for stability will be here a bit more detailed. There exist also another
form for the energy criterion known as Timoshenko form. For more details
on the two forms, please refer to the textbook by Alfutov %°.

There is a more general form for the energy criterion of loss of elas-
tic stability, presented by J. Paavola in his lecture notes®® on (Structural
Stability). The methodology represents an extension and a generalisation
of Bryan and Timoshenko forms of the energy criterion of stability. Let’s
refer to it as the mized form which is known as the Euler®”. Refer, for
details, to classical textbooks by Novozhilov and Washizu. Novhozhilov,
in his classical textbook chapter [Chap. V: The problem of elastic stability],
writes: in investigating multiple equilibrium positions of elastic bodies, it is
absolutely essential to take the effect of rotations (rotation components of
the finite strains) into account. (I added the words in brackets for later use
when splitting the finite strains into linear and non-linear parts). In short,
such mized form accounts both for the work of initial stresses on additional
deformations and for the work of external load on additional displacements
caused by the transition to the perturbed configuration from the primary
equilibrium state.

Bryan energy criterion for stability loss, study the accumulation or incre-
ment of total strain energy when the initial equilibrium configuration is
given a small finite perturbation close to the initial state. Especially, the
increment of work of external loads during this infinitesimal perturbation
is accounted for through the strain energy accumulation due to the work
of initial internal stress on additional perturbed strains. The strain energy
accumulation due to the work of initial internal stress on additional per-
turbed strains is accounted for. Consequently, such approach allows also to
determine the displacements before critical state in addition to the critical

84Luis A. Godoy, The general theory of elastic stability at the end of the 19*" century.

international Journal of Structural Stability and Dynamics. Vol. 11. No. 3 (2011)
401-410

85N. A. Alfutov, Stability of Elastic Structures. Springer 2000 (translated from Rus-
sian)

86 Juha Paavola, Structural Stability part of the course CIV-E4100 - Stability of Struc-
tures L (2018)

87See classical textbooks of Novozhilov, Foundation of Non-linear Theory of Elasticity
[Chap. V: The problem of elastic stability]. Graylock Press, 1953 (translation from
Russian)
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state (critical load and corresponding buckling mode).

However, if during the infinitesimal transition from the primary equilib-
rium state to the perturbed state, the external load will do additional work
AWeye # 0, for A 2 0 which is not included in the work of initial stresses,
than the Bryan form does not see such work (Margin Figure for lateral
buckling) and then Timoshenko form is more suitable. When one includes
Wext = P - A # 0 into Bryan form of the criterion, one obtains naturally
the mixed form (or the Euler form). For such cases, Timoshenko form of
the criterion will be also adequate. Another example can be the flexural
buckling (Margin Figure for flexural buckling) where the Bryan form is still
adequate since the work of the initial stresses ¢¥ is now equal to the work
of external forces AWey.

As in the previous case, Timoshenko energy criterion studies the sys-
tem deviation from initial equilibrium configuration to a infinitesimally
close perturbed configuration without accounting for the deformation his-
tory away from the initial state. Such approach allows determination of the
critical load, too. Now, the work of the initial stresses on the perturbed
deformations is not accounted for explicitly but the work of external forces
on the additional perturbed displacements is explicitly included.

There exits also a bit 'modern’ or 'new’ third energy criterion®® called
criterion of critical levels of energy.

X %k ok

Some basic examples of use of these criteria will be provided at the end
of this section. I will prefer to use the mized form®® of the energy criterion
for elastic stability loss because of its generality. Both the additional work of
initial stresses and of external forces is explicitly included during transition
from initial equilibrium to perturbed state.

In the following the Bryan criterion will be detailed. At the end of this
section, the Timoshenko criterion will also be presented. For derivation
details, refer to above referenced textbook by N.A. Alfutov.

88L. Stupishin, Comparative analysis of buckling criteria for engineering structures.
Single-degree-of-freedom systems. 7th international Conference on Key Engineering Ma-
terials (ICKEM, 2017). IOP: Conf. Series: Materials Science and Engineering 201
(2017) 012020.

89the method presented by Prof. Paavola in his course on Stability of Structures
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Bryan criterion

The energy criteria 0(AIl) = 0; P = P, i, will be systematically used
to illustrate to derive the Eigen-problem corresponding to the linearised
homogeneous equations of stability loss. For notations, see (Fig. 1.161)
where the idea to recall is: consider primary equilibrium state (pre-buckled
configuration u’) and give perturb infinitely slightly this configuration by
ou such that

u* =u’+ou=u’+aou, (1.138)

where « being an infinitely small scalar. The displacement vector being

noted as u = (u,v,w)’. Determining the Lagrange finite total strains®
. L :
€ = i(u” + u;; + upuk;) - using Einstein summation rule  (1.139)
1
E=_ ((Vxw)" + Vxu+ (Vxu)" - Vyu), (1.140)

from the perturbed displacements and gathering them into powers of a up
to a? inclusive, and neglecting terms containing the derivatives? of the
initial displacement u®, on obtains

e = + (ae; + a’ey) = € + be. (1.141)

In the above formulas, coordinates X are the material coordinates. In the
strain expansion (1.141), the linear parts of the strains are the initial strain
¢ = Lug and the linear part of the perturbed strain (linear part of de;)

= Tw] (1112

where L the linear part of the differential operator for strains defined in
Eq. (1.140). One need to determine the word increment of initial stresses
on the additional perturbation strains. Actually, it is found that only the
non-linear part (second-order part) of such perturbed strain increment will
be work conjugate with the initial stress ¢ for computing the increment of

90This is the Lagrangian finite strain tensor which is also known as Green-Lagrangian
strain tensor. The reader should refer to some textbooks or basic course in Continuum
Mechanics. In the definition above, the material displacement gradient tensor Vxu,
the partial derivatives of the displacement vector are with respect to the material (La~
grangian) coordinates.

91Tt is assumed that the initial stress, external dead loads remains constant during the
transition from the pre-buckled initial equilibrium to infinitesimally adjacent perturbed
configuration. Also the derivatives of displacements from the primary equilibrium van-
ishes.
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total potential energy AII. For that purpose, one defines the second order
components (multiplying a? in Eq. 1.141)) of the strain vector®® rising from
the perturbation of displacement (u;), = u; as

k% *k

€2 = €11, €32, €33, 13 V315 V13- (1.143)

where the quadratic part the finite strains (1.140) as

1
€ =€, = §(U1)k7i(ul)k,j ; (1.144)

where the shear angle v;; = €;; + €j;.
The increment or change (accumulation) of total potential energy

Al =TI[u’ + du | — [u°] = 61|y, +6°H|yy + . .. & all; +a’Il,. (1.145)
~ ~—~—

=auy =0 =0

Since the initial (primary- or pre-buckled configuration) is an equilibrium
state one have, in the above equation, 6II|,, = oll; = 0. Finally, the
criterion for bifurcational loss stability can be stated as, for instance,

S(AIL) = §(6°|y,) + ... = o811, = 0, (1.146)

where the multiplier constant o can be omitted.

Integrating the strain energy density u = %eTEe over the volume of
the structure, and accounting for elasticity (Hooke’s law), ¢ = Ee®, 0y =
Ee; and 0y = Eey, collecting the terms multiplying o2, and omitting the
multiplier o, one finally, obtains

1
I, = f/ €1 Ee; + €07 Eey +ey 0dV. (1.147)
2 Jv N

oo=Ees

Now let’s have a breath and recall the reciprocity theorems of Betti-
Maxwell saying that ¢;TEe; = ¢gToy = 270" Accounting for that in the
above expression, we finally obtain the Bryan form of the the increment of
the strain energy AII, between the perturbed and primary state, can be
written as

1
AT = = / e TEe dV + / e;To0dV. (1.148)
2 Jv 1%

Note that initial stress o enters explicitly the Bryan energy criterion
(1.148). Therefore this allows to find the critical points (bifurcation points)

92Voigt’s notation
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independently on the origin of the cause causing the initial stresses. Such
causes can be mechanical load, thermal gradients of temperature changes,
initial strains, initial displacement, swelling, ...etc. So, cases with other
than mechanical loading cannot be addressed naturally by the correspond-
ing Timoshenko criterion of stability.

Note that, there is cases when some part of incremental work of external
forces done on the change of the (quadratic part of) the non-linear strain
increment €5 in the perturbed state cannot be accounted by the work of
initial stresses. Consequently, the change in the potential of external force
AV = =AW, (P, €3) should added to the total potential energy functional

All

1

- / e TEedV + / €00V — AW.i(P, es) (1.149)

2 .Jv \%4 ———
—_—

U(00 c2) such that gU(09,€2)
s€2
an example of such case is the lateral torsional buckling of a narrow rectan-
gular cantilever beam with the end-load is located at a height a # 0 over (or
above) the gravity center of the section. (you will have a concrete example
in the section on lateral torsional buckling).

Important: in Equations (1.148 and 1.149) the deformations (linear part
1 and quadratic part €5) and the displacements are to be estimated in the
slightly buckled configuration while the initial stresses ¢ and external forces
P are to be estimated in the pre-buckled configuration. It is assumed that
during buckling, these initial stresses forces remain approximately constant.

About the sign of change in the potential of external forces
Example from lateral torsional buckling:

Recall that the potential of external forces being defined as the change

AV = —AW,y, (1.150)

in our conservative force system, where AW,,; being the increment in the
work of external forces.

Be careful with the sign: Be specially careful with the sign when writing
the change in the work AW,,; of external force Fona displacement d of its
application point. For instance, the change in the potential of the force is
AV = - AW, = —F-d. So the work AW,y is positive when the force and
the displacement are in the same direction. On the contrary, it becomes
negative when the force acts in the opposite direction of the displacement.

L]

Dynamics of buck-
ling of slander
column. Initial
configuration (small
circles) & node tra-
jectories. Note that
these  trajectories
are convergent to

a stable configu-
ration. (smooth
curves)  (Baroudi,

2018). /simulation/
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For instance, one very common possibility for mistake for many of us, is
when considering lateral torsional buckling where the external force (gravity
load) is downward directed and transversal to the neutral axis of the beam.
At buckling the cross-section rotates an amount ¢ around its center of
rotation (or of shear) and the point of application of the load rises upward
by a distance d. In the case the work change is negative, since the load and
the displacements are in opposite directions, so AW (F) = Fd=-Fd<0
where F' > 0, d > 0 and d = a(1 — cos ¢) ~ 1/2¢?, where in this particular
explaining example a > 0 being the location of the force bellow the shear
center (SC) or the gravity center (G).

Let’s illustrate with a small example we will need when studying lateral-
torsional buckling. Recall the change in total potential energy being

AIl = AU + AV, (1.151)

where the change in the potential of the forces AV = —AW,,;. For the
loading cased F = F7 and distributed transversal load q, = q,(z)j (Figure
1.59). In both loading cases we have d > 0, F' > 0 and g, > 0. The force
and the displacement d of the load application point occurs in opposite

direction, therefore the work is negative and given by

F-d=[F]j-[-dj=—Fd <0, point load

Lg, - dde = [{q,)7 - [~d)jdz = — [ ¢,(x)d(x) dz, distributed
(1.152)

In this particular example of lateral torsional buckling (Figure 1.59), the

moderate rotation expansion is used cos ¢ &~ 1/2¢?* then d = 1/2a cos ¢ ~ ¢*
and then

AI/Vezmt = {

—

¢ ¢ ¢
AW,y :/0 qy(x) - d(z)dz = —/0 qy - a(l — cos @)dx ~ —/0 qy - a[;qﬁz]dx
(1.153)

_ ! Oea(x)qy(x)gbz(x)dx (1.154)

Summa summarum, the change in potential of external forces is now

¢ . ¢ ¢ 1
AV = —AWey = _/ Gy(z) - d(z)dz = / ¢y - a(l —cos¢p)dx ~ / qy - a[§¢2]dx
0 0 0

(1.155)
for a transversal distributed load and equivalently for any point load.
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d=—dj
4__, -

All = AU + AV, Gy = 0(2)]
AV = AW ] AWen = — [ g,(x)d(x) dz |
'Q\:.;",‘:‘ 2 [ 311?' wfa .lg'l”" =l 3}1:{ , d?0, ,}; o

N g :

{':_ & E T = 'I‘-;I s.‘? " 2y l P A 4
T UL |. ;.; w-z )

t < 3

Figure 1.59: Illustration of the work of external load in lateral torsional
buckling. Note the sign: the force and the displacement are in opposite
directions, so the work change is negative here.

Example from Euler buckling:

Example of column buckling: Illustrative example for the criterion (Eq.
1.148): flexural buckling for simply supported column in a plan. Let the pre-
buckled (primary equilibrium) state be ug = (ug,v9 = 0). The perturbed
configuration (post-buckled) is now u* = vy + (u, v) = up + auy, and using
previous notation for the increment u; = u,v; = v but with dropping the
index 1. The total potential energy increment in the Bryan form is

1 /¢ ¢ 1
All = / EI(W")dz + / oLA L5 ()] da, (1.156)
0 0
where v; = v(x), w3 = u(y,z) = —yv'(z). Consequently, the linear part
of deformations ¢, = —yv{(z) = —yv"(z) and the quadratic part is e; =

$(v])? = 1(v')% The pre-stress from the primary state is 004 = N°(z).
(in this example we’ve used the notation v = v; in the functional). The
varied (perturbed) configuration was v* = v° +dv = v° +avy, (v° = 0), and
u* = u® (no change in length of the centreline during buckling).

Note that the Timoshenko form of the increment of total potential en-
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ergy will be

1 st €1
ATl = f/ EI(v")?dz — P/ = (v)?] da, (1.157)
2 Jo 0 2
A
where P = — N being constant, for the simply supported column under

end compression (P > 0). The formal difference with Bryan form is that
the incremental work of external force on the perturbed configuration

€1
AV = ~AW,y = —P / [50))da (1.158)
0

is included and it is equivalent internal work for initial stress o2 on the non-
linear part of the incremental deformation. Now from the above Bryan form
of the criterion (eq:Bryan-energy-criterion-form-flexion), we obtain YA =
N® = —P < 0 which is the same than tin the Timoshenko form ( 1.157).

Timoshenko energy criterion

Recalling previously discussed, this form of the energy criterion the initial
stress of the primary equilibrium state does not enter explicitly. The incre-
ment of total potential energy is accounted for through the increment of the
work of external forces on the perturbed finite displacements during tran-
sition from primary state to the slightly perturbed state. The increment of
displacement should be expanded up-to second order, at least. Therefore,
the total displacement in the adjacent new equilibrium is described by the
quadratic expansion (up-to second variation)

u = u + au; + o’u,, (1.159)

where « being infinitely small scalar. Keeping terms up-to o? in the defor-
mations, one obtains

€ = €y + ey + ey, (1.160)

and so on”3.

Such approach can be more nature for situations where such work is
easy to formulate. An illustrative simple example can be the stability of
the previous straight column (1.157).

93See the Alfutov’s textbook for details.
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Mixed or Euler criterion

This form of the energy criterion is more versatile’®. As previously told, the
methodology represents a generalisation of Bryan and Timoshenko forms of
the energy criterion of stability. The approach or method method used to
derive the mixed form is known as the Euler method®. May be one just
call the mixed form the Fuler form. Let’s do so, in the following.

This Euler form aaccounts explicitly for both the additional work of the
initial stresses on additional deformations and of work of external loads
on the additional displacements caused by the transition to the perturbed
configuration from the primary equilibrium state.

Note that the reference configuration has not to be at a critical equilibrium
point. Any other equilibrium configuration can be chosen as a reference
state to be perturbed.

In the following, I often, for shortness when only the stability equations
are of interest, work directly, as in Bryan and Timoshenko form of the en-
ergy criterion, with the increment of total potential energy and thus directly
with the increment of displacements. Therefore, I chose naturally the ini-
tial equilibrium state (configuration u®) which is slightly perturbed to a new
configuration u* being infinitely close to or at the critical point for which
the stability one want to study. Therefore, the dead load and displace-
ments of primary equilibrium are kept constant during the perturbation
(not varied) (Cf. Figure 1.61). This way, we obtain directly the equations
of stability by taking the first variation of the increment of total potential
energy O(AII) = 6(6%I) with respect to the displacement increment du = 0
due to perturbation at critical point u’. The primary equilibrium equations
are not for interest now. Later, when dealing with the stability illustration
examples, this notational difference will not be written, since it became not
necessary, once we know that ou = 10 stand for such tiny changes away
from the critical equilibrium point. Therefore, from now till not otherwise
stated, I will use simply the notation

Ju It

a u = [u,v,w — strain changes — €

this stands for changes away from critical point

(1.161)
for such increment in displacement change between a critical equilibrium
point and it’s tiny perturbation. For instance, for the case of lateral tor-

94Presented by J. Paavola in his lecture notes Structural Stability in the course CIV-
E4100 - Stability of Structures L (2018)
95Washizu. Variational methods in elasticity and plasticity.

infinitesimal

critical | '3 perturbation

equilibrivum toward adjacent
equilibrium

a=du=a=(0,nu)=u
S oD 7
infinitesimal displacement
increment between critical
point and disturbed state
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sional buckling, @ = u = (u, v, w) which becomes for a narrow cross section
bended in the plane (x,y) of major bending rigidity; . = (0,v, w) = u (Cf.
example later). The corresponding induced strain changes will be denoted
simply by e.

Therefore the dead load

(P%) is kept constant during variation or transition from 1 — 2: u* =
u® + du = u® + 4, AIl = AU + AV. The tiny perturbation from ugy to u*
will induce changes (increments) in stresses oy — 0o + ¢* and in strains
€0 — €9+ €*. It is assumed that initial stress and dead loads do not change
during the tiny incremental motion.

1 1
1" = I[u’ +0u, P°] = T[u’, P°)+ 61|y +56°TT|y0 + o5 0° o +... (1.162)
— 2 3!

The idea is now to develop the increment of total potential energy up-to
second or higher when the second, third and so on, variation vanishes.

AU = AU® + AU* = 0%

Figure 1.60: The strain energy change between reference equilibrium state
u’ and a perturbed neighbouring (equilibrium) state u. The change in
strains being €* = Ae = ¢ — € and in stresses 0* = Ao = 0 — o°

Then the energy criterion for the stability loss is unchanged and is (phys-
ically, an equilibrium condition for the perturbed state u* = u® + du =
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u’ + Q):

d(AIl") = 0,Véu kin. admissible (1.163)

S(TT[W® + 6u, PP = S[TT[u®, P°] + 6TT],0 +~02TT|,0 + —6°TT]0 +...)] = 0, Vou
—_— 2 3!

=0

(1.164)
S(TT[u® + 5u, P)) = 8[TT[u°, PY]] +6[28°TT]u0] + 6] 6°TT]yo] + 8[. . ] = 0,V5u
_— 2 3!
=0
(1.165)
1 1
S(IT[u® + ou, PY]) — T[u°, P%]) = (5[552H|uo] + [ga?muo] +6[...] = 0,Vou.
S(AID)=0 ~
(1.166)

When we keep terms only up-to the second order we obtain the energy
criterion for stability loss in the familiar Trefftz form too as:

S(AI) = §[6°M] 0] = 0,V6u, kin. admissible, (1.167)

Physically, criterion (Eq.1.167) is saying that the perturbed configuration
is an equilibrium state, too.

The homogeneous linearised equations of stability: In the following,
the star-symbol * will be dropped from the perturbed strains ¢* will be
written e

e Derivatives of the primary equilibrium configuration when the struc-
ture switch from a critical point u® to the infinitely close perturbed
configuration, remains negligible®, thus first derivatives u = 0, x; =
x,1, 2 when considering changes in the displacements.

e If we consider total displacement u* and include the initial state when,
making variations, then u%’s derivatives should be included. It should
be noted that the the primary state displacements and the additional
displacements in the perturbed state are differently (separately var-
ied). In this case, for initial state u’ we obtain the equations of
equilibrium of the primary state too, in addition to the homogeneous
linearised equations of equilibrium of loss of stability for the incre-
ments of the displacements 1.

96that can be shown true; Homework.
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infinitesimal displacement increment
between critical point and disturbed state

strains at
critical point
strains after a tiny
perturbation away
from the critical point

Figure 1.61: Schematic for the nature of the increment of displacements.
Here, I take it as the infinitesimal additional displacement du = G hap-
pening between the transition from the critical equilibrium point u?. to a
perturbed adjacent equilibrium configuration u* = u?, + du. During this
change of configuration, it is assumed that dead loads f remain constants
(and thus P also is unchanged). The total potential energy increment AII
is computed between these two configurations. The linearised homogeneous
equations of stability via energy criteria 0(AIl) = 0, Vdu or Vi.

Applying the mixed or Euler form: Let write again the energy criteria
in its incremental form. Note that now the total displacement u* will be
used instead of its increment between reference (primary equilibrium) and
perturbed value. Later, the symbol star (*) will be dropped and denote, for
instance total displacements simply by u = u® + du and the corresponding
total strains by e.

It should be recalled that the reference configuration has not to be at a
critical equilibrium point. Any other equilibrium configuration can be cho-
sen as a reference state to be perturbed. Here, I take it as the infinitesimal
additional displacement du = & happening between the transition from the
critical equilibrium point u?, to a perturbed adjacent equilibrium configu-
ration u* = u?, + du.

During this infinitesimal change of configuration, it is assumed that dead
loads f remain constants (and thus P also is unchanged). The total potential
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energy increment Al is computed between these two configurations as

AIl = TI[u?, + du, P°] — TI[u?,., P]. (1.168)

Finally, the linearised homogeneous equations of stability are derived by

imposing equilibrium to the new adjacent equilibrium state through the
energy criteria criteria §(All) = 0, Véu or Va (Fig. 1.62).

Now the corresponding change total strain energy of the system will be

obtained by integrating the strain energy density Au = Au® + Au* over the

volume of the structure Au = ¢ : €* + Lo*€*, where €* = ¢ — €’.

The total potential energy change (Figs. 1.60 and 1.61)
All = AU + AV, AV = —AWey, (1.169)

where

1
AU = / o e dV + 5/ o* €' dV,  where € =¢— . (1.170)
v v

The strain energy change between reference equilibrium state u® and a
perturbed neighbouring (equilibrium) state u* (Fig. 1.60). The change in
strains being Ae = € — ¢® and in stresses Ao = o — o°

In the work of external loads AW, the additional displacement should
be expanded, at least, up-to second order?”. Finally, the mixed energy
criterion form for stability loss reads:

S(AIT) = §[6°M|y] = 0,Vou, kin. admissible, (1.171)

where now u' being a critical equilibrium point. The contribution of AU* =
5 [y o*e*dV has to be estimated using the linear parts of the strain changes
¢*. On the contrary, now the contribution AU? = [;, 6% : ¢*dV has to be
done with non-linear part of the change in strains. According to J. Paavola’s
lecture notes, it comes out that is better to express the non-linear part of the
strain energy change using the partition of the finite strain®® (increment)

1
€ij = i(uzg + s+ U iUk;) (1.172)

9"Example of such expansion up-to 2nd order: lateral buckling case, see further: The
incremental external work AWe,y = Pa(l — cos ¢({)) ~ 3Pag¢?({), where a being the
elevation of the point of action of the point end-load P above the neutral axis of the
cross-section.

98Recall that now u; stands for the increments Awu; or the perturbation of the displace-

ment.
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critical infinitesimal
equilibrium ©T——»  perturbationtoward
adjacent equilibrium

f

Stressless initial
. state
|

fizfu=d=(0ruw)=u
A e

infinilesimal displacemant
_» ingrament between crifical

Total potential =
T paint and disturbed stala

energy at the initial
critical equilibrium

1
\ =ty = ;j{""(r.u)}’
point

Total potential energy increment 1

¢ ¢ ¢
after slightly perturbed away All = 5/ EIyur"zd.r 25 %f Gl¢"%dx +f / olerd Adz,
0 { 0 Ja

from initial equilibrium

Figure 1.62: Illustration for total and of increment of displacements in the
example of torsional lateral buckling of narrow beam.

(Eq. 1.140) into its linear part e = £ (u;; +u;,;) and its remaining quadratic
part expressed as a rotation component w. This choice seems natural be-
cause rotation terms are many order of magnitude larger than the remaining
terms in stability analysis (For details, please refer to Novhozhilov’s classi-
cal textbook [Chap. V: The problem of elastic stability] and prof. J. Paavola
lectures notes).

In the following, for defining strain-increment to account for in the sta-
bility analysis, I reefer the reader to J. Paavola lecture notes (Probably, a
must reading after completing the current course). I use the same nota-
tions. Let’s use for convenience Voigt notation for strains and recall that
shear angles 7, ; = €; + €j. The rotation component of the strains are
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defined as

10w Ov
=5 (5 5)
1 (0u Ow
“ A&‘m)
1 (0v  Ou
- 2<&t_&)

and the linear part

ou ov
ex:%a ey:@7 €, =
ov  Ou
= e T oy
B ow Ov
w = oy oz
B ou Ow
=9 or

(1.173)
(1.174)

(1.175)

(1.176)
(1.177)
(1.178)

(1.179)

After order of magnitude analysis for the strain increment, and keeping only
up-to second order terms ( the non-linear (quadratic) part can expressed in

terms of rotations) one finally obtains

ex—ex—l—;(wg—i-w;)
€y ey+;(w§+w§)
ezzez+;(w5+w§)

(1.180)

(1.181)

1.183
1.184
1.185

A~~~ I/~
~— ~— ~— ~—
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Deriving the equation of stability and order of magnitude in
different terms:

o In stability analysis while deriving the linear stability loss equations
(the linear eigenvalue problem) the amplitude of the linear part e;
of the strains, during the infinitesimal perturbation of the initial
equilibrium to the (bifurcated) adjacent one, remains small® as
compared to changes in the rotation components of w;.

e Consequently, the quadratic terms in terms in strains e and wie;
are of second order increments as compared to changes in the ro-
tation components, and for that reason will be dropped (ignored).
In the above strain increments expressions, only terms shown in
the above strains are retained for stability analysis.

e In addition to that, (Cf. Alfutov), terms containing the deriva-
tives of initial primary displacements can be neglected (this, their
contribution to the increment of total potential energy All can be
neglected) too.

?As a consequence of the choice of the initial primary equilibrium and the
close neighbouring adjacent (bifurcated) equilibrium. These two states are in-
finitesimally close.

1.11 Application examples of stability study
using energy principles

The example treated here is to meant to introduce the methodology (Bryan’s
type) for establishing the stability equations of various simple cases of el-
ementary structures. Naturally, the stability study for a complex struc-
ture can be done reliably only computationally together with experimental
validation of the model or its parts. This does not mean that analytical
approach should be forgotten. On the contrary, it should be strengthen as
it is the only way to apprehend concepts correctly.

We consider the buckling of a simple slender column under constant com-
pressive axial load. The external load can be thought being applied at one
end of the column. In the following application example below, we want
to derive the bucking equations (eigenvalue problem) and other secondary
equilibrium equations related to the initial pre-buckled state, if needed. For
this purpose, we use two various, only apparently different, forms of the to-
tal potential energy, namely AIl (Eq. 1.186) and IT* (Eq. 1.188). Thorough
these lectures note, the form AIT (Eq. 1.186), called also the Bryan form,
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will be used. It is the one shown in subsection (1.11.1). The pre-buckled
state close to buckling is [u,v = 0] where P — Pg from below. The tiny
post-buckled state is [u + Au,v # 0] for P — Pg from above. The axial
displacement Change Au = Auy + Auyy, where the first term is due to axial
deformations €2 of the neutral axis and which are zero (Ae? = 0), since the
load P remains constant®, and the second part Auy, = fi 1 2dz , due to
column shortening due to curvature change while bending.

Because the buckling neighbourhood is very tiny, we can say that the
axial force remains constant = P. Consequently,

‘1
ATl = IT*[u, v] — 11°[0 —7/ EI(W") —P/ S0 (1.186)
0
and
1 1,
:,/ EI(")2de — P/ “odz + (1.187)
2 Jo 0 2
1 l
+5 / EA(W)2de — P - u(f) (1.188)
0

where IT* and II° being the total potential energies in the post-buckled
(initial configuration with no bending) and pre-buckled (tiny perturbed bent
configuration) states, respectively.

1.11.1 Energy criteria for column buckling

The total potential energy increment in Bryan form (Eq. 1.186) was

1 l 9 l B 1 9
_ - / EI(W")%dz + / N(z) [=0%] da, (1.189)
2 Jo 0 2
€2

where the pre-stress from the primary state is 60A = N°(z), deformations

e1 = —yv”(z) and the quadratic part of the strain increment is e; = 3(v/)?.

For the case of constant end-thrust —P = N°%(x) < 0'. The energy
functional can be rewritten in the form

1 74
- 5/ EI(W")2d —P/ "2dz. (1.190)
0

99This is true in case of symmetric bifurcation or limit point. This remains, quite a
good local approximation in case of a non-symmetric bifurcation.
100kts. johdot ...olen sen johtanut paperille . ..tyopyodalla! Hitsi, missé ne on?
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Taking the variation §(AIl) = 0 one obtains
¢ ¢
/ EIV"50" — P/ v'ov'dr = 0, Vo (1.191)
0 0
which gives after twice integration by parts becomes

¢
/ [ETv® + Pv"| $vdx + [EIV" 6] — [(EIv" +Pv')év]l = 0, Vov (1.192)
0 —~— ——
-0 -M -Q

The linearised buckling equation follows now straight-forwardly'! as

Elv + Py =0 (1.193)

which, mathematically speaking, is a linear eigenvalue problem. The bound-
ary terms of the integral provides a consistent set of boundary conditions.

1.11.2 Energy criteria in ’the full form’

This subsection is reproduced here as a very short answer to a student
question that was asked today. The student was wondering, and he is
completely right, a question about why the initial pre-buckled equilibrium
state u (initial trivial equilibrium state) has disappeared from the expression
of the change (or the increment of) total potential energy that was used in
the previous subsection (1.11.1)7

Here the answer: Let’s now consider the stationarity condition of the
'full change’ of total potential energy given by Eq. (1.188).

Now, Taking the variation of the 'full’ total potential energy, one obtains

¢ ¢
OIT* :/ EIV" - 6v"dx — P/ V- ov'da + (1.194)
0 0
¢
—|—/ EAY' - 6u'dx — Pou(l) =0, Vou, Yovu (1.195)
0

Again, integration by part'®? gives now two equilibrium equations with
respective boundary terms;

¢
/ [ETv® + Pv"] Svdz + [EIV" 6V — [(EIV" +Pu)év)s+  (1.196)
0 e— N ~——
=0, buckled equilibrium -M -Q
¢
— / [EAu"] Sudr — [(EAY —P)éuly =0, Vou, Yov (1.197)
0 W—/

=N
=0, initial equilibrium =

101See references Alfutov, Stability of Elastic Structures. Springer 2000, for more read-
ing on this example.

102 A question: What is te idea behind integrating by part? I let the reader think about
it.
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Tus on obtains two equilibrium equations (with their respective boundary
terms)

1. the linearised buckling equation
Elv® + Py =0, Ve (0,0), (1.198)
which is expressing equilibrium in the tiny buckled configuration and

2. the equilibrium in the initial pre-buckled state with no bending (v = 0,

u #0)

EAW =0, Vze(0,0), (1.199)
[EAY — P]§ - 6u(f) =0 (1.200)

together with the associated boundary term when only the end-load
P is acting.

1.11.3 Buckling of a beam-column

[lustrative and practical example for the criterion (Eq. 1.148) will be flexu-
ral buckling for simply supported compressed beam-column in a plan. The
variety of engineering applications of flexural buckling theory is just tremen-
dous. For instance, its importance in civil engineering for structural design
of compressed bar-members is vital. The label 'Euler Buckling Theory™®3
of the classical theory is, for civil engineers, as famous as is Coca-Cola. The
only difference is that Fuler does not receive any royalties for his formula
even that the first is much more healthier than the second.

103pjeter van Musschenbroek (1692 — 1761: A Dutch scientist Physics, mathematics,
philosophy, medicine, astronomy) did, about 30 years before Fuler, pioneering experimen-
tal studies on the buckling of compressed struts. He Performed experiments on column
buckling (1729) and he observed that the maximum compressive load a column can sus-
tain prior to failure is proportional to 1/¢?> Compare with Euler’s buckling load formula
P.,. = m2E1/{? obtained theoretically and about 30 years later in 1774. At that time no-
body has understood the importance of such result. Even Coulomb was saying that these
results,including experimental ones are wrong because many experiments show that the
compressive strength of columns was proportional to the cross-section area and not to
the square of its length. These last experiments were done with short iron and wooden
columns where the failure mode was the crashing or material failure and not buckling.
At that time the concept of slenderness was not understood yet. At the end, they were
all right but each one on the opposite side of the slenderness axis. This critical slender-
ness point divides the failure mode into material failure and elastic buckling, for axially
compressed members.

Pieter van Musschenbroek
(1692 -1761)

A Dutch scientist

Physics, mathematics,
ihifesonhy, medicing, astronceny

Musschenbroek
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Homogeneous equation of stability (Eq. 1.193) ; the classical Fuler buckling
equation are then

(EIV"Y' + Pv" =0 (1.201)
& four boundary conditions. (1.202)

The above equations describes the pure flexural buckling condition for
a straight column with a centric thrust end-load P > 0.

Solutions for some classical cases

In this section, we derive, by solving the above eigenvalue problem with
adequate boundary conditions, the well-known buckling formulas

P, = ,LL7T2£ZQI = Pg (1.203)
where the inertia moment being naturally the minor I = I[,,;,. For the
not-less well-known Euler’s basic buckling cases illustrated in Figure (1.63).
The parameter ;1 accounts for variety of the boundary conditions.

For design purpose, the buckling condition is rewritten in terms of Euler
critical stress for the buckling load

PE ET T'min 2
Ocr =0F = A ,WTQ@ = pm’E (€> =’ B/ N ins (1.204)

where the minor radius of inertia (gyration) being 7,,;, and A, being the
relative slenderness of the column. One recognise the Euler hyperbola with
graph (og/oy, A) in Equation (1.204) for the elastic regime. The yield stress
of the material being denoted oy .
The effect of such boundary conditions on buckling load is shown in Figure
(1.64). This illustration experiment (ref?) can be also interpreted as a
rudimentary but strong!® validation by the Euler’s basic buckling formulas
for slender columns.

[TO DO] derive explicitly as the solution of the Eigen- value problem the
basic Euler’s formulas at least for two cases.

104 Strong because it does not invalidate the formulas. Think that, instead of four times
the basic buckling load 4 x w2 E1/¢? of the fixed-fixed boundary condition, the experiment
could produce 2x or 9x this value! However, the experiment shows a value close to 4x.
The probability to have it by chance equal to the theoretical is almost null.
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Effective buckling length (important concept in design of structures)
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Figure 1.63: Classical Euler’s basic buckling cases.

Effects of boundary conditions — experimental evidence for Euler’s buckling formulas

i 2 ]
w*El
L

n2El 4nEl 2x*El =°El
. T [ ar
1 4 2 1/4

Poy=

Figure 1.64: Rudimentary experimental evidence for Euler’s basic buckling

formulas and the effect of boundary conditions on the buckling load.

Critical strain

On can respectively naturally be interested in the value for the critical

strain €

o = €p at buckling. How much the column relatively shorten when

5
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it starts to buckle? What is the strain corresponding to the Euler stress
O'E?

N2
& =ep= IE _ (%) = um? /N2, (1.205)
Consequently, the critical relative shortening of the column at buckling
does not depend on the elasticity modulus E and thus is independent of the
material. Only the relative slenderness and the boundary conditions affect

€p.

Let’s take a small breathing pause and I will tell you an amusing small true story.
Once during a class of structural mechanics and, to mark a small pause, I asked
the students the next question: " What have 7, the mother of geometry,
to do with Euler’s buckling load, a crude force?"Icontinued further con-
fusing students by concluding that m can be determined experimentally! Just
perform a buckling experiment using a simply supported column and measure
the buckling load ’very precisely’ and then use the formula

P.. 1?2

to determine the Queen of numbers; w. After the lecture or maybe, at the start

Figure 1.65: What 7, the geometry itself, have to do in the Euler’s buckling
formulas giving the collapse forces for columns?

of the following one, one from student came to me and wondered: "the reason
for the presence of 7 in the Euler’s famous buckling formula, is because when it
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start to buckle in a flexural mode, the centreline of the simply supported column
initially takes the shape of a circle. I liked very much his curiosity and his answer
too. So, I took the freedom to illustrate this small history in Figure (1.65).

Let’s come back to a an isotropic beam-column of constant cross-section being
axially loaded at its ends by P. In the following, the load can tensional (P < 0)
or compressive. (P > 0). In addition, there are no transverse loading. The
general solution v(zx) for the buckling of such column-beam s, without

v(x) = Asin(kz) + B cos(kz) + Cx + D +vo(z), P > 0 compression (1.207)
v(z) = Asinh(kz) + Bcosh(kz) + Cx + D + vo(x), P <O tension  (1.208)

where k* = P/EI.

This is the methodology for solving the critical loads for such simple column-
beam: account for four boundary conditions in the general solution above and
you will obtain a homogeneous linear system of four equations (four unknowns
A, B, C and D). Requiring the criticality condition (= non-triviality of the
integration constants — the determinant of system vanishes) , one obtains an
equation, usually, non-linear in k¢, to solved. The smallest zero of this equation
provides the buckling load.

We will illustrate this with few examples ...[TO DO: 28.1.2019 - you know
already basics from Beams and frames course .. .]

Application example from structural design

Assume one have deigned a sway column against buckling. So, the buckling
load according to Euler will be Pg 1 = m>EI/(4¢*) and the corresponding mode
v1(z) is the first mode. The question: assume the designer add a lateral elastic
restrain which consists of a stiffener bar (sivujaykiste) having an effective elastic
spring coefficient & [N/m]| (Figure 1.66). What would be the minimum value of
k (depends on ETI and ¢) in order to have the column buckling with the second
mode vg(z) 7 What would be the buckling Pg2 load now? (this example is
adapted from RK)

1.11.4 Effects of imperfections
Example 1: The secant formula

(This example is taken from your homework exercises of year 2020, so I do not
give yet the solution). A column of length ¢ is eccentrically loaded with a force
P. The simply supported elastic beam-column with length ¢. The cross section
is doubly symmetric with constant bending rigidity EI. The cross-section has
height h = 2c¢ and area A. The aim of this exercise is to determine the load-
displacement curve "P/Pr — v(£/2)/¢" (or equivalently v(¢/2)/¢ = f(P/Pg;e))
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Example of a . Y
design problem 3;2 = Z\
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Figure 1.66: A design problem as an application of basic buckling formula.

Eccentrically loaded column  FBD

_ eccentricity

»y § The SECANT FORMULA

sec{x)=1/cos(x)

+ Maximumstressinthecolumn:

Figure 1.67: Eccentrically loaded column and the secant formula.

derive the secant-formula (see Fig. 1.67)

1 . P
Omax = P l + 9 %% (W P>] , where sec(z) =1/ cos(x) (1.209)
)

and P = m2E1/(? being the Euler buckling load (for perfect column with e = 0).

This class of problems are called geometrically non-linear problems (GNP). The
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related differential equation of equilibrium is not homogeneous and therefore, the
deflection v(x; P, e) is uniquely determined.

The Question

1. Determine analytically the deflection v(x; P, e)

2. Determine the maximum deflection v(¢/2) = v(x = £/2, P/ Pg; e) and draw
the load-displacement curves for three different values of the parameter
e, for instance e = 0.01, 0.005 and 0.002. For z— axis use P/Pp and
for y— axis, v(¢/2)/¢. Observations: what happens close to P/Pg — 17
Conclusion?

3. Determine the maximum bending moment My,x = M (¢/2, P;e) and plot
this scaled maximum value My,ax/(P - €) in function of P/Pg for e = 0.01,
0.005 and 0.002. Conclusions?

4. Show that the maximum stress omax is given by formula (Eq. 1.209)

5. EXTRA : Answer question 2) using any FE-software!%® and use the ge-
ometrical non-linear (GNA) or post-buckling analysis options. Draw the
obtained load-displacement curves in the same plot as the analytical ones.
Compare your results (the load-displacement curves) to the analytical re-
sults you have obtained previously. Conclusions? Is there any difference
when P/Pgr — 1?7 Why?

Example 2: Ayreton-Perry design formula

The well-known Ayreton-Perry design formula'®® which is in current use in Eu-

rocodes (Eurocode 3) will be derived!?”. The formula accounts for effects of ini-
tial imperfections on the maximum critical load (buckling resistance) that such
imperfect column can carry without collapsing consequently to loss of stability.
Such reduction is condensed in a buckling reduction factor or imperfection factor
0 < x <1 embedded into the Furocode buckling curves. Imperfections cannot be
avoided since they are inherent to real structures!®®. Examples of imperfections
can be geometrical in members and due to imperfections during fabrication, con-
struction phases, tolerances due to manufacturing as lack of straightness, material
imperfections and so on. Other of types of imperfections are related to loads and

105Determine first, with the software, the Euler buckling load, for cross-checking your
input.

106Furopean buckling curves

107Dy, Alexis F. is warmly thanked for providing material used here for the Ayrton-
Perry formula

108The ideal world realises itself through imperfections. The other name of reality can
be imperfect ideality.
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their locations which naturally which deviates from centric idealised positions.
The effects of such imperfection are crucial, especially for slender columns made
of steel.

Analytical background of the Ayreton-Perry Eurocode design for-
mula and buckling curves

The cross-section is assumed prismatic doubly symmetric and the column is sim-
‘\‘lu g ply supported. Her we consider only pure planar flexural buckling. Assume
N X

that the geometrical imperfection of the slender column is condensed in the half-
sinusoidal form given in the margin figure. Then the total deflection v(z) when
solved from (Equation 1.202) with relevant boundary conditions v = v = 0 at

x=0and z =/, will be
Initial shape im-

o

. Pe?
perfection wo(z) = w(z) = —2 _gin(rz/l ; M= 1.210
eosin(mx/f) . (z) 1—(\/m)? (mz/¢) EI ( )
where the initial shape imperfection was taken as
wo(x) = eg sin(mwz /L) (1.211)

As a design strength criteria we want that the stress in the cross section is
not larger than the yield stress o, of the material (metal);

N, M,

O';naz :77;;&2: —+ max S O'y (1212)
P Mpyu h
A + I 2= ( )

Now one will substitute into the above design equation (or inequality), the max-
imum value of the bending moment at x = ¢/2 obtained from (Equation 1.210)
The bending moment is

Mo = M(£/2) = —EI(0"(¢/2) - o} (£/2)), (1.214)
(\/m)?

= — 1.215
P/P,,
=P —_— 1.21
cr€o I—P/Pcr’ ( 6)

where the relations (A\/7)? = (A/Ae)? = P/P. have been used. So, in the
above equation A is written again in terms of P/P,, as in the last definition in
(1.210) and the reference (Euler) buckling load P, = Pg = EIn?/¢? = Ng. Now
inserting the above maximum bending moment in the second equation of (1.213)
one obtains, at the limit,

h/2  P/P,
o A= P+ Paeg I//A = —/P/Pcr (1.217)
p, P h/2  P/P,
By _ P eh/2 P (1.218)

Pcr Pcr i2 1_P/Pcr’
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Now let’s rewrite the above equation in a form close to the Ayrton-Perry
formula. Before that, lets shorten the equations and use for that notation

aX = [egh/2]/i? (1.219)
= m/E/aye;hZ/Q (1.220)
x = P/P,, (1.221)

where x being defined as a effective load-bearing reduction factor.
Now the above equation will give

x2

3 3 X 32
A2 = gl 1?2 — 1.222
AT e X (1.222)
R |
L S V5 S (1.223)
X 1/x — A2
11 1 -1 1
- — — |1 2| — —2: 1224
=55 2[+a>\+A}X+2/\ 0, (1.224)
[ ——
=5

Finally solving the reduction factor y from Equation (1.224) for the reduction
(positive root of the second order polynomial) coefficient x one obtains, finally,
the Ayrton-Perry formula (Figure 1.68)

1
T eryEoa

and ) is the column relative slenderness!?? which can be also, for design purposes,

determined as A = Z/Aay /Ng. How this formula (1.225) is used in design of a
steel column? Consider a steel section in compression with applied load P. Initial

geometrical imperfections are now accounted for through this buckling resistance
reduction factor x (Equation 1.225). For design purpose, the resistance of the
column Ny to axial load should be such that the inequality

1 -
where ¢ = 3 {1 +aX+ )\2} (1.225)

A
N,=P < Np=y 22 (1.226)
v

holds. The material safety factor being . The graph (), ), Figure a) 1.69)
of Ayreton-Perry formula (Equation 1.225) forms a lower-bound curve for the
reduction of the ideal buckling capacity which accounts for the effects of initial
geometrical imperfections in curvature. The formula provides also the theoretical
basis for buckling curves of (Cf. Eurocode 3 buckling curves, Figure b) 1.69)).

19For ideally perfect (metallic) column one can write x = opA/o,A = 1/A2. This is
the Euler cubic hyperbola.
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Ayreton-Perry design formula

6312 Nurjabduskiyrit | Buckling curves = (Eurocode 3)
(1) Aksiaalisesti puristetuille sauvoille muunnetiua hoikkuutta A vastaava pienennystekiji ¥ lask
seuraavasta kaavasta kiiyttiien ky levaa nurjohduskiyriti:
% ) as
mutta X <10 |,

P —
I SA L

________ i (1)  Puristetut sauvat mitoitet

missd ¢=U,Sll+u(i——t).2)+f| N.* Externallaxial load
; Ed -~ 1.0 Action
- [aAf, =
A= [—L poikkileikkausluokille 1, 2 ja 3; N b.Rd
N. i
- [A_f, XA f
A= |- Loikkileikkausluokalle 4 N _x y
N, b.Rd —
Resistance
% M1
o on epiitarkkuustekiji;
Ng  on  kimmoteorian mukai br poikkileikkauk mukaan laskettu kriittinen voima

kyseeseen tulevassa nurjahdusmuodossa.

Nurjahduskiyri ag a h ¢ d
Epiitarkkuustekiji o 0,13 0,21 0,34 0.49 0,76

Figure 1.68: Ayreton-Perry design formula as implemented in Eurocde 3.
The coefficient o ( = 0.13 ...0.76), in Eurocode 3, is empiric shift and
accounts for various experimentally observed contributions to the overall
"imperfection’ of the column. The term A — 0.2 in the formula accounts for
plastic (limit load) failure for very short (metallic) columns (A < 0.2) for
which the Euler elastic buckling curve does not hold.

In the Eurocode buckling curves the effect of additional imperfections like resid-
ual stresses, eccentricities, geometric imperfections of the cross section, material
variability, yielding of very short columns (for metals), and so on, are accounted
for through compiling a huge amount of experimental results from various col-
lapse tests. Naturally, all these effects remain inaccessible through mathematical
modelling only.

Example: Ayreton-Perry formula. Let ey/¢ = 1/200, profile I-400 x 200 x 12 x 6,
I =207.3 x 10® mm*, A =70.56 x 102 mm?, i = 0.1714 m, h = 0.2 m, o, = 355
MPa, E = 210 GPa, so one obtains \?> = %‘%% = 0.1 m. The parameter
a = [0.446, 0.297, 0.223], respectively, eg/¢ = [1/400, 1/300, 1/400] with ¢ = 2m,

for instance.

Load-deflection curves for a perfect column

Bellow is reproduced schematically the equilibrium paths for a perfect column.
(1.70)
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Ayreton-Perry design formula

Buckling curves eul€ = (17400, 1/300. 17400 Eurocode buckling curves
_‘ﬁel_ding_ Yielding

;i N
. y | 18—t
) = | Euler cubic
\\ ‘.“ |z = ~Ewtar cut: yperbolal :: - %\\ij‘\ U M typerbola _
‘- X = 1/32 \Q N
‘ N
™N

Euler cubic hyperbola

Pienennystekiji 3

D4t 1
xX=

@+ \',-'lrp3 -2

a4 —tr+ 1 1 1 L1 |

.
B8 A1 &4 B B TE LT 14 VA TA 30 33 34 28 38 W0

02t Ayreton-Perry formula 5
Muunnettu hoikkuus A

Non-dimensional slenderness

0

0 02 05 075 1 1.5 2 25 3 g ik 422
o y= [eah 2]/
& N = > b) (Y= [eak/2lfi s Adapted from
= /Efa, 2 M
1 1y 2 | a A o=y b Eurocode 3
X=- . . where ¢ =— |1 +ad+ \l INy=P< Ng=y- 1 PP
o+ g2 -2 2! ! E . XSl

Figure 1.69: a) Theoretical buckling curve as given by Ayreton-Perry design
formula for various eccentricities eg. b) Eurocode bucking curves.

Geometrical non-linear (GNA) effects: a study with a simple
frame

seuraava teksti on raakeli, pitdd tyostda. The following exercise was inspired
from discussions with prof. Wei Wei Lin while telling me that, in China (or in
Japan?), the students have an analogous work as a laboratory work with both
theoretical and experimental parts.

A lateral-sway planar elastic frame (Fig. 1.71). A simply supported elastic
beam supported by two vertical cantilever columns. Both the beam and the
columns are dimensioned to work elastically during the whole loading range from
P=0...Pr...1.5 x P,. The load is in the midspan of the beam. P, /2 is the
Euler buckling load for one column.

In order to make the GNA or post-buckling analysis one adds, as a perturba-
tion, a horizontal tiny force H at the top of one column. (let’ say H = P/1000
or less to generate an initial eccentricity).

What we follow (record)? The deflection vpeam (F) at the mid-span of the
beam and the lateral deflection u at the top of the column.

What we do with that result? We draw load-displacement curves (equilibrium
paths). On the z-axis, we put the load which increases monotonically from
P=0...Pr...1.5 x P, and on y-axis we put two curves: vpeam(F) and ucol.
Then everything is clear: one sees that the deflection of the beam increases
linearly with the increase of load while on the contrary, the horizontal deflection
increases also linearly till P, after what it increases much faster (non-linearity)
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Equilibrium paths

o
@4F § i
3 .
)
e (2]
- <
stable S stable 3
¢ stable
L
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e 1 ;
Flexural 60 : Axial g
o |deflection o] displacement

Figure 1.70: Illustration for equilibrium paths and bifurcation points for
perfect structure (no imperfections).

than vpeam (F) (order of magnitude faster).

1.11.5 Timoshenko column

Consider an axial and centric load of a straight column. If you recall your previous
course of Mechanics of beams and frames then this the following should be already
known to the reader: Timoshenko beam in bending when the classical Euler-
Bernoulli kinematics does not hold any more. The basics of such theory were
proposed by Engesser (1891) and Timoshenko (1921) to account for the shear
effects. The idea was to separate the cross-section rotation € from the slope v’ of
the deflection of the centre-line. separate

y=-0+. (1.227)

There is cases when the effect of shear deformation should be considered. Con-
sider such case now. Let the mean shear angle v of the cross-section be defined
through the mean shear stress 7 = Qy(x)/A such that

Qy(z) = ksGAy = G;Av (1.228)
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Figure 1.71: GNA for a lateral sway-frame

where for shortness one writes

Qy_

Y= Yoy = 2;“ ={q = 0Q (1.229)

where the shear parameter

(1.230)
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tllO

and & being the shear correction coefficient'™’. Recall that the shear strain is

defined by
V(@) = Yoy = uy + vy = —0(z) + ' (2), (1.231)

where now 6 being the rotation of the cross-section.

The kinematics in short: This is a recall of the Timoshenko beam theory.
The kinematics is described by two independent functions #(x) and v(x) such

that
{u(:c)z 0(x)y, (1.232)
(&) = v'(x) - 6(x)

from which follows the normal linear strain

e=u =—" —v)y=ry. (1.233)

So, in linear elasticity, the bending moment and the shear force will have the
expressions

M = EI¢ = Elx = EI(y — ") (1.234)

Q = GAv/¢ = /a (1.235)

In the following the stability equation will be derived.
One way is te start from the energetic criterion

1 1 1
Al = = /Eln2d:z + = /k:sGA72dx — —P/(v/)Qda: (1.236)
2 Je 2 Je 2 Y4

I let this exercise for the reader.

Let’s derive the stability equation from equilibrium considerations (it is straight-
forward for this case since it forms an update of the classical result for Euler-
buckling obtained through differential approach): The idea is 1) first to write the
moment equilibrium equation in the deformed configuration then 2) account for
the shear correction angle for the curvature s through the remaining equilibrium
equation for shear forces. The procedure is standard. So, equilibrium for the
shear force in the deformed configuration gives

/ _
{J%;f;v" _ 8 (1.237)
From the first equation one obtains
v = aPv, (1.238)
and finally, the needed expression for the curvature
k=—v"(1—aP) (1.239)

110¢ = 1.2 for a rectangular cross-section and ¢ = 2...2.4 for an I-profile.
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to be inserted in the second equation of equilibrium to, finally, obtain, the equa-
tion of loss of stability (linearised buckling equation)

(1—aP)[EI"]"+ Pv" =0 (1.240)

Rewriting the above in a standard form gives (for constant ET):

o® 4 k2" =0 (1.241)
where P .
2
= — . 1.242
EI1—aP (1.242)

The Timoshenko buckling load PT should be solved from above (Equation
1.241) using adequate boundary conditions. There is clear relation with the Euler
buckling load P® obtained by neglecting the effect of shear deformations.

Example - buckling of a cantilever column

Assume a massive rectangular or circular cross-section which is loaded at its
centroid by a thrust P. Find the critical load using the Timoshenko model and
show that the critical load can be written as

1

T _ pE _ &
Pl =Pl s a=gp (1.243)

Analysis of the results

Solving for some basic boundary condition cases and comparing the buckling
loads PT obtained by the Timoshenko model to Euler standard solutions P* one
finds the relation

1 1
T _ pE _ pE
PT=p Tr%_zﬂ TP (1.244)

which holds for all columns with all end-conditions excepts for fixed-pinned.
Ziegler (1982) expanded the formula for columns with fixed-pinned ends in a
slightly similar form

1 1
pt=pf - _ _pF___ - 1.245
1+1.1% 1+ 1.1aPE ( )

As a conclusion, the shear deformation reduces clearly the value of the Fuler
buckling load be a factor

E E

GA ...1+1.1k8GA.

(1.246)
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Usually the decrease of the buckling load due to transverse shear effects is neg-
ligible for bars with solid cross-section. On the contrary, for some open-cross
sections, the reduction may be of 50 % even.

The coefficient a P* in the reduction coefficient depends more (quadratically)
on geometry than on material parameters, since

2E
_ S B
aP =ca b (1.247)
E [I/A7?
_ 2
=&pum G{ 7 ] , (1.248)

where p accounts for boundary conditions effects.

[TO DO: nomograms or graphs for usual cross-sections and materials]

1.12 Example of an application of virtual work
principle - Southwell-plots

Here we present the energy principle of virtual work together with an applica-
1 of value for interpreting buckling test results, or more exactly how can
we extract the buckling load and initial imperfection measure from the load dis-
placement curve. The structure considered is a column with an axial compressive
load. The shape of the beam-column is imperfect. The virtual work principle is
written in the form principle

tion

S(AWint) + 6(AWogr) = §(AWaee.), Vo0 (1.249)

which tells everything. Here we do not consider dynamics, so the last virtual
work increment contribution due to acceleration 6(AWy..) = 0. The symbol
A means increment or change between an initial equilibrium state to the actual
(another) equilibrium state. The principle (1.249) is a more general principle than
the neutral equilibrium condition 6(AIl) = 0, v which holds for conservative
systems. The virtual work principle holds for any system; conservative or not,
linear or not. It is universal, in the small world of mechanics.

Southwell-plots are used in interpretation of buckling experiments. It is impos-
sible to determine buckling load by direct visual observations. This is done,
usually, using Southwell-plots. '2 These plots are not magical, they relies on
the fact that there is always some initial imperfections (often geometrical, let’s

11 The reader can find many other applications of this principle in these lecture notes.

H2R. V. Southwell, On the Analysis of Experimental Observations in Problems of Elas-
tic Stability, Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, Volume 135, Issue 828, 1 April 1932, pp.
601-616.
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say vo9 at = ¢/2) in our member (or structure) under testing even with zero
load eccentricity. The initial shape imperfection, or in other words the departure
of the beam-column from the straight initial shape can be approximated by

vo(x) = vo - sin(mz /) (1.250)

where vg is the estimated maximum imperfection amplitude that can be deter-
mined using Southwell-plots afterword from the same experiment as will be the
critical buckling load Pg. This point will become clear at the end of the subsec-
tion.

In the experiment, the loading is done gradually without subjecting the struc-
ture (or the member) to failure. The deformations should remain in the elastic
range. It is enough to bring the structure close to the critical load and record
the load displacement curve at some points of the structure allows to identify the
critical buckling load Pg thanks to the geometrical non-linear relation between
the applied compressive load P and, let’s say the transverse deflection v. The
additional deflection due to loading P is vp(z), so the total deflection will be

v(z) = vo(z) + vp(x). (1.251)

Let’s present, first the result needed for the Southwell-plot and then derive it

in details. So, using energy principles, that you should by now already start

to know, we obtain easily the relation, for a simply supported pin-ended beam

column with initial eccentricity vy at x = ¢/2, as

P V)
—1-2

, where for example can be v; = v({/2). (1.252)
Py 1

The graph of the equation (1.252) is shown in Figure (1.72). We are looking
to linear relation between v;/P and v; to which we fit the experimental data.
Equation (1.252) gives us finally te needed relation as
V1 1
P=PrPg- 2}1(1)1 — U()) — F = P7E . (Ul — Uo) (1.253)
Now we plot the graph of the measured load-displacement curve using adequate
variable v/P and v; = v(¢/2) and fit a linear equation to this data. The slope
of the fit will provide the parameter 1/Pg. Additionally, the initial imperfection
vp can be now deduced!'® from the fit via extrapolation (Fig. 1.73). Figure
(1.74) shows real data obtained in a real experiment while loading cantilever in
lateral-torsional buckling test.
Now, almost everything has been said. Almost.

13Sometimes, it is technically difficult to do a precise direct measurement of such initial
imperfection vy. However, this can be done. It is even wise to do it and to cross-check
the measured value with the one extracted from the Southwell-plot.
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5 ; Vo /€ = 001,002,004, 0.06
ok I I . . .
q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
"""""""""" v /¢
moderate this model is not valid here,
rotations

one needs large rotation theory (elastica)

Figure 1.72: Relation between load and lateral displacement for a simply
supported column having initial curvature and axially loaded. The light
blue region is very approximately the domain of validity of the used hy-
pothesis of moderate rotations.
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Figure 1.73: Ilustration of the idea of Southwell-plots to determine, exper-
imentally, the critical (buckling) load and estimate from the slope of the fit

1/ Pg for the initial imperfection vg. Here, v; = v(¢/2) and vy = vo(¢/2).

Let’s derive the above equation (1.252) for the simply supported beam-column of
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Figure 1.74: Example of use of the Southwell-plots to determine, exper-
imentally, the critical lateral torsional buckling load and to estimate for

the initial imperfection. (Ref: Prof. Reijo Kouhia and Tech. Lic. Paavo
Hassinen from old TKK).

Figure (1.73). One can do it by solving the differential equation of buckling with
the right term due to initial imperfection. We will do it more simply by working
in the energy-space where integrals are kings. This way, we avoid, this time,
solving differential equations even the related ODE is very simple''®. Assume
that today, it is the integral day and let’s a bit train energy principles. For that,
we take for an approximation for the deflection induced by the compressive load

P. However, it will not be arbitrary choice but the exact analytical first buckling
mode

vp(x) = vy sin(mwz/l) (1.254)

This way, using energy principle is equivalent to solving enough accurately the
ODE since the (the first mode) mode is the analytical exact solution for the ho-
mogeneous ODE. However, this remains n approximation, but a very accurate
one for our case. The full exact solution can be naturally obtained by expand-
ing the displacement as a trigonometric series summing all the buckling modes.

However, the effect of the other modes than the first one close to buckling load
become insignificant. Now,

vp(x) = —(7/L) - vy cos(mz /L) (1.255)
vh(z) = —(7/0)? - vy sin(rx /) (1.256)

4Note that it has a non-zero right term due to initial eccentricity. Therefore, the

equation is not an eigenvalue problem and the amplitude of deflection can be determined
exactly as a function of load P and initial imperfection vy.
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The energy criterion is, as you surely know, is the virtual work principle
0(AWint) + 0(AWeyr.) = 0, Vou (1.257)

asking for equilibrium. Inserting the above expressions into the work equation,
we obtain

S(AWins) = — /O "Bln - orda (1.258)
4
__ /0 EIW (z) — oll(2)] - 60" (2)dz (1.259)
=—FI [2]4 /Oe(vl — wo) sin?(rx/€) dz: - vy (1.260)
7]t e
=—FI [f] 5(111 — ) - 0y (1.261)

where the varied function being only v(x). Equivalently,

¢
§(AWeyr) = P / v - ov'de (1.262)
0
T 2 ¢
= Pu; {A / cos®(mx/0) dz - vy (1.263)
0
2
=Pu, [ﬂ g-éful (1.264)

Therefore, at equilibrium, we must have 6(AW) = 0, thus

]2 %4
—FEI {A (v1 — o) + Puy {é] 5 ov =0, Vou (1.265)
N
EPE

=0

which give, as a present, the needed form for the Southwell-plots as

V1 1

Y (v1 — vg) (1.266)

To recognise the equation of a straight line, replace v1/P — y, 1/Pg — a and
v1 — Vg — T — zg and you obtain the canonical form of our childhood y = azx + b,
where a being the slope. That’s all for Southwell as well Northwell.

v1/€ Uo/f
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1.12.1 On upper- and lower bounds for the critical
load

The following subsection is my sandbox for experimenting some ideas and ajatuk-
sta. Despite this comment, the content of this subsection gives various valuable
methods with examples for the engineer to estimate buckling loads and modes
based on first principles, and not less important, to derive useful parametric
formulas to get access to the map.

To recall that in this course we deal only with slender elastic structure and their
failure mode is assumed elastic buckling only. However, real structures, even
slender, include all type of imperfections and rarely fail only in elastic manner.
The failure by buckling is only one mode of several possible failure modes of
the structure. Under loading, very probably, in the neighbourhood of buckling,
the real failure will be inelastic including all kind of plasticity, visco-placticity,
damage, and excessive deformations at joints, etc. So, the elastic critical buckling
load can serve, for slender structures, as an absolute lower limit for safety when
adequately limited by a safety factor, lets say P../7vs, ¥ > 1 (may be 1.5, 2 or even
311%). At the end, when using computational technology, one should perform a
full non-linear analysis of his structure to estimate the lower bound of the bearing
capacity. In such analysis, you include all relevant non-linearities (material and
geometrical) in addition to initial imperfections. This talk is not against elastic
stability analysis or its study. On the contrary. So, let’s go back to our subject.

We will use two general principles for neutral equilibrium identification (buckling
criteria): 1) stationarity!'® principle of 1) total complementary potential energy
and of 2) total potential energy. It is well known that second principle, used with
displacement method, estimates the buckling load from above (upper bound).
One can expect, at first glad, that first principle when used with the force method
will provide estimates from below (lower bound) for the buckling load. However,
this last claim is not proven''™ and remains a hypothesis, at this stage of writing,
despite that many examples, that will be shown later, give estimates from below
for the buckling load.

What map? Let’s comment a bit about the value of formulas. These maps,
i.e., formulas, tell on which what physical parameters depends the buckling load
and how much. One may use this information to be guided in his Finite Element
simulations and to reduce significantly the amount of work since the obtained the

H5Recall that, geometric non-linearity effects become non-negligible for P/Pg > 1/3;
refer to the section treating effect of transverse load or geometric imperfections on the
deflection under axial loading.

I6Note that, the stationarity principle is a condition forr an extrema, corresponds
physically to virtual work principle which expresses the neutral equilibrium condition.

17T have not seen publications in this direction.
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formula (kaava) can be expressed in dimensionless form with less parameters and
permits to identify the dimensionless groups. Therefore, the parametric map will
have less dimensions (less variables than in the non-dimensionless form). After
that, the engineer can make his numerical simulations by varying the reduced set
of dimensionless products in their relevant intervals.

It is quit evident that estimating the lower bound of the critical load is of impor-
tance in structural design. Knowing this lower bound for buckling, for instance,
we are sure that the accordingly design structure or structural member will not
buckle for a lower load. So, we are on the safe-side in our design, and the designer
can sleep deeply his night.

Having methods to estimate such lower- and also upper bounds is then of
great importance, and is not a trivial story. For the upper-bound, thanks to
the Rayleigh quotient Pr minimal properties for the true solution v(x) we can
estimate such upper bound by using minimum property of total potential energy
at the investigated new equilibrium v(x) obtained by a tiny perturbation of the
initial trivial equilibrium configuration v(9)(z).

Lower bound: Estimating lower bounds is not so trivial task. There is an (aca-
demic) classical method for that given in the context of very simple structures
(see Timoshenko!'®) which is called, the method of successive approximations!!?.
However, this method, which based on analytical (or graphical - Mohr analogy)
integration, is practically limited to very simple beam-column cases or equiva-
lently, to statically determined cases for which bending moment can be solved
easily from equilibrium equation. I have to recognize that I have not yet seen
any general method for estimating lower bounds of the critical load! If there are
any, they should be based on complementary energy principles.

For those interested in this topic, please refer to the Timoshenko quotient Pp
and its relations with various bounds in the textbook by Bazant (Chap. 5.4 -
Timoshenko quotient and relation between various bounds)

I suspect strongly that, this proposition have to be proven or disproved'?°, that
using cleverly the stationarity of the complementary total energy at the new equi-
librium state (the buckled mode), one will obtain estimates for the lower-bound
for the buckling load. The argument is that, at equilibrium, the complementary
energy is an upper-bound (maximum) with respect to any statically admissible
stress field (probably, we are now in the presence of a suddle equilibrium point;

U8Chap. 2.15 in Timoshenko and Gere: Theory of Elastic Stability. 2"* Ed. 1985.
Mec-Graw-Hill.

19This method, principally, solves by Picard’s iterations, the PDE of the buckling,
and minimise a ratio of successive solutions to give an estimate for the lower bound, is
presented, in short, farther, in these notes. Excuse me for the spaghetti-structure of this
sentence, I will simplify it later.

1201 am almost sure that this question has been treated in some old lost paper to be
found.
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satulapiste, in Finnish. Let’s find out,later). I will present few examples using
this approach. However, an example is not a proof, and, fortunately, a counter-
example is a proof of the contrary.

Upper bound: Consider for instance, a pin-ended beam-column loaded at its
end by a centric load P. Close to buckling, the column remains in the trivial
equilibrium configuration u(?) (x) # 0, v°(z) = 0. Let’s introduce a tiny pertur-
bation v(z). Then, it is generally known that the true solution v(x) # 0 when it
is a new equilibrium configuration (means the column buckles into an adjacent
equilibrium), minimise the Rayleigh ratio

1 " 2 1 N/ 2
= [, EI d = [, EI d N R
P, = Py — min 24! § [,U (3“;)] T2l . [, (3?] Y pr=P, (1.267)
Yo(z) fé§[v (2)]?dx f£§[ (z)]?dx
where 0(z) being any kinematically admissible approximation of the true buckling
mode v(z). These are based on the Timoshenko quotient; Pr . According to
Bazant'?', the Timoshenko quotient >

(1.268)

provides a sharper upper-bound!?® P,. = Pp for the critical load than the
Rayleigh quotient Pr (Eq. 1.270). Both quotients (Egs. 1.270 and (Eq. 1.268))
are derived from energy principles. At the adjacent equilibrium (the tiny buck-
led configuration v(x)), the total potential energy change is minimal and thus
(stationarity)

d(All[v(z); P]) = /Elv”év”dx - P/v'&/dx =0, You(x) € Viinaa. (1.269)
L ¢

The Rayleigh quotient Pr can be directly obtained from the neutral equilibrium
condition (1.269) by choosing dv = v and solving for the buckling load P

o) = S PI @)Pde [, BI[0"(2))*de
Pel) = e < @k (1.270

121gee Bazant’s textbook: , Chap. 5.4 - Timoshenko quotient and relation between

various bounds

122This quotient can be defined for statically determined structures. For, a general
structure, I propose to use the principle of stationarity of complementary total potential
energy All, at the adjacent equilibrium point, to obtain an estimate for the lower bound
of the buckling load. This last proposition is, for the moment, a working hypothesis to
be investigated (is true or false?).

123 Albert B. Ku. Upper- and lower bounds of buckling load. International Journal of
Solids and Structures. Vol. 13, issue 8, 1977, pp. 709-715
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It is known that this ratio is minimised'?* by the true solution v and any other
kinematicaly admissible trial(buckling mode) ¢ approaches this minimum from

above.

124Gives the smallest eigenvalue of the related linearised eigenvalue problem given by
the stationarity condition (1.269) which is equivalent to zero gradient V,(AIl) = 0 of
the quadratic form of the increment of total potential energy.
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A FEM mini-story: we can directly rewrite the above result (Eq.
1.269) in a classical weak form by choosing the virtual displacement
dv as a test function, so ¥ = dv and we obtain the weak form below
directly from Eq. (1.269) ready for numerical implementations
(computer and hand). For this purpose, for instance, in the Galerkin
approach, we chose local (element-wise) approximations v(x) = N(x)a
and take the basis functions NV; as test functions ;. |

S(All[v(z); P]) = /EIU”ﬁ”daj - P/v’@'dx =0, V0 € Vigin.aa. (1.271)
L L
In the weak form (1.271), take a local approximation for the

displacement field v(z) ~ 3; ¢i(x)a;, i = 1 : n and choose for test
functions 0(z) = ¢;, j = 1 : n. Consequently, one obtains

NC
> 1 /¢2’El¢}’dx—P€/ $iide | cai| =0,j=1:n (1.272)
e=1 i te Le

(e) (e)
K K (P)

where P¢ ~ N¢, the normal force in the element number e. The
problem above (1.272) is the (linearised) eigenvalue problem of
buckling. The outer sum is an assembly to obtain global equations of
neutral equilibrium

K -K(P,P? . Pt . PN .a=0 (1.273)

written for general non-proportional loading. In the case of
proportional loading, the axial elementary forces, in an element k, can
be expressed as P*) = p, Py, where the ratio pj being known.
Consequently, we obtain the standard eigenvalue problem

K — Py - K(p1,p(2)s - - - Pk - -, PNe)] -a =0 (1.274)

For our example, there is only one load P, so the critical load P, can
be estimated as the smallest eigenvalue from the eigenvalue problem

K-P Kgl-a=0. (1.275)

Note that, all matrices are symmetric and the coefficient E1 is
positive. The minimum properties of the Rayleigh quotient says that
the smallest eigenvale P.. makes the corresponding quadratic form
minimal when v is the true solution. For all other choices
(kinematically admissible), the derived critical values, from above, are
estimates from above (upper bounds) of the critical load.

End of the other FEM mini-story.

137
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Choosing an estimate 0(x) for the displacements, and solving for P in Equa-
tion (1.269), one obtains the upper-bound estimate for the buckling load as given
by the Rayleigh quotient Pg (Eq. 1.270). Now, a sharper estimate for this same
buckling load is provided by the Timoshenko quotient (Eq. 1.268) which can be
directly derived, as for the Rayleigh quotient, solving P = P, from (and this for
Yu(2) € Viin.ag.) from this form of the neutral equilibrium condition?> AII, = 0,

ATL[u(x); P) =3 / 12/Eldz — P/ dz =0, (1.276)
M —Pv

1 1
=5 /[Pv(x)]2/EIdx - P/§[7J’(a:)}2 dz =0, (1.277)
¢ 4
and, finally, gives equation (1.268) for Pr by solving it from (1.277) as

L[ [M(x)2/Eldx

= @R

(1.278)

Knowing an the estimate P,, for the upper-bound, may seem frustrating as the
true buckling load can be higher; P, > Pcr. So we are on the unsafe-side in
the structural design! This is, in practice, not a problem, since we can refine
the estimate Py, very close to the true value by refining our approximation (x)
by enriching the approximation basis function set. Especially, this is true while
using the Finite Element Method and the, actually automated h— and even p—
adaptivity, if needed. However, an estimate for the safety margin (= confidence
interval) should be found by the designer or/and the structural analyst, if they
respect themselves and their profession. This is why we should know, or at
least know someone who knows, analytical methods; they may help to provide
us a kdttd pitempdd in the form of formulas. However, for this particular case
of estimating the lower bound of the critical buckling load, it seems to be very
probably an impossible mission. However, asking help from people with more
experience that ourselves is worth the effort.

125The quotient can be also derived in the standard form by asking stationarity of a
quadratic (linearised) form of §(I1..); i.e., V(AIIL.) =0
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Another FEM mini-story:

The complementary version (or force method) in the weak form: So, for
V(v,M) € Viin.ad X Zstat.ad., the condition of neutral (adjacent) equilibrium
gives

S(ATL[o(x): P)) = [ MMy, / P o/5v'dz (1.279)
. EI
_ . 151300 —
=/, EI dx /P v'o'de =0 (1.280)

with M and © being test functions. Let’s take a displacement approximation
v(z) = Y, ¢i(z)a;. Note that the couple (v, M) should satisfy jointly the equi-
librium equation

(EI")" — (N} =0 (1.281)

where Ny being the initial normal force (for instance, in our simple example, for
compression Ng = —P, where P’ = P > 0). This equilibrium equation simplifies
to, in this simple case to M — Pv = 0. Therefore, the separate approximations
(v, M) should also fulfil this equilibrium condition. Therefore, the bending mo-
ment approximation should be M = P -v ~ P, ¢i(z)a;. Note that, since
M = P v =>3,P- ¢i(x)da;, then consequently, the test function should be
chosen as M = P - ¢j(x), j =1 :n. Inserting all these ingredients into the weak
form (1.280) one obtains

N¢€ X
e=1 i

(LIN.) (NL.)
S Sy (P)

which for proportional loading (and for our simple loading case with only one
compressive load P), and without loss of generality becomes the classical eigen-
value problem

NZ[Z( @() /qbzcb] ) ']ZO,jzlzn (1.283)

e=1 L 4 te

Equation (1.284) can be more appreciated in its matrix-form (generalised) eigen-

value problem
1

S—5-Gl-a=0. (1.284)
It should be noted that the coefficient matrices S (flexibility matrix such that
S~! = K) and G are symmetric.) and P > 0. On can be rewrite the above result

as

1
= F-s—lG] a=0 (1.285)
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So, I stop hire this side-jump in the form of a question.'2

Application example - simply supported beam-column

In the following, estimation method for the lower- and upper bounds for the
smallest buckling load is shown and illustrated by two simple cases: buckling of a
simply supported beam-column loaded at one end by a point load and buckling of
a cantilever column under its self-weight. It goes without saying that estimating
such bounds allows us to obtain objective trust in our computations having such
confidence bounds. In general,to be useful, as a scientist or even an engineer,
should always give results with an estimate of their confidence bounds.

The method of successive approximations

There is a classical such method for estimating such bounds of the critical load
called Method of successive approrimations which can be found in Timoshenko’s
and Gere classical textbook Theory of elastic stability. 2" Ed., Chap. 215, in
both its analytical and graphical forms. The readers interested in it can refer to
Timoshenko’s textbook; we will ot treat it in this lectures notes. The method
of successive approximations is essentially a Picard’s iteration of the buckling
equations written in their differential equation form. Lets give an example to
be clear. Consider a simply supported homogeneous column (EI= const.) with
pinned-pinned supports, and centrically load by a point-load P at the roller-end.
Then the equation of equilibrium in he buckled configuration are

M(z) =P -v(x), equilibrium (1.286)
M(z) = — EIv"(z), kinematics & constitutive law (1.287)
v(0) =0, v(¢) = 0, boundary conditions (1.288)

which can be combined as the boundary-value problem (differential equation)
—EI"(x) = P-v(x), (1.289)

together with the boundary conditions v(0) = 0 and v(¢) = 0.

In te above method, equation (1.289), is essentially solved iteratively by the
Picard’s iteration: the idea is to solve iteratively v(x), the buckling mode, starting
from an initial guess v(*)(z) (i = 0) in the right-side of Eq. (1.289) and then refine

126 Question to my colleagues: Can we deduce from maximum property of the quadratic
form (1.284) for the true solution (v, M) and symmetries of the coefficient matrices above,
as when proving the minimising properties of the Rayleigh quotient, that the smallest
eigenvalue 1/P,., minimises the maximum of this quadratic form and consequently, its
inverse P, will therefore, be approximations for P, from bellow? (so, estimates the the
lower bound?) I sure, that, in addition we should, into the quadratic (complementary)
form, enforce weakly the constitutive law M + EIv” = 0 by some penality or Lagrange
multipliers. (I will investigate this question later in examples.)
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the successively the approximation v(**1)(z) by twice integrating (analytically
or graphically'?”) the left-side of Eq. (1.289). The estimate, at each iteration
i, of the buckling load Pit! is obtained by equating two successive solutions
v (z) = v+ (z; P). Here a pseudo-algorithm:

1. Initialise, =0

2. a) chose an expression for the initial approximation'?® v()(z) with some
free parameter(s) (let’s called generically vy) and b) chose an arbitrary
initial value for the critical load P the right-side of Eq. (1.289) THEN
determine M@ (z; P) = P - v(z)

3. twice integrate (analytically or graphically and enforce boundary condi-
tions) the left-side of Eq. (1.289 with the known right-hand from previous
step to obtain an updated estimate for the buckling mode v+ (z) (there
is naturally still undetermined free parameter(s) of the deflection since it
is a buckling mode.)

Note that, this twice integration above can be elegantly performed using

Mohr-analogy where the apparent distributed load being (z) = —M (x; P*)/EI.

Then determine v(x) graphically twice integrating the load g(x) which is
just the moment of this apparent distributed load .

4. Estimate critical load Pc(f;H) by equating two successive approxima-
tions of deflections, at some arbitrary chosen points xj (for ex. xp = £/2),
v (z) = v+ (z; P), V free-parameter value, let’s say vg.

5. set in step 2, v = (1) and repeat steps 2 to 4 till wished convergence.

(a faster converging way is to chose the new value as v(® := (v(®) 49(+1)) /2
and then to join step 2, refer to Timoshenko textbook given previously)

Tuning numerically the value of P (in your graphical environment) in order
to visually make the two successive curves of the approximations of the
deflections, coincide at some points (graphical fit) will provide an estimate
for the critical load P.,.

6. an upper- and lower bound for the buckling load, Py min and Pe ez, can
be estimated by finding the minimum an maximum value, with respect to
x of the ratio r(z; P) of two successive mode iterations, namely r(z; P) =
v (x; P) /o4 (z; P). The corresponding critical loads obtained from 7,

12TThe Mohr-analogy use g(z) = —M (x; P)/EI), with initial value for P chosen arbi-
trarily. Then determine v(z) gy graphically twice integrating the load g(x) which just
the moment of this apparent distributed load ¢. If you cannot follow this explanation
then join the Athanasios M. very famous course on graphical methods in statics.

128The initial guess for the buckling mode; for instance v(x) ~ vox(¢ — )/¢? can be a
good start. Any other satisfying the kinematical boundary conditions is welcomed.
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and 7,4, are, according to Timoshenko, the estimated upper- and lower
bounds!'??

Here, may be, if our dear friend Athanasios M. the Greek will have time, we
can add the result of a beautiful graphical example performed using GeoGebra
or some geometrical computational tools according to the above steps.

Let’s now go to our main task to try'3? to estimate the confidence bounds of
the smallest critical load using more general methods based on energy principles.
This is a new story. So, Amaa ...chahou ... ...(once upon a time ...in O-
land far before the starting of the Big-Bang, when there were only pure localised
energy surfing on the waves of an infinite sea far before th e start of time...)

Energy principles for estimating buckling load with examples

Here I present two general energy methods based on the displacement and the
force methods in the light of simple examples.

The idea to use, in determining approximates for the buckling load, the very
old principle of virtual force'®' (in the virtual work principle) to estimate dis-
placements, at chosen locations x;, is inspired by my readings (A Soviet (CCCP)
textbooks of structural mechanics by V. A. Kisiliev, 1980, MOCKBA, Stroi-
Isdat, p. 431, in Russian, to estimate the analytically the buckling loads.

129For me there is a question: why this quotient  has this property? Is it proven some-
where, in literature? Probably, yes in, may be the field of iteratively solving differential
equations. I do not know. However, the first iterate of the quotient r for the buckling of
a simply supported beam is 7(x; P) = vy /vy = 12E1/0? - [(2(¢ — x)]/[£3 — 22% + 23] when
the approximated mode being v; = 4vgz/¢ - (1 — x/¢). The minimum and maximum
of r, with respect to x, being 0.8 and 1. Consequently, we deduce from this two ratios
estimates for lower- and upper bounds of the critical load as Pey min ~ 0.9772EI /(% and
Pepmin &~ 1.272ET /0. The analytical ’exact’ Euler buckling load is Pp = m2FE1/¢?. So,
effectively, the bracket contains the solution. I let this exercise for the students which
have too much free time.

130T think that is a quit difficult task, in general. Probably, another way to find such
estimates for the lower- and upper bound can be a mechanical approach: one approx-
imate 'mechanically’ on paper, of course, the structure by one a more ’rigid’ and the
other a more ’loose’ (=less rigid) structures. Then determine the buckling load of both
structures. If we are good engineers (or student-engineers), the answer will give us a re-
liable bracket for the actual buckling load. We will train this approach in the homework
dealing with buckling of continuous beam-columns and frames. I believe more in the
efficiency of this last approach. This approach, in addition, forces us to better analyse
and understand the mechanical behaviour of our structure.

131The 1-dummy load method which issentially is equivalent to integrates graphically
twice the curvature at a chosen point z; where the 1-dummy load F = 1 is set (=Mohr
integral to Mohr-Maxwell integrals
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lower'32- and upper bounds for the buckling load. The method based on
virtual work principle may remind, by the way it looks, the method of successive
approximations presented above, but the energy method is more general and
is different in essence. The method of successive approximations is essentially
based on Picard’s iterations to estimate buckling load from solving iteratively the
equilibrium differential equations (Eq. 1.289) in the deformed configuration and
to estimate P, by equating two successive approximates of deflections (buckling
modes).

Using energy principles with both the force method and the displacement
method, we derive an estimate for the upper- and lower bound of the critical
load.

Usually, to derive estimates for the buckling load, students and teachers, use
the displacement method with the energy criteria given by the Lagrange-Dirichlet
theorem. The reason for that, is that it is much easier to ’guess’ a compatible
displacement field than to 'guess’ a statically admissible stress field!?3. However,
it should be kept in mind that the obtained estimate for the buckling load is
a higher upper-bound which means that the true critical load can be lower but
not higher. If one can estimate the lower bound Pc(ﬂc Orce), then it a bracket (and
confidence bounds) for the buckling load as

Pc(ﬂ”m'ce) < Pc(ﬁheorA) < P(displ.) (1290)

cr

a really valuable information will be at hand to help to estimating the safety
margin for the given structural design against buckling. (I am not saying, that
this safety question cannot be addressed also numerically. Analytical approach
providesparametric maps, and numerical methods, provide only Tera-bytes of real
numbers even with many decimals in which we can be lost without this map.)

My hypothesis on a lower bound estimation

Using the force method or more exactly the principle that the true stress field
at equilibrium mazimises the complementary total potential energy for any com-
patible strain and displacement fields.

132Remember that, this is only my hypothesis. So, the reader should remain sceptical
with its generality, unless, a proof, or a reference to it, is provided. For the moment,
I show some simple examples where this claim seems to hold. However, an example is
not a proof while the counter-example, is a proof for the counterary. This means, it is
sufficient to find one single counter example to ruin my claim. So, do not hesitate to
check, I will appreciate it and publish in these notes with thanks and references to the
author, naturally.

133Finding a stress field which is in equilibrium and fulfils the constitutive relation,
needs more effort and not always possible to do, but is worth to do or try to find, since
one can obtain an estimate for the upper-bound of the critical load. This means that we
can trustfully say that the buckling load cannot be higher than that upper-bound. This
knowledge is of value in structural design.
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Let’s, take an illustration example and take a simple end-pinned column wich
is axially compressed (P > 0) without eccentricity.

Without loss of generality, let’s define the complementary total potential
energy increment gained in the transition from an initial trivial equilibrium state
to a tiny adjacent (buckling) equilibrium state, as

ATl [v, M; P)) 2/ E[ d +/N 1[ '(2)])2dx (1.291)

=5 / EI / P. z)]2dz (1.292)

It is known that the above complementary energy (Eq. (1.292)) is mazimized'3*

with respect to the stress resultant M (z) when the couple (v, M) € Viin.ad. X
Yad., fulfil jointly, the equilibrium equation (M - statically admissible and v -
kinematically admissible)

M — Py’ =0 (1.293)

together with appropriate boundary conditions.

Let’s denote this equilibrium solution by the couple (v, M) and rewrite generi-
cally, this maximum principle in the following form

(v, M) = sol.{mj\z/}x All.[v, M; P} (1.294)

Note that the functional can be rewritten generically as a real-valued f function
of two variables having a parameter P > 0, as f(x,y; P) := All.[v, M; P], where

134To avoid confusion, let’s refresh our mind with about minimum and maximum of
functions. Let’s the function f(z) have a minimum at a local point z.. Then this same
point z. maximises the new function —f(z) obtained from the old one by multiplying
it by —1. Till now, nothing too difficult. Consider now the total potential energy
functional IT and it’s 'conjugate’ potential II. called the complementary total potential
energy. Now, when II is minimised, locally, at some generic point c., it’s complement I,
will be simply maximised at this ’same’ point, expressed in terms of forces. The simple
reason is the same with f(z) and —f(x), when the first is minimised, it’s complement
is simply maximised. Think just of the parabola 22 and —z2, and everything becomes
clear. No need to be Einstein. With the energy potentials, the reason is the same and is
really simple: Consider the strain energy U and it’s complement U, = o : € — U which is
called complementary strain energy to make the names long. Now you see that U and U,
have a difference in the sign. Or even, more geometrical illustration (A. M. will love it),
consider the area enclosed by the 'rectangle’ ¢ : € which is simply ¢ : ¢ = U + U.. Now
think that the area of the rectangle is fixed, then when U is minimised, U, is maximised
to keep the area of the rectangle constant at equilibrium point z. (¢,0). Now, in some
textbooks and also in my writing, sometimes, the sign —1 is omitted in the definition of
the complementary energy. Then instead of maximising it, we are simply minimize it.
This can and will lead to confusion. So, be careful how the sign in the complementary
energy is written.
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x — v and y — M. Now, the condition that the functional 1.294) have a
maximum at the equilibrium point (v, M) means, as learned from high school,
at this point, 1) one have extrema f’ = 0 and 2) the second derivative should
be negative f” < 0 at this extrema point (written generically). Because, now,
the arguments of the function f are functions v(x) and M (x), the conditions for
extrema and maximum can similarly written as

max All.[v, M; P] = §(All.[v, M; P]) =0, and §*(All.[v, M; P]) < 0

(v,M)
neutral equilibrium maximum point
(1.295)
respectively.
We now see what these two conditions will give us with a simple example.

35

1. Extrema condition: The extrema condition’® means that the point

(v, M) € Viin.ad. X Bstat.ad., 18 such that we have

MSM
¢ EI
Note that the bending moment M (z) = M (x; P), depends also on P and
therefore, one should account for that in the expression of the bending mo-
ment. Now M = M (z, P) depends on P through the equilibrium equation.
The dependence is fortunately explicit thanks to integration of the equilib-
rium equation (2.23) and gives M (z; P) = Pv(z) + Az + B, A and B are
constant of integration. Let’s assume for simplicity, in this example, and
without loss of generality!?®, that boundary conditions makes A = 0 and
b = 0. Note that the compressive load P is defined positive. Accounting
for M = Pv in (1.296) gives

I(AIL,) = dz — /P v'év'dr =0 (1.296)

d(AIL.) :/(Pv)(Pév)dx - /P 'ov'dx = (1.297)
¢ ET ¢
=p? @d —P/v’dv’dx =0 = (1.298)
¢
—P/mdx — /v'dv’dx =0, Yov € Viin.ad. (1.299)

= P = / '6v'dz //—dx (gives the critical load) (1.300)

Since the variation dv can be arbitrarily chosen, we chose it as dv = v in
(1.300) and obtain the critical load (Timoshenko quotient) as

0% dx

p=p, = t’
o [,v?/Eldz

(1.301)

135Recall that stationarity corresponds physically to asking for the neutral equilibrium,
so saying that the buckled state (v, M) is an equilibrium state. This equilibrium is
expressed as an eigenvalue problem.

36 without loss of generality is a nice sentence that I have very often heard in my courses
of mathematics.
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As a conclusion, we say showed that extrema point (v, M; P,.) makes the
functional stationary.

For approximation purposes,we can also use the weak form

S fede f,07%da (1.302)
[, 90v/EIdzx [, 0?/EIdx '

~
~ cr

where ¥ being any kinematically admissible trial for the buckling mode.

. maximum point: Let’s now find what valuable knowledge can be ex-

tracted from the conditions that the extrema extrema point (v, M; P.;)
corresponds to a maximum?

§3(AIL,) =6 (P2 @dx -P / u’év’dx> <0 (1.303)
l
9 51}51} Je s
=P dz — P/év ovde <0 (1.304)
v BT
2 (5U) N2
=P / P/ 6v')2dr < 0 = (1.305)
EI
_P/ 774 /51})2dx <0, (P>0) = (1.306)
>0
"2 —
= P</(5v) da:// Foli dx— (1.307)

/ )2dx/ / ——dz = Pipeor. = Per, when v = v (=true mode)

(1.308)
From the above result, I can loosely™” conclude, that
e 3 St da i*d Jo(v')?dz
P(o,M)= P, = < —tZ2 = Plv,M)=P,
(0, M) = For 1,02 /EIda: =/, v?/Eldx (v, M) = For
————— —————
approximate moded true mode
(1.309)

meaning that, the force method (when we choose jointly the approximation
M and (may) ©) provides a lower bound for the buckling load, under the ad-
ditional condition (constraint) that the couple o, M) fulfils the constitutive
relation M+ EI9" # 0 for the approximation. However, this, in general,
never the case since the constitutive law will be fulfilled exactly only if ©
corresponds to the true buckling mode. In all other cases, there will be a
small discrepancy (not equilibrating moment AM = M+EI?" #0).

1377 let my colleagues R. K. and J. N. check and finalise this conclusion.
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This is why I postulate that, one may obtain an estimate for the lower bound of
the buckling load only if this constraint is accounted in explicit manner in the
(or can) total potential energy increment as

ATL,[v, M; P]) — 2/ - dx—/P 2dx+)\/ 2) + EN/?de,
:—EIU”

(1.310)
where A (or equivalently 1/2\?) being here a penality'3® parameter to be opti-
mally estimated. Then, it becomes clear (is it?) that the true solution (v, M),
fulfilling equilibrium equation (2.23) and constitutive law (1.312), mazimizes the
above positively augmented'® change in total complementary energy.'40

138

My hypothesis: Therefore, (to be checked), solving P, = P from the station-
arity condition of Eq. (1.292) will, with high probability'#!, provide an estimate
for the lower bound of the critical load when one chooses a statically admissible
stress field (i.e., the bending moment M (z)) and a kinematically admissible dis-
placement field v(z), such that both approximations fulfil jointly the equilibrium
equation of buckling (for instance, for an end-loaded pin-ended column with point
load P will be

M" — Py =0 (1.311)

or equivalently M — Pv = 0 together with adequate boundary conditions), and
additionally, imposing that strains (here curvature x when computed separately
from the displacement approximation x = —v” and the bending moment approx-
imation kK = M/EI are equal'??, at least in a weak form. This means that we
must enforce the constitutive relation

M =—EIV (1.312)

in the complementary energy integral weakly.

In other words, not in other worlds, the approximates for the bending moment
M (z) and the displacement (z) should satisfy jointly the buckling equilibrium
equation and that the curvature (strains) determined separately from these two

138 ater, there will be given a classical variant using Lagrange multipliers called
Hellinger-Reissner (derived) stationary principle.

139The parameter A\? is a penalisation parameter or Lagrange multiplier to be chosen
optimally or determined.

140 Anyway, using the above functional will provide more accurate approximations than
those given by the Rayleigh quotient because the order of the derivatives are lower in
the above functional than with Rayleigh quotient.

141 This is my hypothesis which can be true or false, I have not investigated it theorith-
ically

142These two expressions are always equal only when the displacement approximation
v(x) corresponds to a true buckling mode.
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approximations (M (x),9(x)) are equal. Usually, this is not the case'*3, and the
cure of this is to add to the complementary energy integral (1.292) a positive part
enforcing the constitutive law in the following manner

. _1 2 T 2 U”2 T
AHC[U(:E),P])—Q/Z /p dz + A/[ L:;;EI 12da,
(1.313)

where A2 being a penality coefficient to be optimally chosen. Note that this
integral conserve its maximum property, with respect to M, since it was aug-
mented by a positive value. The neutral equilibrium condition (criticality) can
be expressed by

MM
¢ EI

S(ATL[u(x); P]) = dz— / P50/ da4 N / [M+EL")[6M+EI60"]dz = 0,

(1.314)
where V(v, M) € Viin.ad. X stat.ad.- To find approximations for the buckling load
and mode, one have to insert trials (9, M) into (1.314) since the approximations
should mimic the true solutions.

Iterative refinement for lower bound: One may obtain from Egs. (1.313)
and (1.314) an iterative'** scheme, by enforcing iteratively the constitutive law, in
order to refine the estimated buckling load and therefore, fulfil better and better
the constitutive constraint AM = M (z)+ EIv” = 0, which makes, probably, the
estimate to converge to the lower bound. For instance, for a suitable boundary
conditions (end-pinned column, for example, M = Pv), on can derive from the
stationarity (neutral equilibrium condition) the following iteration

1 [,v*/Eldz + X\? [,[M(z) + EIv"]*dx .

P, i (@)Pda (1519
1 fﬂ?/EId;n+ 5 [}[M + EIv")*dz (1.316)
P, [vPda [P
N————
El/Pc(,(})
11 G LIM(PY) + ER)2da
R T 10

Notice that the excess (not in equilibrium) moment is now AM = M+ ETv" # 0,
where now the bending moment approximation is determined separately, from
M = Pc(r)v and from the curvature approximation M = —FETIv”. An illustration
example will be given.

143This condition is not, a priori granted since both approximates can be chosen sepa-
rately.
144 Compare to the method of successive approximations (Timoshenko).
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Example - ends-pinned column: Taking the displacement approximation
v(z) ~ dvgx(f — x)/f? = a1¢1(z) and the bending moment (in equilibrium)
M =~ Pv = P -4vgx(l — x)/0? = P - ay¢1(x), where now ¢1(x) = x/¢- (1 — z/4),

one obtains

ET

2 2
L _ v /Bl [y 6i/Eldr o) =105 ~ 1.01#% (1.318)

Pc(g)_ Jolv']2dz B [ol#1]?dx

Note that, now this first iterate estimation of buckling load is not approaching
from below. However, it is very close (1%) difference to the analytical Euler buck-
ling load 1- 772 EL Probably this is due to that the approximation of the buckling
load and the moment is not fulfilling the constitutive law. Effectively, there is
actually a non-zero excess moment. The moment computed from equilibrium
gives

EI z

1075 a1y (1 - %) (1.319)

E
MO = POy = 1.01372=2 - a1¢1(z) = ¢

and determined from the constitutive law, provides
MO = _EIv" = 2EIa; /¢? (1.320)

Clearly, the constitutive law is not satisfied, since

El =« T EI
0) — 0 _ —
AM©® = MO 4 B1v" =10 a4 (1= ) +2m 5 = (1.321)
El [x x 1
=a;-10= - |=(1 =)+ =| # 1.322
a 062 [6( €)+5] 0 (1.322)

Notice that the excess (not in equilibrium) moment is now AM = M+ EIv" # 0.
Let’s use the iteration scheme (Eq. (1.317)) to make a better approximation of

the critical load PC(,} ), as

(0) 2
P PP f [v']?dz
¢ (0)12
:LO A2 M (1.324)
c(r) fO [U/]2d$

Inserting the expression of the non-equilibrating moment (Eq. 1.322) in the above
iterate and choosing for penality'4® A2 = 1 and then A\?> = 0.5 , obtains the better

H45Tf T will have time, I will discuss about the optimal choice of the penality coefficient .
For the moment, I take just two values. However, the idea is to plot a graph (Pc(f)()\i), A
and fing some optimal point on it, or equivalently, a balance between the Timoshenko-
type quotient and the constitutive constraint.
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estimate of buckling load which is now converging from below as

1 1 1
POk ?J/EI =15 T 1" {53533 = 0106522 = PY =0.95172E1/¢% (1.325)
cr :
1 1 1
ok ?/EI =15 T 05" {3335 = 010326 = P = 0.98172E1 /¢
cr :

(1.326)

What should be notice now, is that imposing the constraint of the constitutive
law seems to make the estimated of the buckling load approaching the true vale
P =1-72EI/¢* from bellow. Can this result be generalised?!46

How does topography of All. looks like? In the following, we will draw
2-D equilibrium surface example for the complementary total potential energy
increment AIL. to illustrate the neutral equilibrium at a saddle-point-like!*” point
(tasapainopiste = satulapiste).

For illustration purposes of the how does look the geometry of the comple-
mentary total potential energy hyper-surface in 3D. Consider the one degrees
of freedom systems: end-pinned column-beam and a rigid cantilever bar with a
rotational spring ¢ (Fig. 1.75). The buckling mode of the Euler elastic column is
approximated by a the one-degrees of freedom v(x) = 4vgz(¢ — x)/¢2, the rigid
bar kinematic is parametrised by a rotation angle # and the deformation energy
is concentrated in the spring. After some simple algebraic manipulations one
obtains

AL, (v /¢, PE) = ;[M]Z@ (f;f _ ;)  k=EIJN (1.327)
AIlL.(6, Pl) = %92 [Iﬂ (iﬁ - 1) : (1.328)

Note that the expressions of energy increment AIl. (Egs. 1.327 and 1.328) are
similar and are function of two variables only, f(x,y), which can be written for

146The truth should be said, that may be this discussion, will remain academic since
finding an approximation, in general, for the stress field (the force method) which will be
in equilibrium is not, really, feasible. To be convinced, just think to find such statically
admissible stress state for the problem combined lateral-torsional buckling, which still
remains not complex as compared to buckling of shells. One have almost to solve the
full problem, first! Here we succeeded because, the problem was statically determined
(isostatic) and thus the approximation of the bending moment was easily solved in explicit
form. This is one reason why the displacement based finite element method is the most
successful story as you can notice from the availibility of the softwares. Can anyone find
a FE-software commercially in use and which is based on the force method? There is
other technical issues related to the numerical implementation of the force method.

147To be checked more generally. [19/2/2021. TO DO]



1.12. EXAMPLE OF AN APPLICATION OF VIRTUAL WORK

PRINCIPLE - SOUTHWELL-PLOTS 151
instance, for the column, in a familiar form
fla,y) =1/20% -y - (y/k —1/3), (1.329)

where k and ¢ are material parameters, for illustration purposes. One can see
clearly the surfaces, after choosing some values for the material parameters (Figs.
1.75 and 1.76). Note the analogy (similarity) of the energies or surfaces. They
have the characteristic saddle shape-type (min-max)!“8. This means that one
have a maximum with respect to generalised force ad a minimum with respect to
the generalised displacements. The saddle-point like corresponds to the neutral
equilibrium configuration.

All,

All,

a) lﬂ ‘I""") ‘

AL

displ: x-axis (red) | y )
force:y- axis (green) b)
floy) =1/2" -y (u/k - 1/3),

Lo [PE]  PE
— 0.0001-D5xxy (u.z % = %) All(8, PE) = r:,ﬂ‘g [F] (— = 1)

a)

A (/2. PO = glan/ o (P (T - 5.
Figure 1.75: Total potential energy as a two dimensional surface. Note
the saddle shape. Generalised displacements as z-axis and force as y-axis.

(surface plotted with a smartphone version of GeoGebra 3D Calculator)

Let’s come back to our previous discussion. So, I let the question - to prove'?
holeness-ly (aukottomasti) that using the complementary energy approach pro-

18Dear colleagues, please check for this terminology.

49May be, it will be easier to form the quotient P(v, M), equivalently as for the
Rayleigh quotient, in the form (forgetting a bit about the constraint that can be added
later)

L[ M2/EIdz + 302 [[M + EIv"2dz
Jy 3(v)*dz

and find P from stationarity (extrema condition V P(u, M) = 0), and then impose the

maximum condition that the second derivative of P with respect to (v, M) is positive

(V2P(u, M) > 0 for the stationary point P to be a maximum. There is one technical

difficulty when computing the gradients: one should account for that M = M (x, P)
depends on P through the equilibrium equation. The dependence is usually, fortunately

P(u, M) = (1.330)

Topography

of

a generic stabil-

ity surface at
saddle-point.

a
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Pi= Theta A2 * P " [0.2*P-1);
All,(8, PE) = Ly [Pg] (Pg = 1)
2 ¢ (1

flay) =1/22%y- (y/k—1/3),

Figure 1.76: Another version of a plot for the total potential energy as a two
dimensional surface. Note the saddle shape-type in a small region. (surface
plotted with Matlab.)

vides (or does not) a lower bound for the critical load, open for my colleagues
(R. K. & J. N.) and skip to application examples.

Hellinger-Reissner derived stationary principle

There is a classical powerful derived variational principle - called Hellinger-
Reissner principle - which resembles the one I proposed in (Eq. 1.310) with the
penality constraint to enforce the constitutive law. This last variational principle
constraints, in the complementary total potential energy change, the constitutive
law by Lagrange multiplier functions A(x). Indeed, I recalled this from one of my
old seminar work!®? (=textbooks) I took when I was a post-graduating student.

We will just introduce this augmented approach with the example of the
beam-column buckling.

Lets tell you the story here: There was an energy functional even though

explicit thanks to integration of the equilibrium equation (2.23) which gives M(z; P) =
Pu(z) + Ax + B, A and B are constant of integration).

150M. S. El Naschie. Stress, stability and chaos in structural engineering: and energy
approach. (Chap. 6.3: Hellinger-Reissner principle and the trial function method.)
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called complementary total potential energy
AL v, M; P]) = % /P )2dz (1.331)
¢

felt itself lonely and sad. This is because the constitutive law could never be
satisfied as the consequence of the free choice of trials.'®® Then came an idea
to our functional to grow and become augmented by constraining the unbal-
anced moment AM, due to arbitrary trials, to provide zero work A\(x) - AM (z)
when dancing with Lagrange multipliers A\(z) along the beam. This is how the
augmented functional

2
ATl [v, M, \; P]) = ;/@[ME(?} dx/gP-;[ dx+/)\ M(@) + B1V')da,

AM#O
(1.332)
came to birth. One very important thing should be noted: the Lagrange mul-
tiplier A(z) is a function defined all over the structure. This is much stronger
constraint than the one I had with the penality factor. The other, not less im-
portant remark, is that A\(x) should have the physical dimensions of curvature,
since it works with the unbalanced moment AM.
The (optimal) Lagrange multiplier can be eliminated by asking stationarity
(extremization) of the augmented functional with respect to A. Therefore, for
any variation 0M, dv" and dv”, we must have

o (All) =0 = / MM 4~ / Pv'sv'dx + / A(@)[6M + EIsv"|dz = 0
¢ EI ¢ ¢ ( )
1.333

= ANx) = —M(x)/EI(z), X isidentified as a curvature
(1.334)

Now by choosing the Lagrange multiplier as given above, the order will be re-
established and restored, and the augmented functional will feel itself complete
and not only complementary. This is for the story. Inserting this optimal La-
grange multiplier into (Eq. 1.332) one obtains, finally, the Hellinger-Reissner
functional

AIl[v, M; P]) =

2 "
2 EI /P dx—i—/ngu dz (1.335)

which stationarity (extremum condition) provides the neutral equilibrium condi-
tion (for buckling).

1517t was satisfied only if the trials are the analytical true buckling modes that are a
priori unknown.
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In the following, I will therefore just present some application examples to
illustrate the idea of using energy principles to find (good) approximates and
even formulas'®? for buckling loads in the light of simple illustrative structures.
Also the new hypothesis will be tested with one or two example in its simplest
form. The analysis of the method, related to the lower-bound estimate claim,
will be left to do'®3.

Disclaim : Notice, dear reader, that in the following examples, we obtain, in
addition to, clean upper-bounds (/& from known Rayleigh quotient), estimates for
the buckling load from below (lahestytdén alhaalta). Is this result, of the lower
value for the buckling load (lower bound), general? For the moment, I do not
(yet) know.

In the following examples will provided to test the hypothesis'®* with ex-
amples that the variation principles expressed by equations (1.296) and (1.314),
may provide estimates for the lower bound of buckling loads. In addition, the
examples will treated with various methods and find estimates for buckling loads
in the following different ways:

1. the virtual unit-load theorem'®® to determine an updated approximation
for the buckled deflection ¥ from approximations of bending moment and
shear force M and Q, respectively. An initial buckling mode 9 is postulated,
too. The buckling load estimate is obtained by equating the initial and
updated buckling mode estimates. This reminds the method of successive
approximations. (In the MM — integral, the term dx = 6M/EI = M /EI
enforces a bit'®® the constitutive law & = M /EI)

This method will be labelled as the force method.

N.B. In the examples treated here, this approach provided estimates from
bellow for the buckling load. However, I am not claiming that this result is
generally true. One reason for giving approximate for from bellow may be
because this method can be interpreted as a variant of the method of suc-
cessive approzimations®” which can give estimates for the lower- and upper

n

1520ne student during one of my lectures said: "... My God! Using energy principles,
we can even derive our own F.O.R.M.U.L.A.S! He was very excited and explaining to
a classmate how wonderful is that. The classmate did ot shared this excitement.

153To be checked later (29.3.2021).

154which is not yet proven or dis-proven.

155Yksikkévoimamenetlmé, in Finnish.

56T can hear colleagues from here. This is not a scientific proposition. True, it is not.
It is for the moment just a scientific feeling to be checked later (to do - 27.3.2021).

157Will be presented shortly farther, see also Timoshenko.
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bound by finding minimum and maximum of successive approximations of
deflections (buckling modes) (see Timoshenko for details).

2. approximating displacements ¥ and using neutral equilibrium condition of
the total potential energy in its displacement form. (Rayleigh quotient-like)

This method will be labelled as the displacement method.

Naturally, this approach provides an upper-bound for the buckling load
(see literature for Rayleigh quotient minimal property).

Consequently, all solutions given by every Finite Element (FE) software
(based on the displacement method) will be upper-bound estimates for the
buckling load.

3. the proposed variation principles expressed by equations (1.296) and (1.314),
to, may be, provide estimate for lower-bound of the critical load.

This method will be labelled as the mized method.

Examples are under work; coming soon.

1.12.2 Examples of buckling load estimates
End-pinned column

We start by using the two first methods 1) and 2) listed above. The old energy
principle to be used with the 1) force method is the elegant theorem of virtual
work of the unit-dummy load™® - which is known as the brutal unit-dummy load
method - and 2) the Lagrange-Dirichlet theorem asking for stationarity (neutral
equilibrium condition) of the change of total potential energy 6(AIl) = 0 at
buckling for any tiny virtual perturbation dv.

To start and concretise the idea, let us consider the simple example of the beam-
column which is simply supported and centrically loaded by a point load P at
one end (Figure 1.77). We will account for both sharing and bending effects. The
effective rigidities being ET and k;G A, respectively and without more comments.
(later, another example of a column-beam, buckling of a a cantilever under its
own weight will be considered).

After an analysis that will be detailed bellow. When accounting for the
shearing effect, next results

w2 El 1 2Bl kG Al?
0.97 - < pltheor) < 1.92. 14+ —— 1.336
214+ B T - 2 T REI ( )
force method displacement method

are obtained.

158this is a corollary of the work of virtual force principle



156 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

Note that, the force method seems to estimate the analytical buckling load from
below, in this example. We can conclude that because we know, a priori the
analytical value - the basic Euler buckling load Pr = %. Think how difficult,
to claim that we’ve found an estimate for the lower-bound when we do not the
true solution! So, this result of the lower bound estimate, by the force method, as
presented here, cannot be extended to be general since I do not found a prove for
it, yet. It suffice to find one single counter-example to disapprove the generality
of such hypothesis. So, take you pencils and tell me.

Neglecting this last effect, gives the next bounds

2 2 2
Bl (theor.) Bl T El
097~ < P =155 < 12— (1.337)
force method displacement method

Valuable and even very valuable is to find bounds (upper- and lower) for the
critical or buckling load for purpose of structural design. Since, we then know
that the true value of the critical load lays within the interval given by these
bounds, and that, for instance, buckling will not occur for loads lower than the
lower-bound.

Let now see how the above non-trivial result has been obtained. Read follow-
ing chapters to find out the full story. In the following, we will go step-by-step
to show the above results.

The force method

The force method gives the lower-bound

1 ] m2ET l 1 ]
~0.97 - < pltrue)
48F1 2 48F1 — - cr

L+ srcarm ¢ L+ srcarm

plorce _ 48 TBI
cr - 5 62

(1.338)

The idea is to approximate the real bending moment M = M (z;v(x), P) and
shear force Q = Q(x;v(z), P) distributions in the deformed configuration, here
the buckled position v(x), in order to account for the geometrical non-linearity.
Then to determine the buckled displacements at some specific points x; (here
x; =¢/2 and v(€/2) = vg) by the virtue of the virtual work principle (the virtual
force, 6F = F, method). Here we use the virtual unit dummy-load theorem!?.

159Note that not P, the value of the critical load, neither v(x), the buckled deflection,
are known. The only thing we know is that at buckling v(z) #Z 0. We will not be able
to determine the buckled deflection in this analysis. For that, one need post-buckling
analysis. The virtual work theorem can be used. We may do that with the virtual force
method, if there is time and obtain some interesting results. May be later. Now, our
interest is to determine the buckling load P, only
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The master student should remember that the theorems of virtual work are very
general and that they remain valid not only in linear cases but also in presence
of all kind of non-linearities'%°, geometrical and material. That is why I use the
theorems of virtual work (here, the so called 1-dummy-load method) to determine
displacements at specific locations for the buckled configuration (v(z) # 0.)

[ Mlz;v(x); P - My(x) Qlz; v(x); P - Qi(x) , L
1.vi—/£ EI() dm—&—/g kG A() dr,v; #0, i=1,2,...,N
(1.339)

where, in general for the case of many degrees of freedom v;, 1 = 1,2,..., N,
M;(x) and Q;(x) are stress resultants (bending moment and shear force) in the
corresponding virtual states when the structure is loaded by a unit load at lo-
cations x; in the direction of the deflection v; to be determined (Fig. 1.77 b).
In the following example, we have only one degrees of freedom vy and we chose
r; =0/2 and v(x;) = v(£/2) = v 19! | (Fig. 1.78).

Notice that we now use the force method, and we will make approximation for
the internal forces M and () which will depend also on deflection v and axial
force N = —P, to account for this geometrical non-linearities in the real stress
resultants M and (). In this example, the first buckling mode is approximated by
a parabolic shape to simplify hand calculations, without loss of generality. For
instance, a piece-wise linear approximation may be much better when the number
of discrete points is enough high, let’s say 10 or more intervals z; (Fig. 1.77 b).
This will result is a homogeneous matrix equation [A — P-B]vy = 0, to be solved
for non-trivial solutions to exist (Therefore, the condition det[A — P - B] = 0 will
provide a lower bound for the critical load as the smallest eigenvalue.

In our simplified one-degrees-of-freedom example, the deflection (buckling
mode) is approximated in the form (Fig. 1.77 a))

v(z) ~ 0(x) = dvgx(f — )/ (1.340)

This is how we introduce the geometrical non-linearity in approximations of
the true stress resultants Finally,

M(x;v9, P) = P-v(z) = P-dvgx(l —x)/l?, (1.341)
Q(z;v0, P) = M' = —P - 4dvo(2z — £) /2, (1.342)
for x € [0, ¢]. Tt is important to note, that the above internal force approxima-

tions are defined to fulfil the equilibrium equations, and are consistent with the
approximation of the buckling mode.

160 ere, we are dealing with only elastic buckling and thus geometrical non-linearities.
Material non-linearity will be presented when we arrive into the elasto-plastic buckling
of columns. So, patience.

161this part of the story, you already must know from the basic course in structural
mechanics.
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Approximating bucklig mod? b) ﬁﬂ'ﬁl ‘] %i&) §4%

a)

T | =l
p i
Various T
approximationsfor >,
the deflection can \¥
be taken i

i —  Case with many degrees of freedom
+ results in an eigen-value problem

Figure 1.77: Approximating the first buckling mode: @) a parabolic and a
piece-wise linear distributions using one degrees of freedom (dofs) and b) a
piece-wise linear distributions using many dofs.

The bending moment M and shear force Q induced by the transversal unit
load are

M(z) = %:1:, x € [0, £/2], symmetric forz € [¢/2, (] (1.343)
€ 10, £/2], antisymmetric forx € [¢/2, /] (1.344)

These resultants are given for 2 € [0, £/2] because the needed M M-integrals'®?

can be computed as

1'1)0 =

‘MM Q0 _ /MM M, Q/MQ Qq z (1.345)
0

T eY wGAd

thanks to symmetries of the distributions (symmetric x symmetric and antisym-
metric X antisymmetric; Fig. 1.78).
Performing the integrations in the M M —integral (1.345)

¢/2 1 4Pvz(l — 1 2 1 4Puvo(f —2 1
1-v9 = 2/ UOZ(Q 7) : 51‘ dx+2/0 ) UO(@Q z) ) dzx
~~ —_——
M M Q Q
(1.346)

162The letters M M in the notation M M-integral refers to Maxwell-Mohr integrals and
not to the moments M.
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Figure 1.78: Buckling of a simply supported column. ) buckled configu-
ration = v # 0 - to be approximated). b) virtual bending moment and
shear force. c¢) real bending moment and shear force (to be approximated).

one obtains

5 Pul* = Pug 5 Puyl? A8ET
WTREL TkGA T a8 Bl [ 5kGA£2} » o 7
should be =0
(1.347)
and consequently, the needed beautiful result (Equation (1.338))
2Bl 1
piforee) ~0.97. " < pltrue), (1.348)
cr /2 1+ 48 _EI cr
5 kGAL?

comes as a gift by the force'®3, for those remaining humble with the value of
virtual work principles, since the expression within the rounded brackets should
vanish because vg # 0. Note that, the numerical approximation 48/5 ~ 72, in the
above formula, can be used to compare the approximate the obtained ’buckling

163 Jumalan lahjana, in Finnish.
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formula’ with known analytical result. Compare the above result (Eq. 1.348) with
the analytical solution (1.244) by Timoshenko et al.. Inserting P* = 72EI/¢? in
Eq. (1.349) one obtains, for comparison,

2RI 2ET 1
pr=" ~0.97" (1.349)
2 14 n2 A e 48 gy
T 5 war
analytical ~—~
~m2

approx. by force method

By noting, in (1.349) that 72 = 9.9 ~ 10 ~ 48/5 = 9.6 we conclude that, the
energy method (the force method) we used, provided us a quite accurate estimate
of the buckling load, and, in addition, accounts quit correctly, for the shearing
effects! Long live the power of abstraction. We notice also, that this critical load
estimates approaches the analytical buckling load from bellow. We however,
cannot conclude, in general, that it is an estimate for the lower bound.'%4

Application example - buckling of a sandwich beam

For curiosity, I will rewrite the above academic result to show that, in fact, it
is a result of practical importance than can be used to design sandwich beams
against global buckling'®®. Let’s rewrite formula (1.349) using effective bending
and shear rigidities, £I = B and kGA = S, respectively. Consider a simply
supported end-pinned column with a load'%® P at the roller support (Fig. 1.79).

The (analytical) buckling load, accounting for shearing, is'6”
T2 EI 1 1 B 1 1
Pr=—p T = 1E Pz p2 = Pg- 2
2 14 B 1+5 ¢ 1”2[3] 1+m2@
——
=
(1.350)

where the shear factor, defined as ® = B/(Sf?), have been used. The effective
rigidities can be determined, for instance, using energy arguments by asking
the homogeneous sandwich beam’ to conserving strain energy of the original
laminated structure.

164This is simple to say when one knows the analytical solution. Imagine that you do
not know it. Based on what, we can then conclude that the obtained approximation is
an estimate for the lower bound?

1651 such sandwich structures, in addition to global buckling, local buckling may play a
critical role in overall failure. The question of local buckling is a very important question.

166One naturally, distributes uniformly the load P among a large surface of the cross
section of the sandwich-beam, in order to avoid local failure. Therefore, the application
surface of the force should occurs through some stiffened plate or equivalent.

167This was derived previously in this notes; this is a classical result as shown by
Timoshenko and others.
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Global buckling

B~ /P nm

A generic sandwich beam

Figure 1.79: Buckling of a simple sandwich beam (model).

Important to note: now that we have an estimate for the buckling load, we can
estimate the resulting bending moment M, separately from the bending moment
approximation

M(z) = Py -v(z) = 0.977?2% - Awoz(x — £) /02 (1.351)

and the approximation of the displacements (constitutive law)
M(z) = —EIV"(z) = —EI - 2 - 4y /12 (1.352)
and to find that the constitutive relation, in the form of the constraint
M(z) + EIV"(z) =0 (1.353)

which gives
M Bri"(z) — 0977221 4 0/ +EI-2-4v/0* 0  (1.354
(x) + EIt"(z) = 0. ﬂg—Q-vox(m—)/ + ET-2-4vy/t* # (1.354)
and thus, is not fulfilled. This will be the case (=fulfilled) only when the buckling
mode approximation happens to be a true buckling mode. This is the reason why
I proposed to enforce this constraint, the constitutive law, by accounting for it,

as a penality A [,[M (z) + EIv"(x)]*dz, A > 0 to add directly into the variational
principle

The displacement method
The displacement method gives the upper-bound

> P(true)
A8ET | = "

(1.355)

Pc(;lispl,)

12 W2E1[ kG AL
-

T2ET [ . kG AL
T 02 ‘

82

Let see how it is obtained.
Recall that now

1 1 1
All = = /EIF&QdCC + = /kSGAfyzd:z: - P/f(vl)2dl‘- (1.356)
2 Je 2 Je 02
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So the buckling criteria gives
0(AIl) = /EI/@ -Okdx + /k:SGA'y <oydx — P/v’ -0v'dx = 0, Yok, b7, (1.357)
¢ ¢ ¢

where r(z) = —v” and 7(x) being the shear angle. The criteria (1.357)'8 is the
one that will be used to derive the approximation for the lower-bound by giving
trials (approximations) for v(x) and y(z), separately.

Let’s start from the start, i.e., take the buckling criteria (Eq. 1.357) and use
the Galerkin method and use an approximation for the displacements fields v(z)
and y(z). The variations dv”, 6v" and d~ will follow by taking adequate variations
of the approximated fields as good story flows from the mouth of a story-teller.
Let the simplest approximation of the displacement (buckled deflection) be the
same as the chosen previously (Fig. 1.80);

v(z) = 0(x) = dvox(f — x) /62, = €0,4]. (1.359)

For the shear angle v(z) we will take a simplest possible in the linear form (Fig.
1.80) (this will lead to a linear shear forceQ) = kG A~y distribution which can be
an enough good approximation for our purpose)

(z) ~ F(z) = Z;% (1 - ﬁiz) Lz €[0,6/2] (1.360)

and, for z € [¢/2/¢], v(z) is antisymmetric. The above kinematic approximations
result in the next variations

4 4
v = 5—2(6 —2z)vg = v’ = 6—2(6 —2x)dvg, x € [0,/ (1.361)
8 8
v = 2l = " = [26”0’ z €10,/ (1.362)
2
0y(z) = = (1 — 2x/)dvg, x € [0,¢/2], (remaining part is antisym.) (1.363)

14

168 This is a weak form (equivalent to the virtual work principle). The variations dv”,
0v’ and 0+ can be seen as the corresponding test functions 9", ¢’ and §;

/EIv” S da + /kSGAW Ada — P/U’ Sda =0, Vo, 0,4 (1.358)
14 P4 14
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) = D
¥(z) = Z/2 (1 32/2) z € [0,£/2] A
[8/ 2], v is antlsymmetrlc, P &r?,f“ =
—al =3 iz . ey
\S(«nj = :s._{:;.l.[' WZJ) ’J*LJQ/ l {,2J 7 Vo >

&“}F ] “To 4 a o2 Q_ :*‘ L F}/(m)
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Figure 1.80: Approximating the first buckling mode: a) a parabolic and a
piece-wise linear distributions using one degrees of freedom (dofs) and b) a
piece-wise linear distributions using many dofs.

o)
-
=

Inserting all the needed expressions in the criticality condition (1.357) gives

S(ATT) = /g El[%vg] . [%5vo]dx+ (1.364)
:4‘16E1/Z3 060
4 /ngGA 2 (1 _ 2;) v - [% (1 _ 2;) Suo)dz + (1.365)
:4/(3£)k G A-vodvo
- P e[; (£ — 2x)vg] - [52 (£ —2x)dvp]ldx = 0, Vovg, vo #0  (1.366)
—16/(30)

which, at its turn, provides the buckling equation

4k;GA EI 16 ;
Z0s 6= —p. | . = (displ.)
|:3 7 73 P 3€:| V0 0, Youg 75 0, v 7& 0 = PCT s
(1.367)
which leads, with NET-1%? scape , to the long-waited-for result
. 2EI kG AL
pldispl) ~1.92. ﬂe? ll +5Er | 2 ptrue) (1.368)

169Russian NET. thus meaning there is o other ways! As in the old historical browser
NETSCAPE. Sory, this is an inside joke.
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Cantilever column under self-weight
The force method

The displacement approximation is chosen
o(x) = vz /0% (1.369)

and is kinematically admissible, since ©(0) = 0 and ¢'(0) = 0. Before writing

: 5

Ni\.z': = i 1‘;. .'-[_-T“ \I ;5 = i;'l_':,'\]l FJ-",('I.J ==, = E 'i;‘l tl

Figure 1.81: Buckling of a cantilever column-beam under its self-weight.

equilibrium equation, we need to determine the external moment M.(z) at a
section x due to the distributed load (self-weight) py as (free-body diagram in
Fig. 1.81 b)

E=x

dMc(§) = pov(§)d§ = Me(x) :/g_o pov(€)de = povo/2 - 23 (1.370)

Therefore, the bending moment approximation M (x) is obtained by asking the
approximation of the moment to equilibrate the external moment

M(z) — M(z) =0 = M(x) = poxd(z) = povo/L* - 2* (1.371)

since it should equilibrate the external moment at every section x. In the follow-
ing, the shearing effects are, for simplicity, ignored.'”™ Estimating the displace-

1"0They can, easily, be added through the energy term f(f %dx with Q = M’.
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ment'7! at the tip of the column gives, for all vy # 0,
¢ M povo Y 3 (pot) - £°
1~v0—/0M-ﬁd:L‘—EM2/Ox -xdx—W (1.372)
El ET EI
= (Pol)er = 55 0.57r272 < (pol)E = 0.797r272 (1.373)
the force method analytical

We conclude by comparing the result with known analytical solution (see Tim-
oshenko) that, the obtained estimation of the critical load is also coming from
below in this example too.

The displacement method

First, I drop, for shortness, the hat from the approximation

v(x) = vox? /L2 (1.374)

Now, one needs to determine the work increment of the external load at buckling.
For that, the shortening of the column at buckling is needed. It easy to express

the differential shortening!™ due to bending (curvature change) as
t=z 1 / 2
du(z) = /0 S () (1.375)

Note that the work done by the distributed constant self-weight py on the column
(flexural) shortening is

0 E=x 1 ,
AW, = /O [/0 po 5l (é)Pd&] da (1.376)

Let’s, for shortness and not bore the reader, determine the critical load estimate
directly from weak form'™ one obtains from Eq. (1.380)

l 0 E=x
/ V' EISv"dz —/ [/ po - v (€) - 5vl(§)d§1 dr =0, Vov € Vu (1.377)
0 o |Jo

5(7AI/Vint) 6(AWext)

It worth to first, notice that (neutral equilibrium condition (Eq. (1.380) corre-
sponds to the virtual work principle 6W = 0, Vdv).

1" Notice that now, we start from known bending moment distributions M and M
which are independent of coordinate system. Thus, for the M M-integration, I changed
to an axis system with origin at the clamping x = 0 and = = ¢ at the tip.

172Recall that at buckling, the chanige in u’ is negligible as compared to the shortening
resulting from bending.

173Show this result as a homework, or just an exercise to do when you are bored.
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Let’s now rewrite the above neutral equilibrium condition into a familiar weak
form!™ more easy to use computationally as Identifying ¢ := 2% /¢? and therefore

l =/ E=x
/ &' E1¢"dx — / [ / o &(€) - ¢’(g)dg] dz = 0,V6v € Vag  (1.378)
0 0 0

So,
b=/ ¢ =2/ ¢ =2/ (1.379)
2 2 x={ E=x
/ 2 Bl Zde— po/ / 2¢/02] - [26/02)d¢ | dz. | - vo = 0, vo # 0
e 02 0 0 0

(1.380)

After integrations, we obtain to the result for the critical weight (pof)

EI EI EI EI
(Pol)er ~ 12775 ~ 1277 5 > T84 ~ 0.797° (1.381)
analytical

We see that, as expected, that the estimation comes from above with respect to
known analytical buckling load.

To obtain much accurate approximation , one can enrich the approximation
basis. However, it is sufficient to take as approximation for the buckling (first)

mode
T

~ [l — — 1.382

v(z) = v | cos(%)] ( )
=¢(x)

which is the analytical exact mode for a cantilever with point-load at its free-end.

I let this as an exercise for the curious reader. If you use this approximation in
the virtual work principle (Eq. 1.378) you will obtain

EI EI EI EI
(Pol)er ~ 820 = 0.8407" 5 > 7847 ~ 0.797" - (1.383)
analytical

which is much better (6% error) than the one obtained using the previous brutal
quadratic mode approximation.

By the way, what would be the critical height /.. of a homogeneous vertical
cantilever column before it buckles under its own weight? The density p and
cross-section A are constant and fixed? By inverting the previous formula, we
obtain

EI EI
(pol)er = pA - ley = 0.797r2£7 — 3 = 0.797r2p71. (1.384)
cr

174 The test functions or év are chosen as in the Galerkin method, the same as the
basis functions of the approximation. Additionally, the reader should already recognise
that, physically speaking, this weak form is nothing else than the familiar virtual work
principle.
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where naturally, I = I,,;,. Is'nt it beautiful to have derived ownformulas?

Dynamics of loss of stability of a very slender cantilever: This example
is given to capture students motivation and their curiosity toward dynamics as
applied to structural analysis. I reproduce a numerical simulation!”™ where, I
solved the full non-linear equations of motion of such cantilever under its self-
weight. The trajectories of the motion till new equilibrium is found. In this
model large displacements and rotations are solved without any approximation
related to moderate rotations or whatever. In this example, the self-weight was
a bit higher than the critical value. Then, a very tiny horizontal tip load served
as perturbation. The resulting dynamic motion (trajectories) are reproduced in
Figure (1.81). In addition, we also notice that the new equilibrium configuration
is stable since the amplitudes of the motion get smaller and smaller with time
(stable locus). This is a sign for stability behaviour.

Trajectories: Elastica - dynamic buckling under self-weight

y (m)

X (m)

Figure 1.82: Dynamic loss of stability of the cantilever column-beam under
its self-weight shown in Figure (1.81). The trajectories of the nodes shows
the time evolution of their positions.

175D, Baroudi et. al., Finnish XIII - Mechanics days, 2018.
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Cantilever column

We will consider the elastic cantilever of length ¢ with central end-load P. Esti-
mate the buckling load. Both displacement and force method will used.

Force method

In the force method we will consider the dummy unit-load method, sorry for this

brutal naming, and the complementary energy principle.'"®
The virtual force principle
Vovo= [Far- Map = [P 2% 0 i e = (1.385)
Uo—o EIx_OEIZQ T zrldr = .
12ET1 by o BT
the force method analytical

The estimated buckling load seems to approach from below.

Displacement method

We go back to the cantilever buckling problem. We will use the energy principle
in its weak form ready for computations as the eigenvalue problem

n 4 l

> /¢;’E1¢;’dx—P/ ¢i(x) - ¢i(x)dx| -a; =0,Vj=1,2,...,n (1.387)

i=1 0 [0 —
Sij

[K—P-Sla=0, a0 (1.388)

The basis functions are ¢; and the test functions are the same ¢; (the Galerkin
method, attend the FEM-course by prof. Jarko N. for standard notations). In
this analysis, we use global approximations!”” for the buckling deflection

o(x) = Zaszi(aﬁ), a; € R (1.389)

where the basis, for this example, is

6 =1,z 22 23 2% ... 2" (1.390)

1761f T remember well, we have already tackled a bit this question somewhere in these
notes in details while discussing about lower bounds for the buckling load. Please, dear
reader, refer to subsection (1.12.1) for that.

IT"The accuracy of the troncated series can be estimated by estimating the reminding
terms by the formula of Taylor series.
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From which the two first basis functions 1 and x are eliminated to fulfil kinematic
boundary conditions 9(0) = 0 and '(0) = 0.

One can use, naturally, the trigonometric series. However, in this example,
we will not do so, since otherwise, one will exactly obtain the exact solution, and
we want to demonstrate the convergence properties of the approximations from
above.

We will perform three successive kinematically admissible approximations us-
ing, one, two and three terms from basis functions {2}y, {22, 23} and {22, 23, 2*}3.
Therefore, the approximation (fulfilling kinematic boundary conditions) is

n

b(x) = ¢i(x)as, (1.391)

i=1

where, vuorotellen, n =1, n =2 and n = 3.
Note that the (linearised) stiffness matrices and (geometrical) stiffness ma-
trices K and S are

4
Kij = / ¢ E1¢d (1.392)

0

and ,
Sy =P | ¢i(a) - ) (w)da (1.393)

Inserting successively the above three approximations into the weak form (1.388),
after computing the needed matrices, one obtains the three successive eigenvalue
problems:

basis: {z%}

¢1(x) = 2%, ¢ (x) = 2z, ¢ = (1.394)
4 Pe? EI ElI 1 ,FEI
4— —— 1. — P.—3"" ~0. 25 - 24t 1.
( 3EI> a1 =0, a1 £0 = Py =375 ~ 03785 > 1m0 (1395)
analytical
basis: {z?, 2%}
Now
¢1 =7, ¢y =2z, ¢ =2 (1.396)
¢ = 2°, ¢y = 3a?, ¢y = 6 (1.397)

and consequently

4 6| PCI4/3 3/21\ Tl | _ |0
([6 12] EI l3/2 9/5]) L@z?] a M - (1.398)
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One obtains two eigenvalues'™® Py,;, = 2.486 and Py,e. = 31.18. The smallest
eigenvalue corresponds to the critical load

ET EI 1 ,FEI
= Pop = 24865 ~ 0.2527" 75 > o' (1.399)
——
analytical
basis: {22, 23, 2*}
Now
o1 = 2%, ¢ = 2, ¢ =2 (1.400)
¢y = a°, ¢y = 32, ¢l = 6 (1.401)
¢3 =z, ¢h = 423, ¢f = 1227 (1.402)
and consequently
4 6 8 P2 4/3 3/2 8/5 arf 0
6 12 18 | — T 3/2 9/5 2 azl?| = [0] . (1.403)
8 18 144/5 8/5 2 16/7 azl? 0
The smallest eigenvalue gives the critical load
ET o EI 1 ,FI

———’
analytical, ~0.250000

We notice that the three estimates converge!™ to the analytical value by ap-
proaching it from above, and thus are estimates for the upper bound of the
critical load (Fig. 1.83). In addition, the estimate obtained with only three basis
functions gave already a very accurate value

EI 1
~ 2 ~
~ 0.250045 - = m 177

LI

R (1.405)

178The genralised eigenvalue problem [K — P - S]a = 0, when needed, can be written
in the standard form [I — P-K~1S]a = 0 which can be solved, for instance with Matlab
(Fig.1.84) function eig(A) .

1" This type of convergence is called p-convergence. Respectively, h-converges is re-
lated to convergence obtained by mesh refinement. In our examples we used global
approximations, so the convergence is achieved by enriching the basis function set. The
convergence can be also achieved by discretizing the geometric domain (triangulation)
into sub-domains (elements) and by taking local approximations of lower order. Now
refining the mesh, h becomes smaller and smaller, a convergence can e achieved, under
some conditions for the choice of the basic functions. This condition, in principle is
simple: one should approximate, the energy-integrals in a convergent way. For that, it
suffice, to approximate the integrand by a piece-wise constant, like in the Reimann-sums
for which the integrals are the limits for h — 0.
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Convergence: the displacement method gives
estimates from above (upper-bounds)

. R=LwELR
S| f T 4
= -‘."‘“\_ o’ s ’
(I\’j_l f.\_:{}‘ ca.[’L\U’{‘ =9 L.»”ma_L-u':\m Y l
---.\_-i_‘_] Yo /"--.______\ f ’f
0,%0%
oE SIS S OBl 025D |
4 = : / |
v
/A*L\ e e | S R - S—) w—
L e 17 hieel 7) 7
‘ 2 3l 4 ordaL \%

-E 3’ ‘1’1 "L 1,1’!.} Fbu‘jm:m

Figure 1.83: Convergence of the buckling load from above (upper bounds) as
given by the displacement method. Example of axially free-end compressed
cantilever column.

Eigenvalue problem solved using Addi
application from my smartphone

[K—P-Sla=0,a#0

1 6 8 2 [4/3 3/2 8/5 0
6 12 18 |- 3;2 9/5 2 0
8 18 144/5 8/5 2 16/7 agﬂ 0

--l ﬂ g Pﬂ=2.46?7%%0.250045-ﬂ’% :

0
smallest eigenvalue  mmm B

n 1 £
Z{f qa;’Emj:dx—Pf ¢;(z)-¢;(z)dm] i =0, )
Y=1 [J0 o o—

Ky B

Figure 1.84: Example of eigenvalue problem solved using the Application
Addi (from GooglePlay, 2020).

For curiosity, I reproduce this example solved of using the Application Addi

(from GooglePlay) to solve the eigenvalue problem (Fig.1.84) that I used when I
did not had access to Matlab.
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Coming back, to the analysis of the results, note that, we did not took trigono-
metric basis functions, in this example, for te reason that they will capture exactly
the analytical solution. since the analytical buckling modes are trigonometric
functions. We wanted to demonstrate the convergence from above of the approx-
imations without this bias, and we therefore took polynomial basis. It is well
know that the complete set of polynomes is dense in the set of continuous func-
tions. This criptic mathematical Boorbakian-type psaume says in clear that, any
continuous function can be approximated to any given accuracy with polynomial
series.

Force method - simply beam supported column

Let’s go back to the simply-supported beam-column buckling problem and illus-
trate convergence of the Rayleigh-Ritz method which is another name for the
energy method, the hand-version of FEM illustrated by the weak form. We will
use the energy principle in its weak form ready for computations as the eigenvalue
problem (Timoshenko form)

zn: l Oe QZ)éQ;jdx_ ]13/04%(1:)'%(3;)(14 ca; =0,V =1,2,...,n (1.406)
i=1

where now the kinematically admissible trial functions are (with £ = z//)

basis: {22, 2%}

180 The displacement trial

v a1¢1(z) + asda(z). (1.407)

is used (Fig. 1.85).18! Now

180Notice that I dropped the term z® which corresponds to an asymmetric mode. This is
possible only because I know, for this example, that the first buckling mode is symmetric.
In general, one should take a complete basis to ensure convergence (means that the term
23 should be taken.) and because, we do not know necessarily, a priori what is the
critical buckling mode. A good counter example is a simply supported column-beam
with elastic supports. For some ratio of rigidities of the beam and support, the critical
mode is asymmetric. This can be be a good homework exercise to give.

181Hitsi! Note that it happens that in this example we know that exact mode sin(mx/¢)
is symmetric around 2 = ¢/2. Unfortunately, for the accuracy, the chosen basis ¢ =
£2(1—-£€?) is less 'symmetric’ ant that a choice like ¢ = £2(1—£)? preserves this symmetry.
Surely, using this last version will give more accurate results (see the example). However,
the only condition for the trials, to fullfill is to be kinematically admissible as does my
unfortunate choice here. Only accuracy will suffer when using a small amount of basis
functions. Anyway, the idea, is that we do not know a priori into which mode (symmetric
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Figure 1.85: Critical buckling mode and some approximating terms.
1= E(L—€), 0y = 1 — 26, (¢ = —2 (1.408)
b2 = €2(1 - €9), e = 26 — 4€%, 2 =2 - 12¢? (1.409)

After performing the integrations we obtain the critical condition

1/30 11/420] EI [1/3  4/15 || _
det{[11/420 8/315]_P£2[4/15 44/105”—0 (1.410)

having the eigenvalues

(1.411)

43274 " 2

B = [1.0128] LEI

Finally, the estimated critical load corresponds to the smallest eigenvalue

EI EI
Por = 1.0128 - 7% > 17?5
N——

analytical

(1.412)

Figure (1.86) shows, as an example, how a simple determinant that can be,
anyway, computed by hand, can be solved by a smartphone.82.

or antisymmetric) the structure will buckle and, so, we have to take a complete basis (or
a good approximation for such basis: truncated complete polynomial or trigonometric
series.).

182G0lving the eigenvalue problem when we do not have access to computers or when
we become lazy. Note that this determinant can be computed by hand in five or less
minutes to obtain a quadratic equation to be solved in two minutes using Cramer rule.
However, this method will not work when one finds himself lost in Sahara without any
smart-phone. Anyway, then, the critical load is surely not the critical problem to solve.
(find water or a way to condense water from its soil evaporation, protect against the sun
and find the way out, read the star-map.)
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Eigenvalue problem as solved on
my very smariphone using Addi

003333 o.026219] BT [0.33333 U.Zﬁﬁﬁ?] =i
det “FE =0 N

0.026218 0.025397 026667 0.419045]

_[ro128] BT
P = [a.:zan] s>

Figure 1.86: Solving the eigenvalue problem of buckling.

We can notice that the estimate is very close to the analytical solution (~ 1%)
but is, unexpectedly, approaching it from above even when the force method has
been used! Did we said, previously, that we should obtain an estimate for the
lower bound? No. This is a good counter-example to show that the weak version
of the force method without constraint for the constitutive law, in general, does
not, in general, provide an estimate for the lower bound of the buckling load. This
bias may be explained by the fact the trial solution will with high probability not
fulfil, a priori the constitutive relation M + EIv” = 0, as I have explained this
point earlier.

Both basis functions are now symmetric: Again the curiosity to resolve the
question was huge, so I did it. Here the story, in short. Notice that now ¢o(z) is
symmetric (Fig. 1.85), so

1 =E&(1 =), (1.413)
By = E2(1 — €)?, (1.414)

. The approximation for the equilibrium bending moment being simply M = Pw.
After symbolic integrations, in Matlab, we obtain the critical condition

1/30 1/140] EI [1/3 1/15
det{[l/lélo 1/630]_1%2[1/15 2/105]}20 (1.415)

having the eigenvalues

(1.416)

P = [1.000015] LEI

10.347957| " 2
Finally, the estimated critical is obtained with great accuracy of ~ 1/100000%!

However, the estimate is still, mathematicaly speaking, from above! Now,

EI EI
Per = 1.000015 - 725 > 17

analytical

(1.417)
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Displacement method - simply beam supported column

Here we mean that we use the weak form (extended Rayleigh quotient) or just
virtual work principle (at the critical equilibrium) written in the form

; VO ¢! (x)EI¢)(x)dx — P/O Oi(x) - Qs;,(x)dx] =0 =12, ..n

(1.418)
As in the previous example, the kinematically admissible displacement basis func-
tions are

¢ =¢&(1-9), (1.419)
B2 = E2(1 — €)?, (1.420)

as shown in Figure (1.85) After symbolic integrations, in Matlab!®? again, we
obtain the critical condition

4 0 P 1/3 1/15
det{ [o 4/5] BT [1/15 2/105” =0 (1.421)

having the eigenvalues

| 1.00056 | LEI
Per = [17.23725] T (1.422)
The critical buckling load is now
EI
P, = 1.00056 - 72— (1.423)

02
is a clean and rehellinen estimate for the upper-bound.

I now stop this story here, and just provide for those that may be interested, the
Matlab-script I used.

\

% Buckling simply supported column —---—---—---—--———--
% Djebar B. 2021

% MATLAB symbolic

% Timoshenko and Rayleigh quotients

Y
/—

syms EI L P

syms X

syms phi_1 phi_2

1831 got, finally, my internet connection on for doing symbolically the boring part of
integration.
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syms K K_DIS K_G K_T K

% Basis functions

phi_1(x, L) = (x /L) * (1 -x/L);

phi 2(x, L) = (x/L)."2 % (1 -x/L).72;

%h phi_2(x, L) = (x/L).72* (1 - (x/L)."2);

% 1st derivatives of L_i, i = 1:3
dl_phi_1(x, L) = simplify( diff(phi_1, x) );
dl_phi_2(x, L) = simplify( diff(phi_2, x) );

% 2nd derivatives of L i, i = 1:3
d2_phi_1(x, L) = simplify( diff(di_phi_1, x) );
d2_phi_2(x, L) = simplify( diff(di_phi_2, x) );

% Forming stiffness matrix K_T (Timoshenko)
R —

% a) the force method (Timoshenko quotient)
K_11 = int(phi_1 .* phi_1, [0 L]);

K_12 = int(phi_1 .* phi_2, [0 L1);
K_21 = K_12;
K_22 = int(phi_2 .* phi_2, [0 L]);

K_T(L, EI) = [K_11 K_12;
K_21 K_22]1 / EI;

-
% Forming stiffness matrix K (displcement method)
A —

% a) the force method (Timoshenko quotient)

KD_11 = int(d2_phi_1 .* d2_phi_1, [0 L1);

KD_12 = int(d2_phi_1 .* d2_phi_2, [0 L]);
KD_21 = KD_12;
KD_22 = int(d2_phi_2 .* d2_phi_2, [0 L]);

K_DIS(L, EI) = [KD_11 KD_12;
KD_21 KD_22] * EI;

% Forming geoemtrical stiffness matrix K_G

% __________________________
KG_11 = int(d1_phi_1 .* di_phi_1, [0 L]);
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KG_12 = int(dl_phi_1 .* di_phi_2, [0 L]);
KG_21 = KG_12;

KG_22 = int(dl_phi_2 .* di_phi_2, [0 L]);
K_G(L, P) = [KG_11 KG_12;

KG_21 KG_22] /P;

% b) Rayleigh quotient
R

K_GR(L, P) = [KG_11 KG_12;
KG_21 KG_22] * P;

A ——
%% Numerical Eigenvalues: using matlab eig() -function

% ____________________________

L=1,;
ET =1;
P=1;

% a) Remeber in Timoshenko quotient we have (1/P) as critical --
KT_num = double( K_T(L, EI) );

KG_num = double( K_G(L, EI) );

LAMS = double( eig( double(K_T(L,EI)), double(K_G(L,EI))) )

[P cr num] =1 ./ LAMS

P_cr_E_Timo= P_cr_num / pi~2

% ____________________________________________________

% b) Remeber in Rayleigh quotient we have P as critical --
K_num = double( K_DIS(L, EI) );

KG_num = double( K_GR(L, EI) );

LAMS_R = double( eig( double(K_DIS(L,EI)), double(K_GR(L,EI))) )
[P_cr_num] = LAMS_R

P_cr_E_R= P_cr_num / pi~2

Simply beam supported column with an elastic spring support

In the following, the utility and motivation of using energy method to tackles
problems in structural mechanics, is demonstrated to the student by solving a
practical design problem.

The design problem: A simply supported column of length ¢ with an end-load
P is considered (Fig. 1.87). At its mid-span = £/2 you need to design an elastic
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support against buckling. What would be the needed minimum effective rigidity
(as a spring coefficient k£ [N/m], in the buckling direction, of the support to pre-
vent buckling in the first mode (global mode) and ensure buckling in the second
mode ("local’-type of buckling between the supports)? Note that, consequently,
the buckling load will increase substantially. The bending rigidity of the column
being, naturally, EI. The future engineer needs a formula saying what depends
on what and in what way before going to numerical simulations or experiments.
What are the design and driving parameters in this problem?

Ir

e
G/MmLJf"“{(_ :\m"}:\—j-) M AT
global mode ’local’-type mode

Figure 1.87: Buckling of a slender column with elastic support.

Let’s start working with equations. We will consider separately symmetric
and ant-symmetric buckling modes in the form v(z) = vy - ¢(x), where the basis
function being ¢(z) and vy the respective amplitude . For each mode, a critical
buckling load will be obtained. The critical axial rigidity (or stiffness coefficient
k) will determined by equating the two critical loads. I let the student discover
why this condition is the correct one.

To diversify and get the reader less bored with mantra-type repetitions about
total stationary total potential energy increment, we will use the loss of stability
criteria in its weak form or more explicitly said, in its virtual work form with only
one buckling mode at a time, as given by

4 l
/ V'EISV"dz + kv(£/2) - dv(0/2) — P/ v - dv'dx = 0, Véu (1.424)
0 0

Symmetric mode: the buckling mode trial

v(x) = vg sin(nzx /L) (1.425)
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is kinematically admissible. Inserting it into the above weak form, we obtain

2 2
o mEI 2k ¢
2 El 2 k03
(20 wa

where the superscript in the buckling load correspond to the symmetric mode

#1.
Anti-symmetric mode: the buckling mode trial

v(z) = vosin(2mwx /L) (1.428)
after insertion in the the virtual work, results in the critical load

m2El

2) _
Pc(r)_ EQ

. (1.429)

The above result can be determined directly from Euler basic buckling for-
mulas by taking the buckling length equal to £/2 since the mid-span has zero
deflection in this mode with, consequently, zero deformation of the spring.

Critical spring coefficient k: as designers you wish that increase of the spring
coefficient value goes with increase of buckling load, not the contrary. This means
that the first buckling mode to appear should be the global mode (symmetrical
one) as k increases from zero. Then, after reaching a critical value k., the
buckling mode switches to the anti-symmetric. Consequently, the buckling load
will not any more increase from its maximum value Pc(r2 ). So, no gain in buckling
resistance is gained after, and the elastic support acts as an effective infinitely
rigid support. So, the critical spring coefficient is found when

[N/m] (1.430)

b == =~ 15— =15-P. (1.431)
——
=pyD

So, this was the story. Now, the overall analysis result is depicted in Figure (1.88)
where everything is said.

In the following, I reproduce, for curious students, the listing of the symbolic
computations done in Matlab.
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2EI
N N Pc(r2)_4 ﬂ-g2
w2 EI
4 . a s i
€2 ﬁ; x// [P
,,/ iy
Jt/’/- s
m2El |/ (
02 T £
PO_TerL* L
E E 'EQ;_
0| T 312 m2EI
ke b= 5~

Figure 1.88: Critical spring coefficient. Note that the critical value is easier
to remember as ke { ~ 15 - w2 E1 /(%

% ___________________________________________________________________________

% Buckling of a simply supported column with a spring support at its mid-span.

% ___________________________________________________________________________

b

% Below follows the out-put of the symbolic solution:

Y

% 1) symmetric buckling mode ---------——-—=------
A

w(x, w0, L) = wO*sin((pi*x)/L)

% total potential energy change —---—--—-—————————————————-

Y

delta_Pi = (w0™2x(2*k*L"3 - Pxpi~2xL"2 + EI*pi~4))/(4xL"3)

% first derivative of tot. potential energy with respect to w0

A
delta_Pi_w (wO* (2xk*L"3 — P*pi~2*L"2 + EIxpi~4))/(2*L"3)
S
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% 2) Anti-symmetric buckling mode ------------—------
A —

w(x, w0, L) = wO*sin((2*pi*x)/L)

delta_Pi = (w0~ 2*pi~2x (- P*L"2 + 4#EI*pi~2))/L"3

delta_Pi_w = (2*%wO*pi~2x(- P*L"2 + 4xEI*pi~2))/L"3
Y

% The script ———————————————————
Y
% file: Column_buckling with_spring_support_symbolic_2021.m

Y
% Energy method to approximate buckling load

% for an elastic simply supported column with an

% elastic spring at its mid-span x=L/2.

Y

yA Author: Baroudi D. 2021

Y -

clc

clear all

syms X
syms delta_P delta_W

syms w wO
syms P k EI L
syms n m

S
% Displacement approximation (you can use better approximations)
S
w(x, w0, L) = w0 * sin(pi* x /L) % symmetric mode

%h w(x, w0, L) = w0 * sin(2*pi* x /L) % anti-symmetric mode

dix_w(x, w0, L) = simplify( diff(w, x) )
d2x_w(x, w0, L) = simplify( diff(dix_w, x) )

A
% Strain energy of the colum (bending)

delta_U_beam(L, EI, wO, k) = 1/2 * EI * int( d2x_w * d2x_w, x, [0 L]
A —

x k = L/2;

w_spring = w(x_k, w0, L)
delta_U_spring(L, EI, w0, k)

1/2 * k * w_spring * w_spring;
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% Total Strain energy —-—-—-——-—-—-————--—-——————————— oo
delta_U_column(L, EI, wO, k) = delta_U_beam(L, EI, w0, k)
+ delta_U_spring(L, EI, wO, k)

% Work increment of initial stresses (applied end load P)
delta_W(L, wO, P) = 1/2 * int(P* dix_w * dix_w, x, [0 L])

A
% Total increment of potential energy

Y m

delta_Pi = delta_U_column(L, EI, wO, k) - delta_W(L, wO, P)
delta_Pi = simplify( delta_Pi)

% Equations of neutral equilibrium (derivative with respect to w0
S

delta_Pi_w = simplify ( diff(delta_Pi, w0) )

Y

1.12.3 A continuous model of a pin-ended column un-
der pulsating axial load

Even though this course deals only with static stability, I think that it is ped-
agogically a good reason, to introduce a simple problem of dynamic stability.
This application example will demonstrate two things: 1) How to account for
inertia effects 2) The universality of the principle of virtual work (VWP). The
example treated is the same example that the one shown in Timoshenko’s clas-
sical textbook of stability.'®*, Timoshenko derives the equations of motion using
local differential approach. In our example, we will use a different approach: the
global approach as given by virtual work principle. The good news are that the
VWP provides both i) the correct equations of motion and ii) the best way to
solve these equations since the VWP is itself already the variational principle (=
weak form) to be discretized. Nothing can be more efficient than that.'8

1841 Timoshenko: Section 2.22, p. 158: Stability of prismatic bars under varying azial
force. The textbook: Timoshenko and Gere: Theory of Elastic Stability. 2" Ed. 1985.
Mec-Graw-Hill.

185From my experience, I can say that it is worth (maksaa vaivan) to lear to use the
virtual work principle (VWP). With time, student become more and more familiar with
the VWP as they use it more and more. The VWP is in the begining hard to grasp.
The student should just start using it daily and keep using it till it becomes familiar.
After this learning period, you can forget about it since it is then integrated in your
hardware and becomes as for your school multiplication tables: your body knows them
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The virtual work principle for dynamics

May be the reader recall the principle of virtual power that we studied in previous
master course in the course called Mechanics of beams an frames and which is
funnily labelled CIV-E1020 as if it was a food additive E1020 to make more
digestible to the students. The virtual power (or work) principle in its general
form looks like this:

—/o:é(Vv)dﬂ+/f-6de+/ t-5vdS:/pﬁ-6de . Wov
Q Q 0 Q

5Wint 6Wext 6Wacc
(1.432)

and says, that in body in motion moves and deforms such the principle is not
violated, at least for velocities less than speed of light and no nuclear reactions
being involved. This principle is equivalent to what says Newtonian dynamics for
deformable and undeformable bodies moving with non- relativistic velocities. The
Newton’s motion equations for deformable bodies are called Cauchy’s equations
of motion.86

We will apply this universal principle (Eq. 1.432) to the dynamics of our column
under pulsating centric axial loading. We just need to integrate all constant
variables, generically h, within the cross-section A over the cross-section and
obtain [;, hdV = [, h- Adx and the obtain the readily virtual power principle for
the column.

However, in this notes, we will use the virtual work principle the (static
version), known to student from earlier courses, and add the additional term
of the work of acceleration forces (inertia forces) using the d’Alembert principle.
May be this approach will make the student more curious about mechanics. Let’s
take into account the inertia forces (=-acceleration forces)

finertia = —face. = —mid (1.433)
according to the d’Alembert’s principle in the virtual work of the inertia forces

IWinertia = —0Wace. = —finertia - 01 (1434)

as you breath but you don’t know how you know them.

186Cauchy’s equations of motion: V - o + pf = pii and Newton’s equation for a body
ma = f, where the acceleration a = . We notice that theses two motion equations
are naturally, the same. The deformation of the body, for us engineers working with
deformable bodies, results in cohesion forces t = o - n applied at the boundaries that
should be added to the resultant of external force f. As you recall the surface force term
f gtdS = f 50 -ndS when integrated over the surface, and thanks to Gauss, the king of
mathematicians, can be transformed into an equivalent volume force term fv V . odV.
If you get interested, consult textbooks on continuum mechanics.
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and re-write the virtual work principle in a canonical form which holds for both
statics'®” and dynamics.

OWint + 0Wezt — 0Wyee. = 0, You <= = the equations of motion (1.435)

where u being the displacement field. The virtual work principle says that it is
equivalent with the equations of motion of a (deformable or not) body.

Now we will apply this principle for the column under pulsating axial load
to derive the equations of motion and then to study the dynamic stability of the
System.

We consider a slender pin-ended elastic column under a pulsating centric load
(Fig. 1.89)
P(t) = Py+ S - cos(§2t) (1.436)

where Py is the constant part (positive or negative) of the axial load and S the
maximum amplitude of the harmonic change (with 0 < eta = S/Py < 1). The
circular frequency of the excitation being 2. The column of the example is slender
and we consider transverse vibrations only and ignore, in this application, the
effect of axial deformations.'® For a short column, the axial vibration (or wave
propagations) are surely dominant over the flexural vibrational modes.

Natural frequency for transversal free vibrations

What we want to investigate? We are interested in finding how the first nat-
ural angular frequency w of the loaded slender column depends on the excitation
angular frequency 2 and the relative amplitude S/ Py of the pulsating axial load
P(t). For the moment we ignore the effect of damping.

Let’s approximate the transversal free vibration v using the first mode

v(x,t) = vosin(mx/l) - sin(wt + @) (1.437)

first mode harmonic evolution

I87Tn statics, all accelerations are zero.

188Note that both deformation modes - axial and transverse, as for instance, in a ten-
sioned cable of a stay-bridge, can be present at the same time during parametric excita-
tion of such cable. In such excitation, one end of the cable have a forced periodic motion
of relatively small amplitude and of given frequency content. The dynamic stability be-
haviour of such cable is critical. For example, a frequency €2 of the excitation such that
Q) = 2w, leads to instability and enhances violently the transverse vibration even when
the end-motion while exiting remains relatively small. Such dynamics is very complex
(=rich) because the natural frequency w of the tensioned cable depends on the tension,
and the tension is varying as a result of the end-periodic motion and the large transver-
sal vibrations. Increase of tension increases this frequency, while decrease of tension,
decreases it. Structurally, the design is very demanding because such vibrations lads to
fatigue of the cable and of the cable-anchoring or supports. If someone get interested
ask Dr. Risto Kiviluoma our specialist of bridges in Finland.
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a) pulsating axial force - transversal vibrations

S |0 50 T [ | 0 T
x &= :: =3 e 1=l o ad e e bt o i — R —
C) time dependent responce natural angular b) Periodic axial force

frequency under a periodic axial force

Figure 1.89: Simply supported elastic and slender column under axial pul-
sating load.

where the free vibrations are assumed harmonic and the phase angle being ¢ and
vg the mode amplitude.

Before going to the total virtual work, we need next derivatives

V' (2, t) = [%] -vg cos(mx /l) - sin(wt + @), (1.438)
12

v (z,t) = — [Z] ~vgsin(mz/l) - sin(wt + ¢), and (1.439)

b(x,t) = — w? - vy sin(rz/L) - sin(wt + ). (1.440)

The variations of the generalised displacements are naturally spatial variations
only. They are independent of time. Consequently, the virtual displacement dv
and virtual rotation dv’ are, naturlich,

dv(x) =dvg - sin(mwz /L), (1.441)

o' (z) = [%] - dvg - cos(mz/0) (1.442)
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The virtual work contributions are:

L
S(AWint) = — / V'ET - §v"dx = (1.443)
0
4 L
=—FI [7” / sin? (77) dz - vg - dvp - sin(wt + @) (1.444)
0
o .
=—FI [A g0 dvg - sin(wt + ¢) (1.445)
L
5(AWert) =P(1) / o - Slde = (1.446)
0
2 0
—P(t) m / cos? (”f) dz-vo - ovo-sin(wt+ ) (1.447)
0
2
=P(t) B] : g -0 - 0vp - sin(wt + @) (1.448)
L
5(AWee) = /0 pAD - Sudz = (1.449)
= pae? [Csin? (T2 do v - v -
= — pAw sin” { dz - vy - dvg - sin(wt + @) (1.450)
0
= — pAw?- g - g - 0vg - sin(wt + @) (1.451)
Finally,
Wit + SWezt — IWeee, = 0, YU (1452)
m? 72 9
= FEI 7 - Py[1+ S/Py - cos(§2t)] 7 - pAw® =0 (1.453)

The above equation provides the natural frequency w of the lateral free vibrations
under pulsating axial load. The first thing to notice is that this frequency w =
w(t) depends on time ¢. To take all the juice from this result, we study three
cases:

1. Buckling under static axial load: S =0, Py # 0 and w = 0. This is a
simple static buckling situation with Euler critical load Py given by

— Py = El[r/{)? (1.454)

2. Free lateral vibrations under static axial load: S = 0, Py # 0 and

w # 0.

2 w1t ™% _ 2
pAw” =FEI 7 — P 7 = pAwj (1.455)

EI (7% P,
2 m 10
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3. Harmonically exited vibrations under pulsating axial load: S #
0, Py # 0 and w # 0. The response angular frequency now depends
periodically on time; w = w(t)

74 7]?
pAuw? =Bl M [Py + S - cos(Q8)] M (1.457)
12
pAw?® =pAwd — S cos(Qt) [A (1.458)
time variating
pAWA(t) =pAwd - (1 — i[1 + S cos(Qt)]) (1.459)
Pg Py

f(Qt) —time modulation

This time dependency of the response angular natural frequency (Eq. 1.459)
is shown generically in Figure 1.89 ¢). It is this non-linear and time-
dependent coupling of the natural response frequency w with the excitation
frequency €2 that give an incredible richness of dynamical ranges for the
physical structure. Figure (1.90) shows such behaviour for a cable under
periodically changing tension induced by parametric vertical excitation of
the free-end.8?

Timoshenko!? studied the dynamical stability of the same example here. They

derived the equations for the natural frequency w by considering the equation
of motion starting from the differential approach. Thy studied the dynamic
stability behaviour and found that the amplitude of lateral (flexural) vibrations
can grow in violent way for a set values-combinations of the non-dimensional
system characteristic parameters s = S/Py, p = Py/Pg, wo/2. This violent
lateral vibration response correspond to dynamic loss of stability. Using the
reduced set of (driving or control) parameters

2
_ Y
=

2
W

-8 (1.460)
Timoshenko determined, by probably solving numerically the corresponding equa-
tion of motion, the regions of stability in the phase-plane a — b (Fig. 2-72 of the
reference). When solving numerically the equations of motion, for a fixed numer-
ical value of the parameters a and b, one can obtain solutions (time evolutions)
which will diverge with time (the amplitude keeps growing). Then these specific
'points’ correspond to unstable regions on the plot a — b. If on the contrary, the
solution keep bounded in time, then, we found a point (a, b) which correspond to

189Ref. My own research work.
199 Timoshenko & Gere. In: Theory of elastic stability, section 2.22, p. 158 Stability of
prismatic bars under varying azial force.
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Paramatnic vibration of cables
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Figure 1.90: Parametric vibrations of vertical hanging cable (10 m long).
The free end of the cable is given a small amplitude of vertical parametric
excitation. The graph represents the transversal displacements at the mid-
dle span of the cable. The cable is not initially pre-stressed. The vertical
parametric motion induces time-changing axial force T'(t). The natural re-
sponse frequency is beating (yellow shading) with time similarly like for our
column as in equation 1.459).

stable behaviour. By varying a and b within physically possible values, one ob-
tains the full phase-plane with stability and instability regions determined. One
result may be to keep in mind is that first dynamic instability is reached when
the excitation frequency € is v/twice the natural frequency wy

Q=+2-wy even for very small amplitudess = S/Py << 1 (1.461)

Thus violent transversal vibrations with large amplitudes occurs under the above
conditions even for small amplitudes of axial force variations (unshaded regions in
Figure (1.91. The stability regions correspond to the shaded regions (Fig. 1.91).
It is interesting to notice, for instance, that stability behaviour can also change
for a constant a = const., let’s say, we fix the value Q2/w? # 2 not corresponding
to frequency resonance, but we make changes only in the relative amplitude s of
the axial load along the line b. Thus, dynamic stability can also be lost even for
a discontinuous range of relative amplitudes s of the axial pulsating load.

A word about parametric excitation of stay cables

The following example, partly from my research work'”!, is meant to wake-up
curiosity of the students toward structural dynamics, in particular and to show,

91The equations of motion we have been using in this example were derived using the
virtual work principles keeping displacements and rotation large (= keeping the siné
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S/Po, p = Py/Pg,
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Figure 1.91: Regions of stability in the parameter space a — b. (Figure
adapted from Timoshenko &and Gere. Theory of elastic Stability.)

a

0 -

than once we jump from the frozen static word of quite equilibria to the rich
word of dynamics, we discover a full new exiting world full of challenging key
important practical questions for structural analyst and designer.

The above result (1.461) is quite similar to the case of parametric excitation
of tensioned cables (stay cables of towers or stayed bridges). In the parametric
excitation, one end of the pre-tensioned cable is given periodic motion (frequency
Q) of small amplitude around the equilibrium position. The initial tension of the
cable being Ty and give a natural angular frequency of transverse vibrations wy.
The resonance condition for this cable are the same than for the column under
pulsating load (2 = 2wp). The parametric excitation in the cables occurs at
one or both supports or connections. One support to the pylon and the other
support is to the deck. The pylon can vibrate transversally under wind effects.
The deck can be also have vibrations due to wind and from the traffic motion. It
is this periodic small amplitude vibrations (motion) of the support that is called
parametric excitation. Such excitation may lead to catastrophic resonance (1.92)

and cos as they are, not expading them into Taylor series).. Naturally, we have also
dissipation (damping) which is accounted for, as in real structures.
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when!92

Q={1/2, 1, 2} - wo. (1.462)

Another problem is the material fatigue at the connections or in the cables. To
know more on the subject, please consult Dr. R. Kiviluoma, the local specialist
of bridges. The dynamic simulation shown in Figure (1.92) the connecting end

Parametric exciation of stay bridge cable Notice the resulting large transversal amplitudes more than 10 m
Numerical model by D. Baroudi et. al. (2018) while the ends of the cable amplitudes much less than 40 cm.

Farameinc woraon of stay-cabie time [ms]= 36687 Parametric vibmiion of stay-cable time [ms] = 43062 Parametric vibmtion of siay-cable tima fms) = 55041
Start parametricatt=35s Parametric exitation:
exitaion of the upper-end --> - amplitude ~20 cm
(~20 cm amplitude) - freq. ratio:

exit. / nat. fr. = 0.5

Parametric Excitation

is(t) and 55(0) | Up(t) and vp(t)

T R |

05!

Exciattion amplitude about 20cm

To have a bit more fun Risto K. proposed to simulate parametric vibrations
of the 118 m long stay-cable of this bridge (Figures 1.43 and 1.42). The
longest stay-cable is L = 118 m and is pre-tesioned to 4.1 MN. A, = 7428
mm?, F = 200 GPa, m’ = 74.5 kg/m, angle with the horisontal a = 26 deg.
and fi = J-/(T/m’) = | Hz (self-weight). The diameter of the protecting
Replot Bridge - Raippaluodon silta tube is 160 mm.

Figure 1.92: Parametric excitation of a stay cable - numerical simulation.

of the stay pre-tensioned cable was parametrically excited in both horizontal
and vertical directions. The amplitude of such motion was about 20 cm and
the excitation frequency such that Q/wy = 1/2. 193 Despite this relatively small
amplitude (= 20 cm), the cable gets violent huge transversal amplitudes reaching
even 10 m, due to parametric resonance.

1.12.4 Loss of stability of a rotating axis

Consider a cantilever slender elastic beam which is rotating with constant angular
velocity w about its length-axis (Fig. 1.93). In this section we consider only the
cases where the displacements v affect only the magnitude of the forces acting

192V, Denoel & H. Degée Liege. Comparison of parametric excitation and excitation
of an elastic stay cable0. 7Tth FEuropean conference on structural dynamics, EURODYN
2018, 7-9 July. Southampton.

193D, Baroudi, R. Kiviluoma, R. Kouhia, J. Paavola & L. Salokangas. Finnish XIII -
Mechanics days, 2018.
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on the moving axis mass-element dm. The forces meant here are the centrifuge
forces df.(z) = dmw?v(x). The cases where the displacements affect also the
direction of the loading are not considered here 194,

One interesting design and operational question is to estimate what will be
the lowest critical angular velocity w to ensure that the beam will not loss its sta-
bility (buckles)? Here the transverse perturbation can be for instance, the shape
imperfection (non-uniform mass distribution) around the centre of of gravity of
the cross-section. Such mass eccentricity results in tiny centrifuge forces which
are enough to perturb the initial straight configuration and leads motion into the
neighbouring bended state (=buckling). In addition,in this example, we assume
that neither torsional vibrational modes nor bending vibrational modes of the
axis being excited. The cross-section of the beam is circular. The only effect
of the tiny perturbation is to drive the rotating axis into a bent mode without
flexural vibrations. This example is treated in the reference already cited!%® The
analysis method we use now, the energy approach, is completely different from
the approach used in the cited reference.

In this application consider cases where centrifuge forces are much greater
than gravity forces. So, we neglect these last ones. It is straightforward to
account for them when needed, just include their virtual work §(AW,,;) into the
total virtual work.

We use the virtual work principle
S(AWint) + 6(AWept) = 6(AWaee),  Vov. (1.463)

where, §(AWyc..) being the virtual work of acceleration forces (= minus virtual
work of inertia forces). Note that the trajectories described by any material
points z, during rotation of the axis, are circles. Therefore, the acceleration a are
directed toward the centres of these circles which are located on the longitudinal
axis of the beam itself (Figs. 1.93 and 1.94). The acceleration is

a=—w?-v(x). (1.464)

Consequently, the acceleration force fuc. of a mass element dm (or end-mass m)
is given by

df;cc = —dfc = —dm - W?¥(x) = —pAw? - ¥(xz)dx, distributed mass (1.465)
face = —fo = —mw? - T(0),  end-mass (1.466)

194Gee section 3: Dependence of the loading magnitude upon the displacements. In:
Stability and oscillations of elastic systems - Paradoxes, fallacies and new concepts. By
Yakov Gilelevich Panovko & Iskra Ivanovna Gubanova. (translated from Russian). Con-
sultants Bureau, New York, 1965.

195Gee: section 3 in: Yakov Gilelevich Panovko & Iskra Ivanovna Gubanova.
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Loss of stability of a rotating axis
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Figure 1.93: Dynamic stability loss of a rotating slender axis. The force f.
is the centrifuge force. The acceleration force is face = — fe.

The virtual work of the acceleration forces are then

0 ¢
d(AW,ee) = /0 Jace - 0Udx = — /0 pAw?vdv dz, (distributed mass) (1.467)
= — mw?v(0)dv(l), (end-mass) (1.468)

The virtual work of internal force is
l l
0(AWint) = —/ M - drkdx = —/ EIV" - 50" dz. (1.469)
0 0

when considering only bending. As we told previously, the virtual work of exter-
nal forces §(AWey¢) =~ 0 is assumed, again, without loss of generality (WLOG),
negligible.
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d=—w? iz)
acceleration force dfaec = —pAw2 - U(z)dz

Figure 1.94: Acceleration and acceleration forces in a rotating beam. the
rotation occurs around the beam axis x (see also Fig. 1.93).

As we are'% at least I am, interested in obtaining estimates for the critical

rotation angular velocity we,, we will use approximated buckling modes
v(z) ~vg /02 - 2? (1.470)

o(z) ~up - 1 — cos(m>] (1.471)

which are kinematically admissible.

To say that the perturbed bent configuration (or motion) is in dynamical
equilibrium is equivalent to say that the total virtual work vanishes for any per-
turbation of the post-buckled™7 configuration dv.

Let’s take the mode approximation (Eq. 1.471) and do the integrations:

¢
S(AWint) = —/0 V'EI - §0"dx = (1.472)
——(ﬂ>4El/£ 2(”>d 5 (1.473)
= 57 ; cos” ( 57 ) da - v - 6vo )
7\ ¢

196The student can solve this problem analytically and compare to the approximations
obtained in this subsection.

1977t is very important, for understanding, to notice that we are testing the nature of
dynamic equilibrium of the perturbed configuration and not the equilibrium of the initial
pre-buckled configuration. This last one is already in primary equilibrium. That is why
it the tiny buckled configuration v which is perturbed by dv to find out if it is a possible
other equilibrium configuration. If yes, then system moves from its initial (dynamic)
equilibrium to the bended (buckled) neighbouring one, under tiny perturbations (Fig.
1.95). This motion is the one associated with loss of stability.
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the tiny buckled configuration v is perturbed by du
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Figure 1.95: Testing for stability loss. Is the post-buckled configuration an
dynamic equilibrium configuration?

4
0(AWaee) = — / pAw?v - dudr = (1.475)
0
l
=— pAwQ/ [1 — cos (;)]Qdm - vp - 00 (1.476)
0
~ — 0.2267 pAw? - € - vg - Svg (1.477)

The virtual total work should vanish, for any dv, therefore

1 4
S(AWint) — 0(AWaee) =0 = | (77) ET + 0.2267,0Aw2] E-\vgl- ovg =0

2\ 2 N
#0 Vo
=0 = wer=...
(1.478)
and consequently, the critical
2 2
T EI s El
~ 0.371( - — 0.356 | — — 1.479
o (7)o > (7) | A

using approximated mode analytical, ref. Panovko & Gubanova

The critical angular velocity given by equation (1.479) is equal to the first natural
angular frequency wp of flexural free vibrations mode. This result is interesting.
Physically speaking this makes sense. Under constant imposed angular velocity
w for the axis, the cantilever start to bend because of existence of tiny transver-
sal perturbations (non-equilibrated mass distribution, for instance). I let this
conclusion to reader to check.

Explanation: Why w., = wg? Consider now the same cantilever in pure flexural
free vibrations with no angular rotations of the axis. Only bending in the same
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vertical plane. Let’s find out, using the virtual work principle what will be the
natural frequency wp of free flexural vibrations (for the first mode). Let’s take
the the same mode approximation of deflection first mode

v(x,t) ~ vo[l — cos(mx/(20))] - sin(wpt + @) (1.480)

and add the harmonic time dependency. The virtual work of internal forces will
remain the ’same’ as given by Equations (1.472 and (1.474). The

0
S(AWing) = — /0 V"EI - 60"dz — (1.481)
7\ ¢ T
=— <> EI/ cos? () dz - vg - dvg - sin(wpt + @) (1.482)
20 0 20
7\4 L
=— (2€> ET- 5 v dvg - sin(wpt + ¢) (1.483)

Notice that
dv(z,t) = dvg[l — cos(ma/(20))] - sin(wpt + ¢), time ¢ is not varied (1.484)
The virtual work of acceleration forces is now
S(AWaee) = /O z pAD - dvdr = (1.485)
_ /0 o A(—w?)[1 — cos(mz/(20)2dx - vo - 6up - sin(wpt + ) (1.486)

= — pAwd /Og[l — cos(mz/(20)))> dz - vg - dvp - sin(wpt + @) (1.487)

~0.2267

Therefore

”)2 El (1.488)

S(AWint) — 6(AWaee) = 0 —> wp ~ 0.371 ( £

l pA
which gives the approximation for the natural angular frequency wpg for free
flexural vibrations which is equal to the critical angular imposed rotation of the
cantilever axis w. For me, this make sense, even it resonates.

1.12.5 Mechanical discrete models

Im the following a a general physical-type discretization method (or equivalently,
mechanical discretization) is presented through an example of static buckling of
a column. The example is treated first as a dynamic problem to show the reader
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the universality of an elegant and powerful approach based on the principle of
virtual work'™S:
6Wint + 5Wemt = 5Wacc.7 V(;V (1489)

where, dWg... being the virtual work of acceleration forces. The remaining terms
should be familiar from statics. The basic idea is to approximate the continuous
system with an equivalent discrete system formed by linking rigid bars with con-
centrated masses with rotational joints having rotational stiffness. The rigidity
of the bars can be released by allowing them to behave like stretching springs. In
addition, to elasticity dissipative behaviour can be easyly accounted for by adding
non-linear dissipative rotational and axial springs. The concentrated masses at
nodes account for the inertia of the structure by these lumped masses.

A discrete model of a pin-ended column

The example we will consider here is linear elastic.'® In addition we assume
that the distributed mass of the beam being lumped at nodes. For the moment,
we ignore stretching of the bars. In this example, the axial load P is assumed
constant??? Assume we use for discrete elements to approximate the continuous

198 The acceleration forces fi.ace = —fiai, where the acceleration a = i, are accounted
for by the d’Alembert principle. This principle is not just moving acceleration terms to
the other side of the motion equation and changing its sign.

199Despite this simplification, the virtual work principle holds for any type of systems
(conservative or not) and for any kind of non-linearities when present. The simplifying
assumption, in this example, are done to obtain a model that is tractable by hand.
Otherwise, it leads to a non-linear initial value problem where numerical integration will
be needed. Being without saying, that the integration scheme should be implicit and
appropriate for stiff-equations, and of low order. This type terminology will be clear
when you start to work with such problems.

200For non-constant arbitrarily changing force P = P(t) the is no problem to account
for it in the virtual work of external forces 6W,.+(P) = P(t) - du(¢,t). In addition, to
obtain a physically realistic model, one should release the axial compressibility constraint
and allow for axial deformation to work §W;,(N) = |, , Noedr. Otherwise, one cannot
capture axial vibrations or waves. For the special case of pulsating axial force (compres-
sion/tension) like, for instance, P(t) = Py+ .S cos(t), where S is a small variable change
around the mean value Py, please consult Timoshenko, section 2.22, p. 158: Stability
of prismatic bars under varying axial force of the Timoshenko’s stability textbook ref-
erenced many times already here. This last case is a nice problem of dynamic stability
where the amplitude of lateral (flexural) vibrations can grow in violent way for same ex-
citation frequencies (resonance). The student can do the same-type of experiment with
a string in pulsating tension. He will find that for a certain excitation frequency, the
lateral vibration of the string becomes large and violent. (note that dynamics describing
both behaviours of pulsating compression and tension are the same; one is obtain from
the other problem essentially by multiplying by —1.) Theses problems are practically
the same as the problem of parametric excitation in which one end of the tensioned (or
compressed) structure or member is given a periodic motion about some average posi-
tion. An example of such structural element can be the tensioned stay-cable fixed to the
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Figure 1.96: Physical discrete model. The column of length ¢ is axially
compressed column with a point load P and a total mass M = > m; with
the bending rigidity E[.

column (Fig. 1.96) using four rigid bars (N = 4 of equal length ¢; = £/4 = ¢.
The discrete rotational springs should have spring coefficient

ci=FEI/t;, (;=10/4=1 (1.490)

in order for the strain energy to be conserved. The lumped masses should be
n
M = Zmi, where m; = pAzEzv fl = 5/4 (1491)
i

in order to conserve the mass M of the column. Let’s, for simplicity in this
example, assume the discrete bars to be rigid. This way of constructing a me-
chanical discrete model is sometimes called, Hencky-type physical discretization.
It should be understood here that the model is mathematical even we sometimes
specks of physical discretization. When a true physical model is dealt with, it
will be reminded.

Note dear reader, that the following equations hold for any number of degrees of
freedom, and are such general. For simplicity, I derive them, together with you,
for few degrees of freedom (here three) and assuming, without loss of generality,
moderate rotations. This last assumption can be released. Sometimes, it is more
clearer to go from simplified example and generalise the result than to cover the
opposite path. Sometimes, the reader can be bored by so much conceptual and
general approach before reaching the goal. Sometimes, on the contrary, we prefer
the general conceptual approach to catch the map before travelling in details.

pylon by one end when the other is fixed to the deck (of a stayed cable bridge). One
of the fixation, under effect of wing or traffic is excited periodically. Under determined
conditions (resonance), such vibrations can get amplified dramatically in a dangerous
manner even when the amplitude of the motion of the fixation remains relatively small.
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The discrete kinematics

Let’s define the kinematics we need for writing the needed expressions for the
virtual work. For simplicity, I mean that we will obtain a result that can be
solved by hand, in order to distinguish the tree from the forest, we assume small
displacements and moderate rotations.2!

We chose the independent coordinates

Y1
y= % (1.492)
Y3

as Lagrangian coordinates?"?. It is worth to note that we do not assume any

symmetry because one do not know, in general what mode is critical (comes
first); symmetric? antisymmetric? So, we let sir Newton tell us through the
motion equations (1.489). Note that the nodes are enumerated from j =1 : 4
(the first (j = 0) and the last nodes (j = 4) are a priori*3 dropped from the
equations to account for the kinematic boundary conditions yp = 0 and y4 = 0).
Consequently, the slopes, within the moderate rotation hypothesis, ; of the bars
1=1:4are

6] [ —0)/6 y /0
R V3 R L Y7 I T 7
0= 105 = (s — 2)/t2| = |(ys — )/t (1.493)
04 (ya —y3)/¥3 —y3/l3

Discrete curvature: Now we will define the discrete equivalent for the curva-
tures at nodes as the relative difference in rotation of two consecutive bars ¢ and
1+ 1 at node 7 as ¢; = 0;_1 — 6;. This will be the deformation rotation on which
the internal moment M; will work. Note that we have now three of such nodes
(Fig. 1.96). So,

¢1 91—92 2 -1 0 U1
bd=|pa| = |0a—035| ==|-1 2 —1| || =R-y (1.494)
(Z)g 93—94 0 -1 2 Y3

Note the analogy in the discrete curvature, in matrix R, with the finite difference
formula (molecule) of the second derivative o« [-1 2 —1]. Recall that the change

o

201This assumption when released, leads to a geometrically non-linear equations of mo-
tion in the form of a non-linear ODE-set. It is of great simplicity to time-integrate them
implicitly with some stable schemes. I will provide, later, an example when considering
dynamic instability of a stay-cable in cable bridges which is a parametrically ezited.

292Tn case of compressibility, one adds z; to the set of coordinates. In three-D, just add
Zi-

203We can also account for these boundary conditions at the end, after assembling all
the equations. For hand calculation purposes, I drop the at the start to get a smaller set
of equations.
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¢ in the slope 8 corresponds, in the small displacement approximations, to the
second derivative y” of the slope ¢/, where y being the deflection.

Shortening of the column: Here we mean the axial shortening Au(0) due to

bending.?’* This In the moderate rotation approximation we can write
4 ‘ 4 4 1
Au(0) = Z Aul :Z&(l —cosb;) = Z&- : 593 = (1.496)
i=1 i=1 i=1
4
5(Au(0)) ~ > ;- 0;50; (1.497)
i=1

Note that when we use the approximation
Oi /2 sin 91 = [yiJrl — yl}/f“ (1498)

we obtain finally, the needed variation of the total shortening on which the ex-
ternal axial loads will work, as

3
§(Au(0)) =~ Zﬂ%ﬂ — i) Wi —uil /b = (1.499)
i=0
=5(S-y)" - (S-¥)/t, (1.500)
where
y1
Ay = R =TS y3x1 (1.501)
Ys — Y2
—Y3

and the geometric-type matrix S being defined below in the scalar product
o 0yir1 — il - [yirr — il /li = (6Ay)TAy/l in

1 0 0 y
1 1 0 !
Ay = 0 -1 1| |©|= Sy (1.502)
0 0 —1|
=S

After this long kinematic trip, we can finally start writing the virtual work
contributions W, dWerr 0Wee, respectively, from internal, external and accel-
eration forces to obtain the equations of motion. From these equations of motion

204Note that for the continuous case, for moderate rotations, we had

£
Au(0) = /0 %[U’}de (1.495)
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we will determine 1) the buckling load for the static case (zero acceleration) and
2) the natural frequency of free-vibrations. I let to the curious student, to 3)
integrate numerically, in Matlab using ode set functions, the equation of motion
to determine completely, the dynamics.

The discrete equations of motion

Before even we start, let’s recall an important thing: the concept of a stable equi-
librium corresponding to a local minimum of the total potential energy change,
holds only for conservative systems. Question: What to do when one of us, faces
one day or another, a dissipative system? Answer: Call Isaac Newton. The
following dynamical approach, is versatile and holds also for non-conservative?%?
systems. This being said, let’s start by deriving the equation of motion.

As you probably remember, the (scalar) principle of virtual work (6W = 0,
Vou, Eq. (1.489) and the equations of motion, f: ma, obtained by using New-
tonian vectorial mechanics are equivalent and both are the two faces of the same
coin. Our preference goes toward virtual work principle in deriving complex set of
equation of motion. One of the reasons is that in this principle, the work couples
or conjugates explicitly kinematics and kinetics what the Newtonian mechanics
does not.

Let’s stop here philosophy and go to equations and start to gather all the
contributions to the total virtual work done on the (close) system that represent
the loaded column.

Virtual internal work: The work of internal bending moment is (the summa-
tion goes over all the nodes)

SWint =—Y_ M6y = = (citi) - 6 = (1.503)
=— R -y)Ic-(R-y)=-0y'[RT-c-R]y = (1.504)

=K
—_5yT . K-y (1.505)

205 An example of such non-conservative system can be a cantilever column with an end-
load remaining constant but always tangent to the slope of the cantilever. So, the applied
load P changes direction but not intensity. The question: what is the amplitude of the
load leading the column to a dynamic instability like the flutter, for instance? This is a
simple engineering problem. One should have the right tools to address it. Establishing
the equation of motion is such universal tool. In addition, using the principle of virtual
work for that, will give you a l-o-n-g advance as regard to your friends from mechanical
engineering as you are anyway familiar, already, with Newtonian mechanics.
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where K being the stiffness matrix. The constitutive matrix for bending is simply

C1 0 0
c=1[0 ¢ 0 (1.506)
0 0 C3

and becomes ¢ = ¢l for constant ¢; = ¢ = 4E1/¢ as in our example.

Virtual external work: As external forces, we have, in this example, transver-
sal forces f composed of nodal forces f; at nodes 7 and the compressive force P at
the roller support. We will compute separately their virtual work and sum them
at the end as dWeyt = (5W€(f:t) + 5W€(Q to have the total contribution. Note that
the transversal forces may include the self-weight m;g, where m; = pA;¢; being

the lumped mass at the considered node 1.

External transversal forces: The work of external forces cannot be simpler
than

ert —

W) = =3 fiby; = 6y" - £ (1.507)

where f being the external nodal force (column-) vector

i myg
I3 msg

External axially force: The work of this force is also as simple as it can be -
this force P will work on the virtual shortening 6(Awu(0)) of the column, defined
earlier, and results in

W) —[5Ay]T - P Ayl (1.509)
=0[S-y]T-P-(S-y)/t (1.510)

P
=oy" - —=-[ST.8]y (1.511)

{ e —
EKG

P
=5yt b K¢ - y} (1.512)
where the convention signs P > 0 in compression and in tension T'= —P < 0 are

accounted for. The above equation holds for both cases, naturally, of compression
and tension.

Virtual work of acceleration forces: This work is
5Wacc :(Zmzyz> ' 63/1 (1513)
i

=yt - M-y (1.514)
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where the mass matrix being naturally diagonal (lumped) is

mq 0 0
M=|0 my 0]. (1.515)
0 0 ms
and the lumped mass?%6
1 1
m; = ipiAifi + §Pi+1Ai+1£i+1 (1.516)

which becomes for our case of constant, homogeneous and uniform section is
m; = pAl = m, Vi (1.517)
Now, finally, after a lot of real physical and intellectual work, comes the time

of gathering the total virtual work and to set it equal to zero in any virtual
displacement, therefore,

OWint + Wezt = 0Waee.,, YOV = (1518)

:>5yT

My + (K- Ke)y—t] =0y, (1519)

From the above scalar equation, one obtains, almost 'magically’, the vector form
of the equation of motion

My + (K _ ];KG) y=f, (1.520)

which should be completed with initial value conditions, like for instance, y(0) =
yo and y(0) = yo. In our case both initial configuration and velocities are 'zero’.
It is not difficult to include dissipative forces. I let this as an exercise to the
reader. Just add the virtual work of such dissipative forces.207

Now from the motion equation (1.519) we obtain

1. the eigenvalue problem for determining the critical buckling force (P.,) in
statics by setting accelerations and transversal loads equal to zero

(K_JEKG)YZO, y#0 (1.521)

206Note that this lumping of the mass accounts also, approximately, for the distributed
mass. As the discretization becomes finer, the approximation of the distributed mass
becomes better.

207The dissipative force can be a friction moment Mi(dis) = cgdis)éi at joints. Then

the dissipated virtual work will be SW ) — > Mi(dis)égz'bi. I let you express this using

ext
matrices to obtain the friction or dissipation term Cy .



1.12. EXAMPLE OF AN APPLICATION OF VIRTUAL WORK

PRINCIPLE - SOUTHWELL-PLOTS 203

2. We can, equivalently, obtain another eigenvalue problem to determine nat-
ural vibration frequencies w of the beam by setting axial force zero and
external forces too. In both forms, we are usually, interested in the small-
est eigenvalue. Note that, since the matrices real symmetric, all the the
eigenvalues are positive and real (recall your course on matrices).

My + Ky =0, =— (—wZM + K) .y =0, (1.522)

after making the harmonic modal assumption y = A; sin(w;t + ¢o) for free
vibrations (¥ = —w?y). It will be seen that both problems, equations
(1.521) and (1.522), are formally analogous (P, analogous to w?).

3. Finally, we can determine the effect of axial loading (compression/tension)
on natural frequencies of the transversal vibrations of beam by solving the
generalised eigenvalue problem

P
—w*M + (K -7 KG> y=0 (1.523)
=K(P)

where compression is such that P > 0. For tension, we should have

= —P < 0. This equation says, if you ’listen’ to it, that axial load
affects the natural vibration frequencies: 1) compression (P > 0) re-
duces the natural vibration frequency w(P) since the effective stiffness
K(P) = (K) — P/l - Kg is also reduced by the compression. 2) ten-
sion (P < 0) increases the natural vibration frequency w(P) since the
effective stiffness K(P) = (K) — (= P)/¢ - K¢ is also increased by the ten-
sion. Recall from high-school physics that w = \/k/m. Now we identify
k— K — P/l -Kg and m — M. From this simple high-school generic for-
mula, we see that increasing (decreasing) effective stiffness & will increase
(decrease) the frequency. Increasing compression, decreases frequency, and
inversely.

For instance, in case of vibrating string under tension, one recovers from
Eq. (1.523) the high-school formula for natural frequencies of a tensioned
string by putting bending rigidity EI — 0 (¢; = 0 — K = 0) and obtains

_
{_sz + - Kg| -y =0 (1.524)
2 - T ]
—w mI + 7 Kg| y=0— (1.525)
[—w21+ T x : .y =0 (1.526)
pAEQ G_ y= .
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from which one can deduce easily that indeed, the natural frequency

1L (1.527)

We know that the lowest natural frequency of such freely vibrating string
is
1 /T

w=2m- 2\ where u = pA (1.528)
As a conclusion, I just say that long-live both the power of abstraction and
of the virtual work. We recovered the familiar FORMULA of the vibrating
string almost 'magically’ by the not less magical virtual work principle.

In a following subsection. (subsection 1.12.5), the above example will be
treated analytically, to obtain a more incisive formula to find out how axial
load change the natural frequency of transversal free vibrations in a beam.
This class of physical problems is of key importance in rotating machines
where the force transmitting axes are also exited dynamically by eccentric
masses in addition to torque, transversal and axial loading. Finding sta-
ble operating regime is the question of life or dead. For you and me, as
structural engineers, another more relevant physical situation can be the
dynamic stability of columns in a high-rise building under wind excitation.
Design this columns against resonance. Yes, I know that you know how to
do it, but now the applied axial forces change the natural frequencies of
the system. This needs an engineering know-how or how-know to resolve
the problem in a safe way. One should consider and account for, how and
how much the fundamental (natural) frequencies (those close to the wind
excitation frequencies) of the columns are reduced by compression from the
axial loading. In next subsection, we will derive, together with the reader,
the interaction diagrams in the form (w/wg)? — P/Per o for our simply sup-
ported beam. Now wq is the natural free system frequency with constant
axial loading (P = 0), and P ¢ is the static critical buckling (Euler) load.

Static Buckling equations

Now we have centric constant axial loading (P), no transversal loading, and no
accelerations (w = 0), saying nothing more, we solve equation (1.519)

(K - IZKG> y=0 (1.529)
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for our example and obtains the stiffness matrix
T
. 1 2 -1 0 Bl 1 2 -1 0
K=R" " ¢ccR==|-1 2 -1| -—-=|-1 2 -1 (1.530)
Clo -1 2 t g 1 2
5 —4 1
ET
=—- -4 6 —4 (1.531)
73
1 -4 5
and the geometric stiffness matrix
10 0o]'[1 0 0
QT q_|-1 1 0 -1 1 0
Kg=S"-S= 0 -1 1 0 -1 1 (1.532)
0 0 -1 0o 0 -1
[2 -1 0]
=|-1 2 -1 (1.533)
0 -1 2]

Inserting all this matrix-staff in the eigenvalue problem of buckling (Eq. (1.529),
one FINALLY, obtains the non-dimensional generalised eigenvalue problem

5 —4 1 P2 2 1 0
-4 6 —4| - Noid -1 2 -1 cy=0, y#0 (1.534)
1 —4 5 \,-2/ 0o -1 2

=)

Solving the eigenvalue problem (Matlab: [v, D] = eig(K, K¢g) ). The small-
est eigenvalue (buckling load)

P2 EI EI EI
2 o o ~ 2 2
N= i 0.5858 — P.. = 9.372672 ~ 0.957 = <l-m i

———
theorithical

(1.535)

For more details, please refer to Fig. (1.97).

Natural frequencies of the beam free vibrations

To illustrate the analogy of this natural frequencies problem, Eq. (1.522), with
the one of buckling, let’s solve these natural frequencies for this same pin-ended
beam for which we determined the buckling load. Inserting again all the staff in
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K = —' e i ‘%’ T
3> [V, D, w] = eig(K, KG) }Q i"U' .r".r Wy = -
: 5 -4 1 ! A
v = Buckling modes: 4 6 -4 l my8 == i m,

1 -4 5 c O wm c
0.6533 0.5000 -0.2706 "3» r @ 1 / @ 2 (3
0.9239 0.0000 0.3827 3 KG .
0.6533 -0.5000 -0.2706 L El
KG =
» = Eigenmodes: 2 i
-1 2 -1
0.5858 0 0 a4 2 9.3726
(] 2.0000 ] 32.0000
] 0 3.4142 »> [V, D, w] = eig(K, KG) 54.6274
Buckling modes: >> diag(Per) /(pi*pi) =
>> Bor = 16*D 0.9496

3.2423

Per = 5.5349
9.3726 0 0
f.' 0 32.0000 0
o o 54.6274

Figure 1.97: The discrete column and computational details.

this equation, one obtains for y # 0, the homogeneous equation set

grl5 41 [t 0 0]
— |4 6 —4| —pAl-?|0 1 0] -y=0 (1.536)
l1 -4 s 0 0 1
5 —4 1 = [1 0 0
2 ml
= | |4 6 4w 0 1 0] y=0 (1.537)
=) -

where the eigenvalues A2, once solved, for instance within Matlab [v lambda]
= eig(K, M), provides the natural frequencies (here three lowest one) as

w = ,/ 53 ’/p/wl ’/pAg/4 16)\1/ 16>q/ 53, (1.538)

where the total mass of the beam being m = pA{. The scalar eigenvalues are

X2 = (03431 4.0000 11.6569] T (1.539)
which then result in next natural circular frequencies [rad./s]
ET T
T [9.3726 320000 54.6274] , [rad/s] (1.540)

The first obtained natural frequency (the smallest)

w1 = 9.37\/EI/(pAt*) ~ w%\/EI/(pAt%) (1.541)

3-dofs discrete model ~continuous analytical
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The approximation quality, 6%, is good even with a such coarse model?*8. In
addition to the obtained numerical estimation, the approximate results provides
us a FORMULA, and says that the circular frequency depends on the block
VEI/(pAf*). The formula enables us to design since it tells, for instance, how
and how much is the frequency affected by EI/¢3 and by m = pAf. One can
also, easily reorganise the formula to find the dimensionless products.

Now, as you may remember, if the column is exited periodically having excitation
frequency we, close enough to one value of the natural frequencies w, the system
goes into resonance which is one type of dynamic instability to be avoided by
structural design.

Bellow (Fig. 1.98), I reproduce for curiosity a series of frames extracted from
a video?" | showing a failure of a structure in resonance in torsional mode under
wind excitation during construction phase. The wind is not guilty. There is no
torsional rigidity?!°

Natural free vibrations of the string

Now setting T’ = —P < 0 and EI = 0, one obtains Solving the eigenvalue problem
(Matlab: [v, wr] = eig(Kg)). Now,

T
2 pAL?
Kg—w*- T I| -y=0 (1.543)
2
EwT

The smallest eigenvalue, given by Matlab, being

wh = 0.5858 —> w = 0.765/(6/4)\/5 = # : \/z ~ g\/z (1.544)
——

analytical

One can see that the approximation is, at least for me, enough good?!! (7 ~ 3.06).
Naturally, refining the discrete model leads to convergence. Recall that circular

298Tmagine! We found that 72 ~ 9.37 before even knowing what 7 is, and that only by
considering motion of discrete mechanical systems. So, where was hidden the circle from
which emerges this 7, the mother of the circle? Was it implicit in the circular frequency?
I will ask our friend Athanasiois M. a far friend of Euklides.

209Thak to our colleague Dr. Athanasios M. for sending the link.

210Failure during construction phase should be naturally, avoided. For each phase of the
construction, there should be enough temporarily supporting structures to avoid failure
of any kind, like stability loss, excessive displacements/rotation and deformations and so
on.

211 The obtained approximation m ~ 3.06 have more much trust than the ones we often
see daily in many shops claiming firmly, in their new arithmetic, that 24+ 1 = 2 or, even
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Failure under wind excitation during construction phase under combined very slow torsional free vibrational mode (less
~1 Hz) and ﬂexuraf mode resulhng in excessive displacements (resonnance and ﬂnaIIy]omEs failure. Add:tional
remarks: there is practically no torsional rigidity at all, to cite only one error.

) W ] | | AN
| :LU J I T I ’ ﬁ

torsional free
vibrational mode

Reference: extracted from video Youtube 2021 (link sent by Dr. Athanasios M.)

Figure 1.98: Resonance failure during constructional phase of a steel-framed
structure. The failure mode seems,from the video, due to resonance in
combined torsional and flexural modes. The free vibrations seems to have a
very low frequency around 1 Hz. The structural failure was a consequence
of excessive displacements at joints, to cite only the mechanical reason.

frequency w, [rad./s|, and frequency, [1/s], f are related by the relation w = 27 f.
The analytical lowest natural frequency of such freely vibrating string is

T
w= % -, where 1 = pA. (1.545)
\

May be at this stage that a small part of the power of the virtual work prin-
ciple has been demonstrated, I warmly recommend the students to start using
it everywhere. Little by little, you will get more and more familiar with it. It
is le couteau suisse of serious students of mechanics. Even sir Hamilton will
recommend it because of its universality.

Vibrating column - frequency-compression interaction diagrams

In a following we consider the simply supported homogeneous beam-column (or
column-beam) of length ¢, bending rigidity EI and total mass m = pA¢. There
is a constant compressive centric axial force P > 0 acting at the roller support
end. (The equation of motion that will be derived is versatile and hold also for
a tension force P < 0, naturally). No transversal loading is applied.

1+1=1.
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This example will be treated analytically, to obtain the ’exact’ formula for the
natural frequency of transversal free vibrations as function of axial compression
for the simply supported beam-column.

The structural engineering motivation for such problem, or better said, ex-
ercise, can be to design such column against resonance. Now, the additional
challenge being that the axial force changes the natural frequencies of the sys-
tem. This question of dynamical stability can be very relevant in the columns of
high-rise buildings ad bracing systems under wind excitation.

The differential equation of motion is simply (just add the inertia forces to the

right side of the equilibrium equation, D’Alembert principle?!?
EIv® (2, t)— NO (2, 1) 0" (z,t) + pAi(z,t) = 0 (1.546)
——
=—P<0
— EIvW4+Py" + pAs =0 (1.547)

This equation of motion should be completed with boundary conditions and
initial values v(z,0) = vo(z) and 0(x,0) = ¥g(x). The boundary conditions are
clear, and are left to the reader to recall. Recall that in this example, we consider
the case of constant axial force P. For pulsating axial force?'3, please refer to
Timoshenko (Section 2.22).

Lets solve this equation by the standard method of separation of variables
where

o(et) = 3 Valh)Xu(t) = 3 Valt) sin(mr- if) (1.549)
n=1 n=1
and
Vn(t) =T, eXP{iWnt}- (1550)

Inserting all that staff in the equation of motion (free vibrations) leads to the
eigenvalue problem

> [(en"e - P) M2 - 2oa] =0 (s

n=1

=0, since V5 (¢)#0

2128, S fi =md = . f; — md = 0. By the way, deriving this equation of motion
was last year an exercise in your homework. The student was in addition, asked to solve
it, approximately, using energy principles, for P = 0.

213Tn this case the equation of motion is simply

EIv® [Py + S cos(Q)|v"” + pAi = 0 (1.548)

Solving the equation above will provide regions of dynamic stability for the system. Py
is the constant part of the load and S is the maximum amplitude of the periodic part.
This type of problem is not simple to solve. However, numerically, it should not be a
problem for any serious student in this class.
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Now, we solve for circular frequency w,, of the mode n assuming that the applied
constant axial load P known. Now came the moment to compare the discrete
eigenvalue problem (Eq. 1.523) obtained using the coarse mechanical discrete
model with the continuous (analytical) eigenvalue problem (1.551) obtained from
the continuous problem. They are the two faces of the same axially loaded
vibrating column. I am really, pleased, to see the great beauty of abstraction:
starting from different sides of the thought, we arrive to the same result from two
opposite sides. Experimental validations?'4 tells us that this result is the correct
one. Consequently, we obtain the beautiful result

4.4 2
. niriEI Pe
- 1- 1.552
“n T A ( n2n2El (1.552)

First, equation (Eq. 1.552) is the one saying how and how much axial constant
compression P reduces the natural circular frequency wy,.

Let’s rewrite the above result (Eq. 1.552) using physically more meaningful
variables: let’s define

2 4
Pern = n. T2 BT and @2 = 1+ T
cr,n T £2 n - p A £4
) - —_——
static Euler buckling load natural frequncy with zero axial force

(1.553)

2

and the more readable, for a structural engineer?!®, relation

/ P
=wy/1— 1.554
“n “ Pcr,n ( )

is obtained. Finally, equation (1.552) can be written in a no-dimensional form
for the long-waited-for interaction diagram

<wn)2:1_ L (1.555)

w Pcr,n

The graph (Fig. 1.101). of this relation cannot be simpler: a straight line going
from value 1 to value 1. Note that the graph may be curved for other boundary
conditions.

Now we have showed how and how much a constant applied axial compres-
sive force reduces the natural frequencies of the system. In structural design,

2 Notice the logic: you find two different clocks showing both the same time, let’s say:
12 O’clock, exactly. Can you from that deduce that it is really 12 O’clock? Surely, not.
How will you proceed to find the correct local time? This is a question from high-school
...if it happens to be a sunny day.

215He, as a civil engineer, knows for sure what is the Euler buckling load even if his
major is from economy ...and much more.



1.12. EXAMPLE OF AN APPLICATION OF VIRTUAL WORK

PRINCIPLE - SOUTHWELL-PLOTS 21

we should account for this reduction of the fundamental frequencies (those close
to the wind excitation frequencies) to avoid resonance of columns in high-rise
buildings when, for instance, under dynamical wind load excitation. Just re-
member that compression reduces effective bending stiffness k, and, at its turn,
this reduces the frequency according to the very well-known high-school formula
w = \/k/m when the mass is not changing?'® (as in closed systems).

This effect of stiffness reduction by axial compression will be demonstrated in
the following application example of a compressed cantilever column undergoing
free-vibrations.

Why natural frequency is reduced by compression?

Consider a compressed cantilever-column of length ¢. The axial load is constant
and the cross section is constant together with the bending rigidity FI. We are
interested in the transversal (bending) free-vibrations of the beam-column.

Does the frequency reduction follow the same law than as the one given by
equation (1.555)% Certainly yes. We will check that directly using the high-school
formula for the angular frequency

w=\/k/m = [W(P)r - k;{? (1.556)

wo

where k(P) being the effective bending rigidity (stiffness) of the system under
axial constant compression P and kg = k(P = 0), being the original stiffness with
no axial load. The initial angular frequency is defined as wy = \/ko/m. Naturally,
we assume, in our application, that the mass is conserved. The effective mass?!”
is m remains unchanged.

To determine the effective stiffness k(P) and kg = k(P = 0) we will not
solve the differential equation of motion for free vibrations. We will, instead
equivalently, but in a more elegant and efficient way use the virtual dummy-unit-
load principle (the dummy unit-load method) to determine the tip transversal

216Naturally, in civil engineering structural systems, the mass is conserved. They are
closed systems. An example with mass changing can be a flying racket. In such system
the mass decreases continuously. Such systems are called open systems.

21n the formula /k/m, the effective mass m is the mass carrying the kinetic energy
of the exited n:th mode which is best determined from the conservation of the kinetic
energy 1/2mvg = 1/2 [, rhoAv? (x,t)dz. Here, we consider the cantilever mass lumped
to the free-end having transversal displacement vy. We know, and it is a small exercise
of homework to show it, that the best choice, when the first mode is exited, for effective
lumped mass m = M/3 even that m = 1/2M is not bad. (M = pAl is the total mass of
the beam. For the effective stiffness k of the lumped (or discrete) model, the story is the
same: we should conserve the strain energy; therefore the 1/2kvg = 1/2 [, EI[v"]?dz, for
instance. In one word, what ever approximation methods you use, think to conserve the
original invariants of the primary system, like energy, mass, etc. That way, you’ll obtain
the best approximation methods. This is for the physics.



212 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

displacement vy under conjugate effect of axial load P and a transversal load F.
This seems, in the start, complicated. It is not. On the contrary, it is a short-cup
through the virtual world (conjugate problem). This way, we will determine in
few lines (= Maxwell-Mohr integrals), the relation between the applied transverse
tip-load F' and the tip displacement vg. This relation is nothing more than the
stiffness relation F' = k(P)-vg. Recall that the virtual work principle is valid also
even if the problem have material and geometrical non-linearities. Let’s do it. (I
think that the reader may not yet understood why I introduced the transversal
load F! The answer:+footnote There is a second reason. We will use this simple
approach to estimate the geometrically non-linear effect of lateral sway in the
presence of compressive axial static load. This will be the important case in
tall buildings. We want to use directly the simple formula (1.556 to estimate
frequency as function of P and not to first set-up the eigenvalue problem and the
solved with appropriate boundary conditions. So, we need to determine first the
effective bending rigidity k(P) of the system. That is the reason.)

In the following, we derive 1) the effective rigidity relation and 2) show that,
this loss of rigidity, at its turn results in a decrease of natural frequency.

1. The effective bending rigidity decreases with increase of compres-
sion Why effective bending rigidity decreases? Bellow follows a simple ex-
periment we perform during the first stability lectures to demonstrate the
behaviour list above as questions.

Here some experimental physics: (Refer to (Figure 1.99) to better follow
this wordy example.) take a short slender ruler and compress it slightly
with your two fingers. Then, push it very gently, from its mid-span with
a finger of the other hand while keeping constant the tiny compression by
the fingers of the other hand. While pushing slightly, try to keep your
mind at the tip of the pushing finger and feel the force. You feel the ruler
resistance to bending in your finger as a sensible reaction force. You know
that rigidity is just the coefficient relating this force F', you are applying
with your finger, and the resulting lateral displacement v by the relation
as ' = kv. Keep in your memory the resistance you felt. Let’s call it ko,
the reference level with almost zero level of compression. Now, increase
very gently, continuously, very slowly the compression force of your two
fingers till buckling, then release the force a micro-bit to come back close
from below to the buckling state. Now the compression force P you are
applying may be about 0.8 — 0.9 times the critical buckling load Pg. If you
now test for lateral rigidity, as described earlier in the first phase, and still
keeping the contact with the force in your pushing finger, you will feel a
much-much looser resistance to deflection. We really feel that the lateral
sensible rigidity k£(P) — 0 has just vanished! The reason is that we brought
the system by our compression very close to neutral equilibrium condition.
The small beam between our finger will deflect laterally even if you blow
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air from your mouth on it. The pressure will be sufficient to bend it since
bending resistance has practically vanished?!®.

The effective bending stiffness k(P) at a load level P is simply the tangent
modulus dP/dv at point P, where v being the deflection (Figure 1.99). The
transverse load F' acts a a tiny perturbation and as a mean to sense the
flexural rigidity under compression. This F' is just the tiny force you are
pushing with your finger. It serves to 'gauge’ or ’sense’ the bending resisting
force. If you have had the chance to follow my physical lectures, you
may recall this small experiment many students did during the class while
demonstrating the physical meaning of loss of stability. The criticality
condition when mathematically written generically, as

IK - Ka(Pg)| =0 (1.557)

means, physically, that the effective rigidity ket = K — Kg(Pg) — 0 of
the system, just vanishes. In mathematics, many teachers, love to show
how brilliant, they, are and confuse their students more, by saying that, at
buckling, the tangent stiffness matriz looses its positive definiteness.. The
truth is much simpler. It is the one you tested between your fingers to
feel that the lateral rigidity (resistance) to transversal load just vanishes
close to buckling (for small transverse displacements). Usually, only after
understanding the physics that the mathematical formulation comes to life.
However, there exist beautiful counter-examples against this logic.?!?

Let’s go to our business again. So, consider the cantilever shown in Figure
(1.100). Let’s determine his lateral displacement vy under both constant
axial centric compression P and a transversal load F'. The virtual force
principle says that, we want it or not, that

¢ M- M,

1-v9 = —d 1.558
Vo 0 Bl x ( )

218Réciproquement, this physics explains also why one needs a very small lateral force,
as provided by struts or equivalent lateral supports, to prevent buckling. One exercise
can be to design the needed minimum axial rigidity for the lateral support to prevent
the buckling to occur through the first mode. This way you gain in two fronts. I let you
found out what are they!

219T cite only one: the gravitational waves, due probably to colliding or merging of two
"huge’ black holes, have been observed and measured few years ago for the first time in
Mank-kind history. What is beautiful is that the existence of these now called 'physical
objects’ (gravitational waves) which are the vibrations of the fabric of space-time itself
(our universe?) were predicted by the the EQUATIONS of the theory of gravitation by
Einstein (general relativity) two hundreds years ago before they were observed and even
their existence known. We clearly see that 'mathematics’ was first, then came Einstein
and then, and only then, followed gravitational waves.
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Load-displacement curve
Equilibrium paths

75 i s
;.

>V

Figure 1.99: What is the effective bending rigidity? How it decreases with
increase of axial compression? The load-displacement curve tells you every-
thing.

Do M) M) (M)
- g

virtual bending

real'bending
moments moment

Figure 1.100: Real and virtual states used to compute the needed Mohr-
Maxwell or Maxwell-Mohr or simply MM-integral 1-vy = [, M M;dx, where
M = Mp + Mp.
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where

To be able to determine the second order bending moment Mp we need the
transversal displacement. Since the problem is geometrically non-linear,
we simply do not know it ...yet and we do not want to solve the relevant
differential equation to obtain it. Let’s estimate it by choosing it equal to
the ezxact first buckling mode

v(x) = vg[l — cos(mx/20)]. (1.563)
Inserting all this staff kissoineen ja koirineen in the MM-integral (1.558),
we obtain
¢ M - M,
100 = 1.564
Vo . Bl dx (1.564)
F03 Pdygl?
— 1.
3ET * T2 El (1.565)
Fr? 1
= — . 1.
= Yol 7 (1.566)

Pg

~——
deflection when P=0 ~—
amplification factor

where the Euler buckling reference load Pg = 1/472EI/{? have been used.

We see clearly that axial compression enhances the lateral deflection by the
non-linear amplification factor given in the formula. This same formula,
a classical one, would be obtained by solving the differential equation of
equilibrium in the tiny deflected mode. I presented, a bit, different way
to derive it, using the virtual force principle to convince students to study
seriously this general principle. The best study method is to start using it.

I let to the student to find out, from this formula, what will be the maxi-
mum stress if one want to design such slender column in the elastic domain.
This stress is definitely larger than P/A + Mp/W. Find out the exact for-
mula. This is an exercise for homework.

Such question becomes very relevant in tall buildings where P (gravity
forces) can cumulate quickly down and where the lateral sway, for instance
here vy is non-linearly amplified by the compressive axial load P. This
type of geometric non-linearity, as simply illustrated by the above formula
(1.657), vo = % [1— P%} is of key importance in limiting the lateral sway
in tall building. Naturally, for more complex situations, one can use FEM
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or some P — A methods to determine the maximum deflection in order to
design adequate bracing systems to limit excessive sway.

. Consequently, natural frequency decreases with increase of axial

compression in the following manner: The stiffness is easily obtained by
inverting the above equation to have

3ET P
S—~— %,L
ko compression reduction
=k(P)
k(P P
— [w(P)/w)® = ](C ) _ - & (1.568)
0 E

where kg = k(P = 0) being the bending rigidity with no axial loads.

Dear reader we obtained the same reduction relation as the famous equa-
tion (1.555), previously derived starting from setting the eigenvalue prob-
lem and solving it. Tous les chemins ménent a Rome - kaikki tiet vievdt
Roomaan as goes the old saying, at least on a sphere. Note that Equation
(1.568) is derived only for the first mode because of the mode assumption
we made for the lateral deflection being the exact analytical first mode.
This formula says clearly that, indeed, constant axial compression reduces
natural frequencies as shown in Figure (1.101).

Plo e e
/ }-”: i e A l :
i \ Lo LET gk ] 5 |
i iz B BTN
\.'\_ [“-’(P)KL“U] = B= E _‘_,(;r)

Figure 1.101: Natural frequency reduction by a compressive constant axial
load for both simply supported and cantilever columns.
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1.12.6 Load combination - interaction buckling dia-
grams

The reader can find a very well explained section, on this topic with additional
examples, in the very good textbook by Alfutov 2?0 illustrating the concept of
region of stability.

The design question

Assume the column shown in Figure (1.102) being loaded at each floor inde-
pendently. This means that each axial load P; resulting from the floor num-
ber i can wvary independently of how varies the corresponding loads resulting
from remaining floors. The question of load combination is very usual in struc-
tural design. In such combination, each load can vary independently of all
others. Now the stability questions is: how to design such column with var-
tous load combinations against buckling? Here, we tackle the necessary ques-
tion of how to, fist, analyse such column for buckling. Be patient and read
further how, it may e done correctly. Assume, for instance to make the idea

e B k|

loEls 1 4 Floo® The L;&P :-{Ls-::sfr-n.\,-

3 3
‘zLA_‘:‘]\) ot B desigm
) Hae centinesus

Do R iias B
il o 5,

The design question:

How to design the
column against

when the loads can be
combined independently
of each other?

Figure 1.102: A loaded column with a set of independent axial loads P;.

clear, a beam-column loaded by a set of compressive axial loads (Fig. 1.103)
P,i =1,2,..., N which values can be changed independently of each other.
This load combination is called mon-proportional loading. If the load values
are changed simultaneously at the same time and proportionally to each other
(PQ/Pl = 772,P3/P1 = 773P7J/P1 = ni;"-PN/Pl = 77N), the loading is said
proportional loading. Only elastic buckling is now addressed.

220Ref. Section 1.7 Stability of Elastic Structures Under Combined Loading: Boundary
of Stability Region. N.A. Alfutov, Stability of Elastic Structures. Springer-Verlag Berlin
Heidelberg 2000.



218 CHAPTER 1. ELASTIC STABILITY OF STRUCTURES

In the case of proportional loading, to find the critical buckling loads, we load
the column with all the loads and reset the eigenvalue problem in terms of only
one reference??! load P;, for instance, and then find Py o and consequently all
the other critical values of remaining loads thanks to proportionality.

In the non-proportional loading case; independent set of load combinations
are acting, therefore one cannot expect to obtain one and only one set of critical
loads. Instead of that, a set of load critical combinations is obtained. This last
result is best expressed as a critical load combination (interaction) diagram. The
eigenvalue problem of buckling now expresses a relation between all the loads P,
and cannot anymore be expressed in terms of a unique reference buckling load.
This relation when expressed geometrically, provides the interaction diagram (for
instance, Fig. 1.104.

In the following an illustration example of the methodology is shown.

Buckling interaction diagram for a cantilever column

In this example, we will consider that shearing effects are negligible and only
elastic buckling occurs. The elasto-plastic buckling is a bit more complex - we
will give further examples, iff time. To go directly to the point (load interaction
buckling diagram???; (Fig. 1.104) and not to remain trapped in mathematical
‘spaghetti’-like differential equations, let’s derive the buckling equation (linear
eigenvalue problem) using the energy (displacement) method

The virtual work principle induced from neutral equilibrium condition (Eq.

(1.271) will be, again, used to derive the needed interaction diagrams. So,

/EIU"@"dx —P/v'@’dx =0, (1.569)
l ¢

=—6(AWint) =—06(AWezt)

for Vo € Viin.ad.

The idea is to derive approximations for such interaction diagrams for the
cantilever column (Fig. (1.103). I let the analytical solution as a homework.
Let’s choose the simplest mode approximation

T

2
v =g - (€> . (1.570)

Of course, using the buckling mode of the end-loaded cantilever, namely, as an
approximation v & vo[1 — cos(mx/2¢)] will give more accurate results (I let this,

221The reference load P,¢; can be chosen adequately. For instance, it can be the largest
load P, = max P; or when relevant, P, = Pg, some reference buckling load.

222Tn deed, now, one obtains an estimate of it, once I use an approximation of the
displacement field.
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T {
e

s

Figure 1.103: Example of axially compressed column with a set of indepen-
dent loads P;

too, as an exercise for the student to show.) Making the integrations, one obtains

4
S(AWine) / EI[2v0/¢2][26v0/(%)dz — %vgavo (1.571)
0
. T; ) A\ 3
S(AW) . - / [vo/eZ.Qx][avo/e2.2x]dx:4312’ ("”2) wove.  (1.572)
0

Finally, from the above, since always vy # 0 and dvg # 0, one gets the (approxi-
mative) interaction equation

N 3
— Zpi (z) +=7 =0 (1.573)
=1
It is not difficult to write the load combination as
N A\ 3 EI .
lZpi (Z) ] ~ 037y = Py . (1.574)
=1 er system refernce buckling resistance

Let’s use the ratio n; = P;/ ]SE, as a measure how close or far is the single load is
from the reference buckling load Py of our system. Notice first that this buckling
coefficient 0.3 in the buckling load (Eq. (1.574) is the approximation obtained
using the somehow barbarian parabolic approximation for the first buckling mode.
Further, we will see that this buckling coefficient will converge to a probably more
realistic??3 1/4 using better approximation for the global first mode of buckling

2Z3Not trivial to say that this buckling coefficient should remains equal 1/4 which
corresponds to the case with only one single axial load for the cantilever. Now, our
column is loaded with a system of axial loads and the critical buckling mode will not, a
priori be the same as when loaded with a single load.
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of the cantilever column loaded wit a system of central axial loads.

Note now that reference load is the buckling (= resistance) load of the system
whatever is the load combination load. We will rewrite the load-interaction result
in an elegant non-dimensional way, as

N 2 3 R
> omi (gl) =1, n =PF/Fg. (1.575)
i—1

Alternative form of the buckling condition: Critical condition (Eq. 1.574)
can be also re-written in a form which is easier to use to determine the effective
buckling load (P); of the structure under the full simultaneous loading. This
form is achieved by choosing one of the loads as reference load, let’s say P, = P
and all remaining forces P, P35 ... Py are expressed in with the ratios n; as
P; = n;P. The above buckling condition becomes

e (B)]-re[on (2)] -

E(P)cr

Py (1.576)

where now P, denotes the critical value of the reference load P = P; and (P)er,
the critical overall buckling load of the structure, as defined by equation (1.576).
Please note the difference in meanings between the different notations (P)¢, and
P... This notation will be critical to apply correctly the Durkerkey theorem
presented in sub-section (1.11.3).

Now, using the above form of the buckling condition, for any load combi-
nation, we can find (estimate) the critical buckling load of the system, either
expressed with the reference load P, or the overall buckling load (P)c;.

How to use this result for finding combined buckling load? Assume
that we know the free-end applied load is P, = Py /2 and we still want to load
the column at its mid-span with a axial load P;. The question is: what is the
magnitude of this load before buckling failure? The answer is given by Equation
(1.575) and by its application (Eq. 1.589) as

1. 1

PB=sP = m=; (1.577)
1

— gmtm=1= m= 8(1-1/2) =4 (1.578)

— P =4-Pg, Pg=1/4n*EI/¢* (1.579)

So, to get the column to buckle, one should load it, in addition, to the end-load
Py, with a mid-span load of P, = m2EI/¢? which is half of the critical load for
P; when P, = 0.
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A simple cross-check: Assume P, = 0, thus zero end-load, and 12 = 0. Above
combination formula gives, for the mid-span load

m=0 = m =8 = P, =8-(1/4n* - EI/(*) = 1/47*FI/[(/2]> (1.580)

The above results are the correct ones, we obtain directly using basic Euler’ buck-
ling formula with column length ¢/2. Consequently, the probability of mistaking
in this exercise is very low even that the entropy is keeping growing all the time.

How to use this result for safe design? Equation (1.575) says loudly, for
those who know how to read, that the system, independently of the load combi-
nation, will remain safe = unbuckled, as long as the inequality

N N3 .
Zm (?) <1 = unbuckled = safe, n; = P;/Pg. (1.581)
i=1

holds. Geometrically speaking, this inequality separate the load-combination
space (Pi,Ps,...,Py) into safe region and unsafe boundary??* (when = 1).
The safe region represent the interior space delimited by hyperplanes defined
by 32 mi (x;/€)* = 1. There will be given a small example to illustrate this safe
region in a three-dimensional case P;, P», P53 load-space.

Theorem of Durkerley

This theorem is very useful while estimating the critical buckling load under
multiple loading. It can be used, also, to cross-check our estimations which are
obtained by other methods.

Durkerley Theorem: The eigenvalue (critical buckling load) (P)cy of a struc-
ture under simultaneous multiple independent loading Py, P>, ..., FP;, ..., Py,
fulfil the inequality
1 Yo
< ; 1.582
P =2 1552

i=1 Pi,cr

where P; . are the critical buckling load of the system when only a unique load
P; is (azially) compressing the system while all remaining loads are set equal to
Zero.

The demonstration (todistus) of the theorem, at its basic level, is simple and
relay on the minimum properties of the (smallest) eigenvalue in the Rayleigh
quotients.??>. This is how: To make the following argument easier to follow, and
without loose of generality, let’s think we have a continuous column. Consider

224We cannot go out the boundaries because the structure will fail (buckle) when the
boundary is reached, independently where this occurs.

225Chap. 13.4 in: M. S. El Naschie. Stress, stability and chaos in structural engineering:
and energy approach.
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now that the exact buckling mode of the structure when simultaneously loaded
by all the loads P, P, ..., P;, ..., Py being known and denoted as v. Let’s
now unload the structure and re-load it only and only by one separate load P;
at location x; until buckling. Note that this corresponding buckling mode v; is
now different from v when all loads act simultaneously. We can estimate now
obtain an estimate Pi,cr, thanks to Lord Rayleigh and Ritz, of the corresponding
buckling load P; ., using the global exact buckling mode v as a trial function,
and therefore

. 2
I EIv"dx N ) 1 o de
‘Pi7cr S x; /2d = Pi,CI“ y Vi — P Z 2 ;
~— o Y T —~— 1,cr IZ ElIv'*dx
exact but unknown estimate

(1.583)

Let’s now be the structure again be loaded by all the loads simultaneously and
buckles to the exact critical mode v, already used as trial in the separate loading.
Now, because v is the exact buckling mode for this loading case, we have equality
J, EIVdz IR O A v’ dx

P = = =
P NP de (P)er [, EIv"*dx

(1.584)

overall critical

Now summing all the terms in (Eq. 1.583) and comparing the result with equation
(1.584) we obtain, the Durkerkey theorem shown in (1.582), since

I Zi]\il Oxiv’Qda: < i\f:
(P [,EIV?dz ~ %= P

(1.585)

I recall that now P; . denotes the critical value of the load P = P; when it
is acting alone and (P)e, is the critical overall buckling load of the structure, as
defined, for instance, by equation like (1.576) or equivalently, when all the loads
are simultaneously acting.

This notation will be critical to apply correctly the Durkerkey theorem pre-
sented in sub-section (1.11.3). We will apply it in the following examples to
cross-check our results. Are the, the obtained results, oikealla hehtaarilla vai
ei?, as M. L., a legend in soil mechanics, were often saying.?26

Application example 1 - column supporting two levels

Let’s the column shown in Figure (1.104) be axially loaded by two central load
(e = 0). We take a case for two loads P; and P, because it is easy to draw the
interaction diagram in two-dimensions.

226Eng. Matti 'Legendre’: In in soil mechanics, we are happy when the obtain ex-
perimental data-points located on the same Aj-paper sheet with the curves given by the
models. This was an example of a measure how close can be models with experimental
data, in soil mechanics. This was not a negative measure. They are happy because
obtaining reliable data in geotechnics, in general, is not as easy in a traction test for
steel.
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Accounting for z1/¢ = 1/2 and x2/¢ = 1, in the safety region (Eq. 1.575) ,
one obtains

2 3
T 1 . N

Recall that this buckling coefficient ~ 0.3 in the buckling load (Eq. (1.586)
is a crude approximation obtained using parabolic approximation for the first
buckling mode. Further, it will will be shown that a better approximation for
this buckling coefficient will be 1/4 which corresponds to the case with only one
single axial load.

The boundary of the (safety region) is given by the straight line defined, in the
plane defined by the Cartesian product n; x 1y by the equation %771 +m2=1as
given by the interaction equation (1.586) and shown in Figure (1.104).

Load combination - interaction buckling diap.ram
clll s il
e e __\_ W‘""“L&" %‘ o} ﬁnﬂcm 2
ohedi Ty mnd
o Lindpedad”
i R L T Boundary = buckling
Al il o - 1 1 o1 F
' s _IY«.F;:“ Iy op g tm=h o =Rk
el ol | LEIE L le = . 4
o FEL ~ 0A2EL /P
il ‘.“x,"!w,_ ! bt M"’a Fr= 037" E1/¢
Buckling ocuurs on the «—— Q‘{S _é;;*_:__l I ~at oo .
boundary I
nside the triangle: safe

{= no buckling) lead
combinations

{ safe combingpn || |

Figure 1.104: Buckling load interaction diagram for a pair of compressive
loads P; and P, as given by Eq. (1.575). Note that the reference buckling
load given here is obtained from the crude parabolic mode approximation.
A more exact value will be Py = 1EI/?, as derived at the end of this
section by assuming the exact mode for buckling of a cantilever under a
single free-end-load.

Application example 2 - column supporting three levels

Now the column shown in Figure (1.105) is axially loaded by thee central load
(e = 0). Analogously with the previous example, we obtain the load interaction
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equation for the buckling failure boundary as

3 3
T 8 1 .
> mi <£) =mtgomt g =1 m=F/Pp <] (1.587)
i=1
where the approximate was Py ~ 0.372ET /(2 (1.588)

however, a better estimamte is Pg = 1/4n?EI/¢? as will be shown  (1.589)

since the three load-levels (floors) divide the column into three equal parts ¢/3.
This equation is illustrated geometrically??”, for the lovers of geometry??®, in
Figure (1.105).

Application example 3 - column supporting two levels with various
type of loading

Consider the continuous column shown in Figure (1.106) supporting two floors.
Here we will consider elastic buckling due to axial centric load. The elastic
bending rigidity of the column is constant and equal to EI. In this exercise,
we use the reference buckling load Pg = 1/472EI/¢%. Tt is, as you know, the
buckling load when the column is loaded only with the end-load P and P, = 0.
This, in order, to keep the qualitative order of magnitude correct and in our
hands.

To illustrate the efficiency of energy approach for hand analysis, we will con-
sider two cases of loading types:

1. Proportional loading Pi = P, = P; both loads are equal. Determine the
critical load P;.

2. Non-proportional loading: assume we know that, for instance the first floor
is loaded with P = 1/4 - Py (where Pg = 1/472EI/¢?) and the designer,
you, are asked to find how much the second floor can be loaded P, =?
at maximum before the continuous column buckles when supporting both
load simultaneously??2?

22"Truth should be said, even Descartes may disagree, that geometry tells more than
millions of words in one picture. Descartes is the guy who made the geometry, analytical
and the analysis, geometrical.

228] know at least one such person; Athanasios M. the Greek, beside R. Penrose, A.
Einstein and R. Feynman. Of course, there are many others geometers, I have not
mentioned and many others that I do not know. Did you notice that we say for a person
who think deeply before solving difficult tasks that he is analyticall Why not to say,
instead, that he is geometrical?

229 Assume, in addition, that you forgot your computer at home and you are on the
site and, as a trusted engineer, you should provide your answer within 15 min, otherwise
the project goes to another company. You are happy because you have with you a pen
and a paper sheet, and you are young but remember well your energy methods thank
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How to design the column against when the
loads can be combined independently of each other?

* The safe region is inside . Al e
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Note that the reference buckling load given here
is obtained from the crude parabolic mode approximation. May, be a more
exact value will be Py = LET/#, as derived at the end of this section.

4
Figure 1.105: Buckling load interaction (approximate) diagram for a triplet
loads Py, P, P3; Note that the reference buckling load given here is obtained
from the crude parabolic mode approximation. Probably, Py = iEI /02 is a
better approximation for the reference buckling load for such column with
multiple axial loads, as shown later.

1) Proportional loading: Now P, = P, = P and they are acting simultane-
ously. Let’s approximate the buckling mode by

T™r

v(x) ~ ai[l — cos (%>] =a1¢1(z), a1 #0 (1.590)

which is the analytical exact buckling mode when only the tip load P, = P, is
acting. Note well, that when both loads are acting, this buckling mode does not
necessarily correspond to exact analytical one.

Recalling your energy method (Rayleigh-Ritz or much general virtual work

to actively doing homework exercises. So, you answered correctly within 10 min. The
cross-check came from India: they confirmed that your estimate was correct after using
a computer simulation (FEM) that took one hour to set-up. After that day, all your
colleagues really respect you as a true engineer and call you herra insinéori, respectfully.
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Figure 1.106: Two level continuous column. Interacting buckling loads loads
P1 and PQ.

principle) one obtains?3°

¢ /2 ¢
Po = [ BI6da/ ( | e+ [ ¢’1¢’1dx.) (1.591)

To perform hand-integration, we need

#(z) = —2% sin (7;;) and ¢ (z) = (;;)2 coS (g;) (1.592)

and may be, to recall?®! that

1
/sin2(ax)da: :g " sin (2az) , (1.593)
/cosQ(aw)dx =24 1 sin (2azx) . (1.594)
2 4a

2301 let the details to work out for the students. You never know when you will need
a paper and a pen at work and all computers are shut down.So, it is a good occasion to

train.
231These formulas can be derived using simly integration by parts of the squares of sin

and cos functions.
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The integration gives
/OEEIQZS/I/ Vdz = (;;)41915 (1.595)
o= [ otgtar= (2) 4 (1-2) (1.596)
I = /(f ¢\ ¢ da = (;;)2 g (1.597)
Finally, one obtains, the critical estimate load as
(P)er = (Pa)er = (P)ex > 0.846 - ig[ — 0.846 P, (1.598)

when both equal loads act simultaneously. Notice that the column supports now
both loads P, = P, = P and therefore, the total loading is 2- P, = 1.6972E1 /[4¢2]
with one load at x = ¢ and the other one, at x = ¢/2. At first glad, this may
seem too much since already P = 1 - Py will already lead to buckling when only
one load is applied at the tip = ¢. The obtained result (Eq. 1.598) is correct.

One fast cross-check: The column will not buckle for separate loading a)
P, = 0.846 Pg and (P, = 0) and when b) P, = 0.846Pg and (P; = 0). In case a)
naturally, no buckling since the buckling load should be 0.846 Pg, is less than the
needed Pg. For case b) the needed critical load is 72 E1/[4(¢/2)%] = 4 - Pg, so no
buckling, neither.

Another more sophisticated cross-check is to use the Durkerley theorem shown
in following sections (subsection 1.11.3). This theorem says that, the critical load
P.. of the structure when loaded with all the loads is such that

1 1 1
— <5+
Pcr Pl,cr P27cr

(1.599)
where P; ., is the critical load when P; is applied alone. Inserting P = 4 - Pg
and P> = 1- Pg in the bound above, we obtain

1 1 51 4

true, since we obtained Pc,~0.846Pg

After these cross-checks, we can again sleep on both ears. However, in real situ-
ations with new complex structural system and complex loading, computational
or analytical cross-check, alone, is not sufficient. The experimental check is the
only one with the last word.
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2) Non-proportional loading: Now first floor is already loading the column
with P; = 1/4Pg. So, how much load P, can one put, at maximum, in the second
floor before buckling?

The virtual work principle which is the expression of the neutral equilibrium
condition

S(AWint) + 0(AWext) = 0, V tiny virt. perturbation daq (1.601)

Therefore, at buckling, we have (buckling conditions)

¢ /2 ¢
- [ Brdgian s - [Casidar B [Cdioida=0, (1602)
0 ~~ 0 ~~ 0

known unknown
Therefore, saying elegantly, that

£/2

L /P Il
EI — P
27cr:f0 ¢1¢1d92 : /1 o ¢191dx (1.603)
fo pr1o1de
Y4
_ L BIdietde _, fy"éi¢ide 604
ol oy d Y 'd ( )
fo PP dx f() PiPidx
4
_m°El _ o ¢ipda (1.605)
T 402 \,1_, fé & ¢ dz )
=1/2py 2O 1T
=Ig/o/1e
—0.91Pg. (1.606)

So, we can now load the second floor with as much as 0.91Pg, a such relatively
high value which cannot be guessed correctly. Some-one may through the value
3/4 = 0.75 x Pg just by guessing to complete to 1Pg. It is a good guess, but not,
necessarily a priori reliable; unless one does the analysis.

I stop here and let the reader with the pleasure to cross-check the above result.
Once you did it, please send me a copy, I will include it here with adequate
reference. You are free to find the way to cross-check; analytical, numerical,
software, FEM, experimental, etc. Please let me know.

Mini-FEM - buckling load of column supporting two levels

Consider the example of cantilever column axially loaded at two levels with to
central loads P; at free-end z = ¢, and P at the mid-span z = ¢/2 (Fig. 1.107)
This example is the same column as the one treated in subsection (1.11.3).
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Fiite Elementsegment of code Element linearized stiffness matrix
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Figure 1.107: A column axially loaded with proportional loads. Notice also
the assembly procedure of the global matrices.

Let’s assume now proportional loading. Consider that the central load P, = P
as the reference load and we want find out how much the global buckling load
(P)¢r is reduced by the application of the load P, = 7 - P with the parameter n
varying from zero to two (n = 0 : 2). Notice that the question is a bit different
from previous ones when the loading was not proportional. It is clear that with
P, = 0 and P, = P, the critical buckling load should be the Euler’ load P, =
1/4m2EI/¢?. Adding at the mid-span a compressive load will naturally reduce
the buckling load. How and how much? We take a case for two loads P; and P,
because it is easy to draw the interaction diagram in two-dimensions.

In this finite element application, we will use only two elements of equal
lengths. Refer to the theory and the two examples shown in subsection (1.12.11: Discrete
energy method - FEM). The finite element formulation, with all the needed
element-matrices, are derived in this (1.12.11). The global discrete (FEM) equa-
tion of neutral equilibrium are

(Kaxa — AKgax4) u =0, (1.607)

provides the critical buckling load as the smallest eigenvalue A. For the assembly
of the stiffness and geometrical matrices, refer to the examples of the cited sub-
section. The reader can find a general assembly procedure of the global matrices
shown in Figure (1.107 b)). In this version, the global matrices are assembled from
the contributions of elementary ones element by element (a loop over all the ele-
ments). There is an other very beautiful and efficient version for a hand-assembly
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procedure that I will show you on black-board in vive and in this application ex-
ercise in silico. The assembly is done globally by adding all the contributions to
one global degrees of freedom (dofs) at a time, and that for all the global dofs.
The assembly if nothing else than writing equilibrium of generalised forces at
nodes where the internal forces are expressed using stiffness-relations.?3?

Note that the internal axial force Nél) = —(P; + P) in the lowest element

while Né2) = —P; in the upper element (of the free-end).

The relative global critical buckling load P../[r2E1/¢?] is shown in Figure (1.108).
Notice that, even with only two elements, we obtain, almost, the Euler’ analyt-
ical load P.. = 1/4 - w2EI/¢? when P, = 0. This is to illustrate, the power
(efficiency) of such numerical, but still analytical, approach. The full efficiency
will be illustrated when analysing buckling of frames.

¢ Pil =P |
| | Poo/?EI/(}]  Py=n-P
J. rP_Z/" At . 02

Figure 1.108: The relative global critical buckling load for a column with
two proportional axial loads.

The global equilibrium equations for non-proportional loading: We will
show explicitly how the eigenvalue problem, i.e., the equation for neutral equi-
librium condition (Eq. 1.607), looks like for a combined (non-proportional) axial
loading with the two loads P; and P — 2. For that, I first reproduce here the
elementary matrices that will be derived later in section (1.12.11:Discrete energy
method - FEM). The global equilibrium equations will be assembled from the
contributions of all the elements (in this example, we will have only two).

Using the analytical bending modes (as shape functions) of the Euler-Bernoulli
beam when loaded only with nodal bending moment and shear forces, we obtain
for a general element number e the elementary linearised stiffness matrix for

232 Analogously for the joint method for trusses and the slope-deflection method for
frames, we could write the global equilibrium equations using matrices and stiffness-
internal force relations. We obtained a handy version of the finite element method to
use with a paper and a pen with no need to computer other than our brain.
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bending as
12 64 —-12 64
2 _ 2
K© — EI| 606 44 60 20 (1.608)

B =12 —6¢ 12 —6/
60 202 —60 402

where ¢ and FI are element length and bending rigidity, respectively, and the
geometric elementary matrix as

36 3¢ 36 3¢
@ PO |30 4 30 —p

G = 300 |-36 -3¢ 36 -3¢ (1.609)
3¢ =% =30 47
where P = —Née) > 0 for compression, being the initial internal normal force

in the element (assumed constant, element-wise). Note that ¢ and EI stand for
the length of the element and its bending rigidity. Both can vary from element
to element.

Let’s discretize the column into two elements of equal length £ = ¢ /2, with now
¢ meaning the full length of the column. There is four global nodal generalised
displacements which are vy, ¢1,v2, ¢2 in this order corresponding to global dofs
denoted by 1, 2, 3 and 4, in Figure (1.107 a)).

The global neutral equilibrium equation (or equivalently,the buckling condi-
tion, Eq. (1.607)), in a non-dimensional?33 matrix form, will be

—12 -6 —12 —6 ) 36P, —3P —36P, —3P, vy
-6 4 6 2 2 | —3pP, 4P 3P, -P ol
~12 6 24 0| 30EI |-36P, 3Py 36(2P+ P) —3P, vy
—6 2 0 8 —3P; —-P —3P; 4(2P1 + PQ) Pl
(1.610)

Let’s rewrite the eigenvalue problem (Eq. 1.610) in a more tractable form, by
choosing a reference load P such that P, = P and P, = noP. The buckling
equation becomes

-12 -6 -12 -6 [ 36m —3m —36m —3m 1
-6 4 6 2 P | =3y 4 3 1 P10
—12 6 24 0| 30EI |-36m 3m 36(2n +n2) —3m2 vy |
-6 2 0 8 = | -3m  -m —3n2 4(2m1 +n2) P2l
(1.611)

Now each load combination of P; = 11 P and P, = 1P corresponds to a fixed
choice of combination factors 7; and 72 in equation (1.611). For each such choice,

233The second and forth global equilibrium equations were simplified by dividing them
by their common factor /.

o O O O

o O O O
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the solution of the eigenvalue problem, for the critical buckling reference load P
as (P)er = Py is given simply by the smallest eigenvalue Ay = min \ as

30ET

(P)er = Amin - 2 = (Pr)er = mPer, and (P2)er = m2For (1.612)

Some results: Figure (1.109) show critical buckling load (P).;, as determined
from equation (1.611), for the column with two loads for two different types
of loading. THe explanations are on the graphs. Clearly, the buckling load is
reduced from the case of having only one load; this is more than self-evident (I
do not know why, I even write tautological sentence!) . Notice that, for instance,
for the simple load combination 71 = 1 and 72 = 0 (right subfigure), we recover
almost exactly the Euler basic buckling load Pg = 7/4 - EI/¢2. This is also the
case, thanks God, that for 71 = 0 and 72 = 1, by virtue of Euler the Great , we
should have, at least approximately, Pg = w/4- EI1/[(/2])? = n/4- E1/¢?-4 which
gives the correct answer 1- EI/[¢?], thanks to Euler. Therefore, it seems that we
did not done serious errors ... yet.

0.05

: 2 3 4

0 2 4 G 8 10
12 (P,=1m2P,, P,= P) 772 M (Py=mP. Py=P)

2
Figure 1.109: Buckling load reduction because of coupling as solved from
from eigenvalue problem (1.611)

A small side step: Recall that the canonical form (Eq. 1.574) used to de-
termine the buckling interaction boundary. In this form, the reference load was
chosen as the known threshold value of the global buckling load of the system
Pg. However, the choice for the reference load is free. In the example above, we
have chosen it as P = P, for instance and therefore, ; = P;/P. How then does
the equation of limit buckling region looks like? (only external form changes).
So, now

N 3 N
i EI P
PZ’I’h £ ~ 1/4 . 71'242 — (P)cr - N & ) (16]‘3)
¢ 14 SN miwi
=1 s ~——— i=1TiWq



1.12. EXAMPLE OF AN APPLICATION OF VIRTUAL WORK

PRINCIPLE - SOUTHWELL-PLOTS 233

where the weights w; are an estimate for the buckling load interaction coefficients.

The above form (right-side of Eq. 1.613 is interesting; it tells that, the maxi-
mum resistance (P),, of the structure is achieved when the numerator Y | n;w;
reaches its minimum with respect, either load combination factors n; or load loca-
tions w; or both. An interesting design problem, for instance, can be to minimise
the total mass of the continuous column (or its price) - the objective function
S(Br; wi,m;) (with Bg being the design parameters - under the the constraint
inequality that the load combination is such that the design point [ leads to
loading set which remains inside the safe region of buckling region defined by the
inequality you already know,

N
r%in S(Br; wi, m;) under the constraint Pmei < Py (1.614)
k i=1

where the parameters 7; can vary independently of each other. A set of the design
parameters [ can be, for instance, bending rigidity distribution E'1;, the lengths
¢;, the cross-section A;, material properties, etc.

The above setting is clearly a problem of [linear programming. This being
said, let’s stop this story here.?34

Now, if the reader have the patience and the curiosity, I will tell him the rest of
the story of how the above equation (Eq. 1.610) was assembled, step-by-step.

Global matrices assembly: Here, I present the hand-version (as opposed to
the form meant for computers that was presented in Figure (1.108 b). In the com-
puter version, we loop over all elements and add to the global matrices the respec-
tive contributions). In the hand version, the assembly (of equilibrium equations)
is done by looping over each global degrees of freedom and adding the elementary
contributions®> to the global matrices. Here how, I do it systematically:

Notations: KZ(]e ) means the term in raw i and column j in the e:th element
stiffness matrix K(©). The global matrices are denoted without any upper-script
by K and K¢ while the upper-script (¢) is added for local ones, where e = 1,2, . ..
to the total number of elements NE. Their terms I:th and J:th terms are denoted
by Kij and Kg ;. The capital letters I and J point to global dofs while small
letters, to local (elementary) dofs. For instance, for the global degrees of freedom

234For those interested, I suggest warmly to take either the course of structural optimiza-
tion in structural mechanics or to get a textbook on this wonderful subject. Whatever
will be the optimized solution one should always ask this solution to be robust with re-
spect to changes in the input parameters, like changing a bit the loading combinations,
perturbing by tiny small local loads in other directions, introducing imperfections, etc.
Compare this robustness with the concept of stability of an equilibrium. Thus checking
for robustness of a design is equivalent to check for the stability of the solution.

235This is exactly what you do when we write node-wise equations of equilibrium after
expressing the internal forces using stiffness force relations.
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I = 3 and J = 4 their contributions come from elements number e = 1 and e = 2
with the corresponding elementary dofs: ¢ = 2 and j = 1 for element e = 1, and
1 =3 and j = 4, from element e = 2. So, par example

Kay =K\ + K2 (1.615)
The global degrees of freedom are shown in Figure (1.107 a).

The global matrix terms: In the following, all the terms of the (linearised)
stiffness and geometric matrices should be multiplied by the common factor ET/ 03
and 1/30¢, respectively. The global linearised stiffness matrix elements (=terms)
are

Ky =K =12, Ky = K{)) = —67, (
K3 =K = —12, Kyy = K$)) = —67 (
Koy =K\ = 42, Koz = K\ = 60, Koy = K\Y) = 277 (
Kgs =KV + K& = 12412 = 247, (1.619
Ka =K' + K3 = 60— 60 =0, (
Ky =K + K = 4 + 42 = 82, (

Similarly, the global geometric stiffness matrix elements (=terms) are

Kaai1 =Kgy = —36Py, Kgio = Kiy, = 3PiL, (1.622)
Kaas ZK&)M =36P, Kgia = Kél)g? =3Pl (1.623)
Ka 22 :K(G{)M = —4P(?, (1.624)
Koz =Ky = —3Pil, Kgou = K3y = PP (1.625)
Koy =K, + KGhs = 36(2P1 + Po)E, (1.626)
Ko =Ky + Koy = —3Py, (1.627)
Kgas =KGhy + Koy = 42P; + Py)L. (1.628)

These terms are then gathered in the matrices above (Eq. 1.610) to form the
eigenvalue problem.

For small problems (small number of dofs), this is the best way to do assembly
by hand. When the number of dofs is high, let’s say more than ten, I suggest
to let the computer assemble the global matrices for you using the element-wise
assembly shown previously. However, the effort of training doing it by hand even
in our century, is worth for continuous beam-columns and, especially, in frames
and lateral-sway frames. The systematic establishment (or writing down) of the
global matrices entering the eigenvalue problem is a very effective weapon in the
hand of an engineer. All what you need, is the local matrices.



1.12. EXAMPLE OF AN APPLICATION OF VIRTUAL WORK

PRINCIPLE - SOUTHWELL-PLOTS 235

Assembly version Il
} 3 global dofs level

2 Kgy= Kz + K5
glcﬁaf dof: i . .

local dofs

."_‘\
NODOF = [3 4)1 2
0 0@ 4)

1 because of homogeneous boundary *

4
‘£
g il i "‘\ these local dofs will not contribute
4-'/ Tl
conditions here

Figure 1.110: Assembly of global matrices.

About ’exact’ interaction diagrams: Recall the above interaction equa-
tion (1.574) is approximate since derived using an approximation for the critical
buckling mode. Probably, one approach is to use computational®®® technology
(FEM), to construct, for the case under study, the interaction diagram. Notice
that, then, all the load combinations should be computed to determine the criti-
cal cases. Thus, you tabulate your loading cases, and for each one, do, at least,
a linear buckling analysis with the software. Then, you gather all your results in
a diagram that you will analyse with your brain, to find the design load combi-
nations (= the most critical). This problem may also be, for simple cases, solved
exactly?3” but in a lengthy and boring manner that I probably let as a difficult
exercise or a homework to solve, starting from the buckling differential equation

(B~ (N@)') =0 (1.629)

236PJease, let me know if some of the readers have already done such analysis in practice.
I will integrate the idea into this notes for the benefit of the students.

2371 confess; I have not done it. May be, it is more difficult than it seems to solve the
problem exactly! Is this the reason that, such interaction buckling diagrams are found in
usual textbooks? I have seen something about such interaction diagrams only in an old
soviet-time formulary of strength of material but in only a tabulated form for columns
with multiple non-proportional axial compression loading. The tables express, for special
cases of practical importance, the ratios n; as function of z;¢ or equivalent relative load
locations along the column. I may reproduce one of such tables, if I remember.
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with adequate boundary conditions. One technical ’difficulty’ is that the known
initial stress (= the normal force N°(x)) is discontinuous at application points z;
along the column. However, at the end, finding roots for all load combinations
may be not tractable, in practice. Another, may be more direct way than starting
from the differential equation, is to use the slope-deflection method (with Berry’s
stability functions) and solve the problem as we did systematically for continuous
beam-columns and frames in the basic course of structural mechanics famously
called mechanics of beams and frames. Just write equilibrium and continuity
and the problem is almost solved. Then account for boundary condition, and you
obtain the eigenvalue problem providing us with the solutions. Remains, the may
be intractable task, to find the roots of the transendental equation expressing the
criticality condition (determinant of homogeneous equilibrium equation system
= 0). This last problem may be really difficult?>® because the loads are not
proportional. This have been said, let’s stop.

Despite what has been said above, it will be interesting to re-do the examples
above using the exact buckling mode of a cantilever, or just solving analytically
the differential equation of buckling with this type of loading, and to see if the
coefficient 0.372 will approach 1/472. I suspect (or hope) for beauty requirements
that this coefficient should be equal to 1/4. Please, let me know, when you will
do it. For the moment, I stop here.

After 15 min, I could not resist the temptation to investigate this question. This
is for the irresistible curiosity. So let the buckling mode be approximated by the
exact buckling mode of the one a cantilever loaded with only one end-load P;

o(@) ~ o(z) = vo[1 — cos(g‘;f)] — v - $(2) (1.630)
After simple integrations, one gets
/ ' BIo s _pr (1.631)
0 3203 '
. 2
[ e S T (B L (T
EZ:PZ /O ¢>¢dx_§;3 < (z 7r51n< 7 )) (1.632)
z, 1 . (nz; 1 LEI

s

i1 ; 1
= P-> n- [?—sin(ﬁj‘)] :Z'WQ%, (1.634)
% ——

EPE

=«

2381 have not tried it, I confess.
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where P being a reference load. We see now that the critical buckling reference
load (P) will be calculated concisely as

a-(P)y = i -w2%. (1.635)
Finally the buckling coefficient ~ 0.3 we obtained, using a lazy parabolic mode
approximation, in Eq. (1.575) seems to be a not a so bad approximation of
the very famous and legendary 1/4 we know from Euler buckling cases for the
cantilever. Refer to figure (1.111) to find out within what limits the interaction
coefficient in Equation (1.634) varies. It varies between 0 and a bit less than 1.

So, everything is well in Euler’s kingdom.

Buckling failure space: It is, probably, more practical to rewrite the above
interaction equation in a non-dimensional form by choosing the buckling load
n; = P;/ Py as reference load, then the buckling failure boundary will be

T; 1 . [7x;
;772-- [f — Trs1n< ; )] :;mwi =1, (1.636)

=w;

where w; being an estimate for the buckling load interaction coefficients. The safe
domain will such the load combination point (11,72, ..,ny) remains inside the
region defined y such boundary given by the above equation in the hyperspace
with coordinate axes n1,72,...,7N-

0.8

0.6
0.5
0.4

Buckling load
interaction coefficient

3
0.2

..'_‘!‘Tr"‘-"

L 2 i . L |
0 0.2 040506 08 1

T
V]
Figure 1.111: Buckling load interaction coefficient in Eq. (1.634). The in-
teraction coefficients (or weights) were estimated using a parabolic mode ap-
proximation v & vy (x/¢)* (the red line) and a cosine v ~ vy[1 —cos(mz/2()]
(the black line).

However, now that we derived the load interaction buckling (approximative) dia-
gram (Fig. 1.104), we may go back, if the reader wishes so, and apply analytical
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methods and write the problem in terms of differential equations to solve. This
way, he obtains, the analytical interaction equation and also to find out what
will be the analytical ’exact’ buckling coefficients. I will not do it here. We let
it as a homework. You can find an example of such analytical approach with
an application in the very classical textbook Theory of Elastic Stability by our
grandfather of profession Timoshenko & Gere in section 2.11: buckling of a bar
with intermediate compressive forces, p. 98 . In the same section, Timoshenko,
gives also an energy-based approximative method for solving such problems. The
approach, is quite similar, in essence, as the one proposed in these notes.

Application example: Consider the cantilever column above with P, = P, = P
with P; at the free-end x = ¢ and P, at the mid-span x; = £/2. Assume constant
bending rigidity. Find the critical load.

Now accounting for n; = 12 = 1, we can write

2
w1 (mx\] 1 LEI
P-;m-{g—ﬂsm< i )] =1 "z (1.637)
1 11 (m\]\ 1 LEI
= P- ([1 - 7Tsm(w)] + [2 - 7TSm(Qﬂ) =1 "z (1.638)
1 LBl
— P-(l—i—101.81282)—1~7r - (1.639)

which provides, finally, the critical buckling load for one reference axial force P
as
EI EI
_ 2 ~ 2

This result (Eq. 1.640) can be cross-checked to very probably correct by com-
paring it to the one given by the curves of the buckling load reduction factor in
Figure (1.109) by setting 171 = 1 or 2 = 1. From these curves, one can see that
the obtained approximate coefficient is close to 0.2 (on the graph) which was
obtained using FEM (even though 'FEM’ has not, necessarily, the last word.?3

One fast and reliable cross-check is obtained when both loads are applied at

239Even when I used the reference which was obtained by FEM, we do not forget the
universal GIGO-principle that garbage in, garbage out.. One should be careful with
software because one can solve exactly wrong equations or solve exactly the correct
equations but using wrong data. Or even sometimes, solve correctly a correct model
but interprets erroneously the results because of a non-solid understanding of structural
mechanics. So, this is why a firm understanding of the underlying theories of the models
we are working with is necessary. Additionally, any analysis or structural design done
by any qualified engineer also needs naturally to be the cross-checked independently by
its peers because the error is human. This is the way it is done in the profession.
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the mid-span. For sure, the critical load for this case

Pu/[n2E1/#

1 , EI _ LEI L EI L EI
2PCI':Z'7T (6/2)2:71-672: ]3(:r:0.571'€72 > 0271'672
—_————
both loads at mid-span our example with separeted loads
(1.641)

should be higher than for our case 0.2 - 72EI/¢? with the two loads separated
(one at the tip and the other at the mid-span). This is the upper-side of the
verification (Cf. margin figure).

1] 1 2
Simply supported beam-column with intermediate compressive

FEM-Cross-check.
load

Consider the simply supported beam-column with two centric axial loads P; and
Ps; the first load is applied at the roller and the second one, at the mid-span.
This example is treated analytically in Timoshenko.?4? In the present subsection,
we?4l use energy method.

L’ — L ek ‘f._}:. U(=x)

'L}:n..‘] = 55 ‘“(’TVE)

Figure 1.112: Simply supported beam-column loaded with multiple axial
loads.

So let the first buckling mode be approximated by the exact analytical buck-

240 Theory of Elastic Stability Timoshenko & Gere in section 2.11: buckling of a bar
with intermediate compressive forces, p. 98 .

24lywe = the reader + me, the writer of these notes. The subject 'we’ does not mean
'we, the king’, but instead, a cooperative we.
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ling mode for the case with only one end-load P at the roller.

o(x) ~ B(x) = vo sin(WZ> = v - $(2) (1.642)
After integrations®*?, one gets

¢ 71_4

S(AU) : o = — / EI¢"¢"dw = - FI (1.643)
0
2 L 2 2 1 2
1 o EI
(5(AU) + 5(AWext) =0, Vévg = | P+ §P2 =7 672 (1.645)
cr
=P.r

where P being a reference load. We see now that the critical buckling reference
load (P)¢ will be calculated concisely as

1 1 EI
(Pt 5P) =Gt gm)- (Pl =55 (1.646)
cr

Application example: Let’s in the above P, = P, = P (Fig. 1.112). Conse-
quently,

1 o BT 2 oFEI _ o ET
In other words, the above results means that, the column buckles when both
loads P, = P, = P are applied together and when both loads are increased
simultaneously (proportional loading) to reaches the critical value
Bl 1

2
(P)er = 5 - 7° 5 ~ 0.667 -

7 R (1.648)

This means that the column supports (kantaa), at buckling, the total load of

(P, + P3)oy = 2Py = 2 X % -WQ% = 1.333 - WQ% (1.649)
when they are located at the roller-support and the mid-span. For comparison,
when the mid-span axial load is zero, the allowable load, at the roller-support, is
naturally the Euler critical buckling load Pg = 1-72E1/¢%. Recall that the above
obtained estimates for the critical buckling loads (Equations 1.648 and 1.649) are
energy based approximations.

2421 confess, this time, I did thses simple integrations symbolically in Matlab. Lazyness
can visit anyone, from time to time ...but this will not be a habit.
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Cross-checking: the above approximative solution by comparing it to the ana-

Iytical solution given in Timoshenko?*3 in the form

EI
(PL+ Py)ey = TI‘Qﬁ, (1.650)
where L = (¢, being the reduced buckling length. The reduction factors S are
given by Timoshenko in tabular form (Table 2-6 of same reference just cited
above). These coefficients are obtained from the analytical solution. For our
example 8 = 0.87 (Fig. 1.113), so the total analytical buckling load will be

El El EI
(Pl -+ P2)Cr = 7['2? = W2W =1.321- 7T2£72 (1651)

which corresponds to one analytical critical reference load P., = 0.66572E1 /(2.
As a conclusion, we can say that the approximations (Equations 1.648 and 1.649)
are practically the same (< 1%) than the analytical value (Eq. 1.651). In the
following, we reproduce, for internal use only, Table 2-6 from Timoshenko (Fig.
1.113). In this table, next notations are used: n = Els/El, m = (P, + P2)/ P,
and ¢; = 9 = £/2. Before closing this subsection and for pedagogical purposes,

41 n= EIQ/EI].,
e BT T = 3] i ke kli &
(Py+ Py)er = 73 where L /_ﬁf, being the reduced buckling length m = (P, + By)JP,
T « b =L, =1£/2 i
ABLE 2-6. VALUES oF L/l ror CorLumn 1N Fig. 2-38, with I; = |, l Py
m T,
A 100 | 125 | 150 | 175 | 200 | 300
g ¢/2
1.00( 1.00 | 0.95 0.91 | 0.8 | 0.87 0.82 &
1.25( 1.06 | 1.005 | 0.97 | 0.94 | 0.915 L 8
1.50| 1.12 | 1.06 1.02 | 0.99 | 0.96 1P
1.75| 1.18 1.11 1.07 1.04 1.005 EL | /
2.00| 1.24 | 1.16 1.12 | 1.08 | 1.05 < oy b2
W

Theory of Elastic Stebility Timoshenko & Gere in section 2.11: buckling of a bar
with intermediate compressive forces, p. 98 .

Figure 1.113: Analytical buckling length reduction factor g = L/ for the
simply supported beam-column with two axial compressive loads.

I reproduce the Matlab (symbolic) code that I used to to the simple integrations
in the weak form (neutral equilibrium condition) above (Fig. 1.114). Here, the
weak form, or more physically, the virtual work principle expresses simply the
condition for the neutral equilibrium necessary to buckling.

243 Theory of Elastic Stability Timoshenko & Gere in section 2.11: buckling of a bar
with intermediate compressive forces, p. 98 .
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Computer algebra:

1. % Syply supported beam with ... Solution by Matlab symboalic:
2 % intecnediate compressive axial loads —

3 3 Ersray method ¥ soluticn:

) % Ruthor: Baroudi 0. 2031 R

:_ : % phiix, L) = sin{{pi*x)/L)

7 ¥ dl_phife, 1) = {pi*cos({pd*x) /L) ) /T

4 d2_phifx, L) = -(pi~2*ain((pi*x) /L)) /L 2
%
% delta WiL, B1, B2} = (BL*pi*Z}/{2*L) + {B2*pi=2)/ (%L}

delta UL, EI} = (EI*pi*4}/{2*L"3}

12 - \
=8 -] £ %k 1 ﬂa'{a U - dalta W = 0 ===p Pl + P2/2 = pi%d * BI./ 12

W dlvik vl L) § aimplify( diffiv, x| A i i

15— A2wix, ¥, L) B oaimplify( diffldl v, =) } L= f

16

m L — £ at

1= phifx, 1) B sinipi *ox L) S(ALT) : dug = —f Elf'¢"der=—  EI

1= Al phi(x. T} B atmplify] 4iffiphi, x) | [} 243

20~  di phifs, L] S simplify| diff(dl chi, x) } 2 s e *:] 1 2
i = . . = = :
B " e fon=3 R [ edae=nl +nY =By R) G
z3 % vairiation of work inorement of Pl and P2 -——

q24~  delta Wi(L, 1} 3 P1 * int(dl phi(x, L) * di_phitz, L), [0 L]}

25— dalta W2 (L, P7} 8 7z ¢ Int{al phl(x, T) * di_phlix. L}, [9 L/2]

26~  delta WIL, Fl, ¥2) § delta WL(L, B1) + delta W2(L, B2}

[+

2 % vatiabfon of atrain anargy incremant

8= dalta UJL, BTy & BT ¢ int(dZ phifx, T) * a2 phigs, Th, [0 L]}

Figure 1.114: Matlab symbolic code to do derive lazyly the approximate
the buckling load for the simply supported beam-column with two axial
compressive loads, by energy methods.

Effect of axial force on lateral sway of columns

The idea in this subsection is to 1) demonstrate the geometric non-linearity in-
herent to this problem 2) to derive the formula giving the lateral sway vy as
function of relative compression P/Pg in a simple case of cantilever an simply
supported column (Fig. (1.115 a).

Lateral sway
“Uo,

g Il

. deflection

b)

Figure 1.115: Lateral displacement is non-linearly enhanced by compression.
a) Lateral sway in a cantilever column. b) mid-span lateral deflection for a
pin-ended column.
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The formula will derived using virtual work principle (virtual unit dummy-
load theorem). Naturally for real complex cases one needs, in addition, to use
FEM-computational technology, experimental approach without forgetting ex-
perimental validation of the FEM-models for cases where the human life is in
play. This problem is very actual in tall buildings.

The cantilever column: The column-beam of Figure (1.115 b) will be also
treated in the same way to demonstrate and convince?** the student that virtual
work principle holds also in non-linear cases.

Cantilever column: Consider again the cantilever shown in Figures (1.115 a)) and
(1.100). We have determined his lateral displacement vy due to and a transversal
load F' (wind load, for instance) under constant axial centric compression P. By
virtue of the virtual force principle

¢ M - M,y
1-v9 = d 1.653
=) TEr Y (1.653)
where M =Mp + Mp (1.654)

we obtained the following result for the sway vy

¢ M- M,
1-vg= d 1.655
v=| —pr W ( )
F(3  Plyyl?
_ 1.
3EI+ m2ET (1.656)
Fe3 1
— vy = S . 1.
Vo 3EI 1_£ ( 657)
—— Py

deflection when P=0 ) _
amplification factor

where the Euler buckling reference load Pg = 1/47%2EI/¢? have been used. In
the above result, the exact first buckling mode

v(x) = vo[l — cos(mz/20)]. (1.658)

24410 fact you seriously speaking, you may remember that in the (primal) virtual work
principle

f/ a:5(Vu)dV+/ f-6udV+/ t~5udS:/ pi-dudV, Viu (1.652)
1% v av v

we do not make any assumption about the material model neither on how large or small
are the displacements. Such simplifying assumptions may be made later case by case.
So, the principle holds for any material behaviour and for any displacement amplitude.
In fact, it expresses Newton’ motion law for deformable bodies in a more effective and
elegant way. So, this is for the virtual displacement principle. The virtual force principle,
is its conjugate and we have shown it in class when presenting the general force method.
I may be rewrite it soon here.
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Pg = 1/4n°EI /¢

10 .
P31 38
Yo=3ET 1_E il
8 E ! l\p
e Fooo /
o 6 —>T 7
% Bl |/
=, Geometrically = /
e 4 non-linear I ‘E(ij“
0 0.2 04 0.6 0.8 1
F‘;"F‘E Buckling
occurs

Figure 1.116: How lateral lateral sway vy, in a cantilever column, is non-
linearly enhanced by compression.

has been used as an approximation of the deflection. To recall the reader, we
had already few subsection before, solved this exercises. In this case we had

Mp(z) = F({ —=z), Mp(z)=F-(vo—v(x)), (1.659)

My(z) =¢—x, results from unit-dummy load F = 1. (1.660)

We see clearly, this is a classical result, that axial compression enhances the
lateral sway deflection by the non-linear amplification factor vg < 1/[1 — P%] as

given by the formula. The graph of this relation can be clearly expressed by a
hyperbola (Figure 1.116).
F3 1

:311471'1—]%E

Vo (1.661)
Notice, on the graph, when the deviation from the linear behaviour theory starts,
let’s say this approximately begins for P/Pg > 1/3. It is going without saying
that the bending normal (compressive) stresses are also non-linearly enhanced.
In overall, the maximum stress will be at the clamping (at the outer-material
fibber located at a distance ymax from the neutral axis) and will be

. P Mnax
Omax = Z + W’

where Myax = F¢ + Puy. (1.662)

where the smallest flexural elastic resistance (or section modulus, taivutusvastus)
of the cross-section being We) = [ .. /Ymax- 1 let the reader rediscover the
remaining notation which should be familiar from strength of material courses.
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Maximum bending moment: Let’s find out the expression for the amplifi-
cation factor of the bending moment due to transversal load F' and enhanced
(amplified) by the axial compressive force P because of geometric non-linearity
(buckled shape). The maximum moment at z = ¢, the clamped support, is

Myax =F0 + Py (1.663)
Fr3 1

—Fl+P — — 1.664
Yo 1-— PL; ( )

0 P
—Fl-[14— 1.665
< Yo 1— ;:;) ( )

2 P
= FL |1+ 5 B (1.666)
M (P=0) —~— = e
~0.822

amplification factor

where, again, Pz = 1/472E1/¢? being the reference Euler critical buckling load.
So, the maximum bending moment amplification factor is

P
Miax = FI- (1 +0.822. T ) = on - FY (1.667)

The graphical representation is shown in Figure (1.117). One can notice that,
equivalently, as for lateral sway, the maximum bending moment grows (amplified)
very quickly for high compression, approximately when P/Pg > 1/3.

The cantilever column: Consider simply supported slender beam which is
axially compressed by a centric load P (Fig. (1.115 a)). Let a transversal load F
being acting at its mid-span. The question. Determine the deflection vy at the
mid-span. How it depends on P?
We can answer this question exactly by assuming the deflected shape following
the first buckling mode
v(x) = vo sin(nzx /L) (1.668)

However, to have more fun and let’s see what result (or difference) we will obtain
if one uses an approximation of the buckling mode as

(z) = 41)0% (e - ij) (1.669)

It is quite interesting to superpose both buckling modes in one plot (Fig. 77).
They are really very close, I am even a bit surprised. So, ne can expect to obtain
quite a good approximation for the deflection vy. Note that we will use the
force method and thus we need only the bending moments directly determined
from equilibrium. This is easy to do since our structure is statically determined.
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Deviation from linearity starts
Figure 1.117: Maximum bending moment amplification factor in a can-
tilever column, under constant compression. The Euler reference load is

Pg = 1/47*EI /2.
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Figure 1.118: Exact and approximate first buckling mode.

The bending moment du to axial load and lateral force is symmetric about the
mid-span and is simply, for the left part, given by = € [0, ¢/2]

F
M =Mp+Mp=P-v(z)+ Tx’ x €[0,£/2] (remaing part being symmetric)

(1.670)
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Let’s go and do. Put a virtual force F =1 at the mid-span and, as usual,
¢t M- M,
1.y = 1.671
Vo Bl dzx (1.671)
2TE 171 1 £/2 x x 1 1
=2 — —x| - —d 2 4Pvy =1 - - —z| - —d
| [24 [24 prdez [ { w7l f]x} [24 B
(1.672)
F(3 5 Pygl?
T48EI ' 48 EI (1.673)
The deflection vy can be solved after factorisation as
F3 1 F3 1
Vo = . 5 Pi2 = . TP , (1674)
48FET 1 — =BT 48FET 1— o
deflection for P=0 ——
amplification factor
where the estimated critical buckling load being
. 48 FEIT EI 2EI
Py = = 0973 -1 ~ T = Py (1.675)

5 02 72 02

To find the buckling load, it is sufficient find P for which the denominator in
equation (1.674) tends to zero. (amplitude vy is 'blowing up’.)

Let’s stop a bit and analyse the results given by the formula (Eq. 1.674).

e 1) we obtained an approximation of the buckling load which approaches
from bellow the analytical know critical load. (keep in mind that we used
the force method).

e 2) The amplification factor is non-linear and follows the same form as
already determined earlier for the lateral-sway of the cantilever column.

To close this subsection, let’s relax a bit. This is what I recall from physics
lesson on pendulums in high-school. Students were often asked to solve problem
on the black-board. The fraction 48/5 = 9.6 seems to be a good approximation
(difference less than 3 %) for 72 = 9.869604401089358 .... From high-school,
some of us, learn that the free-falling acceleration [m/s.s] g ~ 72 with a difference
about only 0.6 %. This last approximation is often used to simplify fast hand
calculations for the circular frequency w of pendulums where appears often /g /¢
that can be replaced approximately by /7% /{ &~ 7/ V0. The last expression being
easier to estimate after expressing approximately ¢, the length of the pendulum,
with two closer squares bracketing it from bellow and above. To finish, let’s recall
that m ~ 22/7 is a very precise fractional approximation for 7, even if in this era
of computers in our pockets, this knowledge may seem of non-use. In older time,
some people may even kill to obtain it when others were keeping it secret. Some
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even established temples around such secrets to keep the power on others. This

is another story.?4°

Let’s leave the word of critical buckling load approximations®*® using energy

principles and enter a new section getting familiar with geometrically non-linear
FE-analysis (GNA) and some other key concepts of stability as for instance,
asymptotic analysis. We will also investigate how elastic supports or foundation
will change fundamentally the stability behaviour. Patience.

1.12.7 Linear buckling analysis of simply supported
column

Linear buckling analysis of a straight column which is simply supported. The
axial compressive load P is centric. The column is initially ideally straight.

The results of the FE-analysis, critical loads and corresponding modes, are
shown in Figure (1.119). In the FE-analysis, the column was treated as a two-

A
= S 71334KN (Fev
A=10

~ vl o |
A=39 g8 g ]
Pe = 719.66 kN (analytical 10)
] 5996 kN
=84

Figure 1.119: First three critical loads and respective buckling modes.
Naturally, the smallest load being the buckling load. the load parameter
A = P/P,.5p. In this computation Pg1p/Pe2p = 1.01.

dimensional elastic domain (not as a one-dimensional beam?*7) of width b. The
buckling load P.2p = 713 kN and the Euler Pg 1p = 720 kN. In this computation
the one-dimensional model seems, with respect to the buckling load, being a

245You may be not know that for long time the irrationality of v/2 was kept secret by
one sect in ancient Greece (the Pythagorians). When one member of the sect came and
said that, there is someone outside demonstrated that /2 is irrational, he was quickly
killed to keep the secret from other members. The truth of this last 'legend’ is not
verified.

246] recall one related joke about approximations: Some physicists are convinced that
the reality is only an approximation for their equations, while an engineer, especially
a civil engineer like you and me, think humbly that, it is these equations which are
approximations of the reality. However, some aspects of reality are brought to life by
mathematical models as it is the case with gravitational waves.

247T have my reasons that the reason does not know for doing that.
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bit stiffer?*® than the two-dimensional ’beam’ Pg1p/Peop = 1.01, where the
classical Euler buckling load being Pr 1p = T2 EI / 0.

The data for this example are : rectangular cross-section length £ = 1 m,
height h = 50 mm, width b = ¢/10, Pg = 720 kN (1-D), EI = 72.917 kN.m?,
E =70 GPa, v = 0.33.

1.12.8 Asymptotic post-buckling analysis of simply
supported column

In the following, analytical approach will be used. The aim in this section is to
determine asymptotically the post-buckling behaviour of the axially compressed
simply supported column. The increase of load P = Pg+ AP being centric (Fig-
ure 1.120). This means that one should derive the force-displacement relation
f(P,v) = 0 for moderate rotations in the neighbourhood of P., = Pg = w2EI /(2.
Recall again, that by definition the asymptotic analysis can drive conclusions only

(S

)
(R

. EL
r—
\F{x)
5 |
S
] m——————

:r’v_ wn I
5 1 2
5 i b
B g LA
£33 o e
8 3% =
=5
@
Pre-buckling Post-buckling

A = P/Pg loadingincreases m—x)
Figure 1.120: Post-buckling of simply supported column.

about the local stability around the point the asymptotic expansion is performed.

248Recall Rayleigh quotient minimising property.
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So, nothing can be said about stability beyond this tiny expansion neighbour-
hood. for that, appropriate computational or experimental tools should be taken.

In the following we use the Lagrangian formulation. We want to use approxi-
mate energy methods to solve the problem by "hand’?4?. Assume a (bifurcational)
flexural deflection mode in the form?>°

v(x) = vg sin(mx/{). (1.676)
which corresponds to the lowest buckling load and mode, potentially, more 'dan-

gerous’ geometric imperfection?5!.

1.12.9 Lagrangian curvature

Assuming that in the neighbourhood of post-buckled configuration the additional
stretching from axial force being negligible as compared to the one from bending

du = du(N) + du(M) ~ du(M) (1.677)

and therefore the infinitesimal length of a material element dx = ds does not
change (incompressible) (1.121)

oy ; \ T e 4|
NN = 'BI' = O = arcsn %
a=

Beius o id [W,mw)jj

TR ds T dx

Figure 1.121: Kinematics of a Lagrangian element dx and the definition of
curvature k.

,U//

h— o (1.678)

V1—0"?

249Tt’s late, I prefer right now to programme this in Matlab symbolic toolbox in
Post-buckling-simple-beam.m, to avoid mistakes.

250Tn the following, we study only the case for ag > 0. The complement case ag < 0
can be deduced by changing the direction of y— axis to its opposite, and then the study
is exactly the same as for ag > 0 with the same results.

251To add a reference for this claim.
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where the minus sign being a sign convention for positive curvature. From the
right-angle triangle (1.121) and using Pythagoras one obtains the shortening

du=[1 —/1—v?dz (1.679)

and therefore, the shortening u(¢) at the point of application of the load P will

be
Y4 l
:/O du:/o 1= 1 —v?de. (1.680)

Consequently, the work increment of the load P during buckling is
l 0
AW, = Pu(f) = P/ du = P/ [1—4/1—v?da. (1.681)
0 0

So, now in the total potential energy increment (equation 1.190) one should
use an asymptotic expansion for the increment of Lagrangian curvature x and
for the shortening, due to flexural buckling, of the column. For such moderate
displacements and rotations, thus

1
K= ——— —"[1 + fv’2+fv’4—i—...] (1.682)
where, now

ATl / EIx*dz — Pu(l) (1.683)

2/EI< /2> dz — P/ [1— 1—( )]dx (1.684)

The idea further, in the asymptotic approach, is that one considers equilibrium
paths locally in the vicinity some interesting point.

Such point can be the bifurcation point. You want to find the load-displacement
curve (equilibrium path) around this point in an approximative way. The approx-
imation is achieved by asymptotic developments (Taylor series) of of the terms in
the total potential energy increment. That is why, here, for instance, the curva-
ture and the shortening can be approximated with truncated Taylor series. (this
is for the story).

For moderate rotations and displacements, let’s keep only two terms of the
Taylor expansions of the curvature (Figure 1.122) and the stretching (compres-
sion), so

1
ko~ —[1+ 5”,2] (1.685)

1 1
dufdz =1—/1— (V)2 ~1 —[1 — 5v’?] =5 2 (1.686)
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I 1+v22 + 38"
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) 12
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Figure 1.122: Taylor expansions of the denominator of Lagrangian curva-
ture.

So, the approximate increment of the potential energy is now

ATl ~ 7/ EIV" 1+ fP/ (1.687)

which holds for moderate rotations?®? and displacement and assuming, again,
that the centreline for such load increment AP, remains practically incompress-
ible.

Using two terms for the expansion of the curvature, and after performing the
mathematical operations one obtains the change in total potential energy only
as function of P, vy and the parameters L and FE1.

I reproduce the total potential energy increment in its raw form?>® as pro-
duced by the Matlab symbolic toolbox, after symbolic differentiation Delta-Pi(vO,
L) = —(P*v0%xpi?)/(4% L) + (EI * v0? % pi* % (32 % L* + 8 % pi% x L? x v0? +
pit * v04))/(128 * L7) which after being (= I¥TgXed), reads

Q}o 7T2EI 7T2 Vo 2 2 [ Vo 2 4 ( Yo 4
(1.688)
m° 2 w2l 2 22 a¢4] _
=~ P + Py 5 (32 + 87257 4 715" = ATI(5, X, 0), (1.689)

where 0 = vg/¢ and A = P/Pr = (Pg + AP)/Pg being the relative deflection,
and force, respectively. From the stationarity condition

§(Al(vy; P)) =0 = dAI(vp; P)/dvg =0 = (1.690)

252Limits to be defined.
253Reproduced for satisfying curiosity of the reader.
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54 as

follows the equilibrium equation (force-displacement curve) , in its raw form?
produced by the Matlab symbolic toolbox, after symbolic differentiation being

(= IXTEXed) gives the load-deflection (equilibrium path) as

—32P(5 + 32EI7%* + 16 EIn* 0?0} 4+ 3FEIr50) =0 — (1.691)

mEI 17%El 9 (Vo 2 3 7%EI 4 (Vo 4
— P=p ty T (e) 2 2 " (€> (1-092)
1 2 3 4
P =Py [1+2~7'r2 (”;) oo <”;) ] (1.693)

Rewriting the load-deflection ’curve’ in dimensionless form, one obtains, finally,

~ Lo 3 4c1 122[ 2‘322]
/\~1+27T6 +327T6—1+27T5 1+ 327r5 , (1.694)

where 0 = vg/¢ and A = P/Pg being the relative deflection, and thrust force,

post-buckling of simply By (D. barowdi, 2019)

K= =L+ v /24+3/8. v l|

s 3 4 - )
A=l 4+ 722 + SatE 4+ 00177585 + 0.0387%4"
2 8

. 1.5
‘ ;.-".._-—i:”[l+§i" ]
1 5.9 3 4
A= -4 —
1+ ol 4° + T &
0 01 0z 03 04 05

8 = o/l

Figure 1.123: Asymptomatic post-buckling when retaining only two and
three terms in the Taylor expansion of the Lagrangian curvature x =
—v"/v/1 — v (holds for moderate rotations, so in close vicinity of the bi-
furcation point).

respectively. The above result, naturally, holds for moderate rotations, so in
close vicinity of the bifurcation point.?*® So, the final post-buckling neighbour-
hood being the branch A, around the bifurcation point (0,1) on the bifurcated

254Reproduced for satisfying curiosity of the reader.
2551 wil draw a box showing that on the Figure, later.
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equilibrium path. Equation (1.694), provides us, in addition, a quantitative esti-
mation of "buckling’ deflection’ and rotation (moderate post-buckling configura-
tion). From the graph (Figure 1.123) one can see, clearly that the Asymptomatic
post-buckling behaviour is symmetric stable.?”® I reproduce the Matlab code

1

2 of beams with

3

4= clear a1l

5 = clc

&

7= syms EI L P

= syms kappa v v0 v prime v pprime

9 -  syms Delta Pi Force Disp Force Disp help

10 ~ syms x

1 L

12 % Energy principle

13 % the approximation of deflection

14 %

15 — vix, L, v0) = w0 * Sin{pi * x / L)

16 — v prime(x, L, v0) = simplify( diff(v, x) )

17 = v_pprime(x, L, v0) = simplify( diff(v_prime, x) )

18 %

14 B curvature : kappa = ~v'' % [1 + 1/2 v' %2 4 3/8 * wreed &+ ...
20 5

21 b

22 % using two terms for the Taylor expansion of kappa:

23

24 — kappa (%, v0, L) = - v_pprime(x, L, v0) * {1 + 1/2 * (v prime(x, L, v0))"2 )
25 — kappa sq(x, v0, L) = simplify( kappa(x, w0, L) * kappal(x, v0, L} ):

26 — v_prime sg(x, L, ¥0) = v prime(x, L, v0} * v prime(x, L, v0):

27

28 % forming total potentia energy increment Pi = U + W -—-—

28 % Strain ens necrement --—

30 - U(v0, L) simplify( int( 1/2 * EI * kappa sq(x, v0, L}, x, [0 L] ) }
2= W(vo, L) = simplify( int( 1/2 * v prime sq(x, L, v0), x, [0 L] } )
32 - Wivo, L) = - P * W(vo, L)

33

34~ Delta_Pi(v0, L) = U(v0, L) + W{(v0, L)

3s

3€ % Sta rity condicion dPifdv0 = 0 ——

37 = Delta Pi prime(vD, L) = simplifyFraction( simplify({ diff(Delta Pi(vw0, L), v0) } )
38 —  FACT = factor(Delta Pi prime(v0, L})

39 - NO = 5; & the factor containing the displ-force curve

40 — Force_Disp_help(v0, L, EI, P) = FACT(NO);

a1 - Force_Disp(v0, L, EI, P} = collect(Force Disp_help(vd, L, EI, PB), P)

42

43 % LaTeX output ....

44 — latex(Delta Pi prime); % ---> cutput to LaleX

Figure 1.124: Matlab-code written for the asymptomatic post-buckling
analysis.

I wrote to solve symbolically the full problem above. I hope, it may be useful
for some students, now or later ...or never. However, seriously, programming is
very efficient in structuring our understanding, as engineers. To programme, one
should create the algorithm (Figure 1.124).

N.B. It is important, for design of the support length, for instance, to determine
the axial displacement resulting form bending. The non-linear theory we are
using, makes it possible to determine such axial displacement by integration

u(z) = /Om(du/dx)dx = /Ox 1—4/1— (v)%dx %/Ox %v'zdx. (1.695)

When applied to the deflection mode (1.676), we obtain

u(z) ~ %ﬁ (”;)2 [27r (;f) +sin (27;”” (1.696)

256The reader can check by the sign of the second variation-test for stability.
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The above equations were obtained easily, or lazily, to be honest, using Matlab
symbolic toolbox. I reproduce them, to encourage learning programming;

v(x, L, v0) = v0 * sin(pi * x / L)

vprime(x, L, vO0) simplify( diff(v, x) )

vpprime(x, L, v0) = simplify( diff (vprime, x) )

u(x, L, vO0) = simplify(int( 1/2 * vprime(x, L, v0)~2, x, [O

x1));

So, let’s go back to our business: how long should be the support to avoid falling
of the beam? So, particularity, the maximum axial displacement, due to flexure
deformation®®7, ur,(¢), at the moving support (roller)

u(l) ~ sz (”;)2 (1.697)

Adding the pre-buckling axial deformation at Pg gives the total axial displace-
ment at the roller

2 2
P
~ Tt ”") it (1.698)

) ~ — —_—.
U~ ( ¢ EA
Now, for a given load level A = P/Pg, maximum deflection vy/¢ can be solved
from Equation (1.694) and inserted into Equation (1.698) to obtain the displace-
ment at the roller for a desired load P. Recall that in the introduction of these
lecture notes, we wrote the non-linear analysis (or post-buckling analysis) also
provides the designer tools for quantifying such ’buckling’ displacements?®®. Ig-
noring the forth order term (vg/¢)* < (vo/¢)? < 1 in (1.694) for the Equation
(1.698), we arrive to a useful engineering formula to quantify the horizontal dis-
paragement of the roller after buckling (moderate values for P/Pg over unity)
L (P Prt

H~=-|—=——-1]-(P>P —_— 1.699
where the logical proposition (P > Pg) = 1 when true, otherwise, zero.
Now using three terms, x ~ —v"[1 +v/>/2+3/8 0], in the Taylor expansion of
the curvature, we obtain the load-displacement curve (Figure 1.123)

P2 1 5 /v\? 3072 4, /wo\* 960 & /vw\® 315 ¢ /vo\®
=14+ =72 (2 utaabRC Y ] (2 22 82
2Bl T (e) *8102" (e) *8102" (e) * 5102”7 (E)

(1.700)
1 3072 960 315
:1722744766788 1.701
= A +27r5 +81927T(5 —|—81927T5 81927r5 (1.701)
1 -
A =1+ 57r252 + 27#54 +0.1177%6% + 0.038786%. (1.702)

257TThe initial axial displacement ur,(Pg) = Pgl/EA at the roller which is due to pure
axial stretching prior to bending, should be added.
258These are the ’second order’ or 'P — A’ effects as engineers usually call them.
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I also provide the Matlab-code, I used, hoping that it can be useful for someone.

v(x, L, v0) = v0 * sin(pi * x / L)

vprime(x, L, v0) = simplify( diff(v, x) )

vpprime(x, L, v0) = simplify( diff(vprime, x) )

% —-—> three terms in kappa

kappa(x, vO, L) = - v_pprime(x, L, vO) * ( 1 + 1/2 * (v_prime(x, L, v0))"2 +
+ 3/8 * (v_prime(x, L, v0))~4 )

% Strain energy and work of P increments ---

U(vo, L) simplify( int( 1/2 * EI * kappa_sq(x, vO, L), x, [0L] ) )
W(v0, L) = simplify( int( 1/2 * v_prime_sq(x, L, vO0), x, [0L]))
W(v0, L) = - P * W(v0, L)

Delta_Pi(v0, L) = U(v0, L) + W(v0, L)

Delta_Pi_prime(v0, L)=simplifyFraction( simplify( diff(Delta_Pi(v0, L), v0) ) )
FACT = factor(Delta_Pi_prime(vO, L))

NO = 5; % the factor containing the displ-force curve

Force_Disp_help(vO, L, EI, P) = FACT(NO);

Force_Disp(vO, L, EI, P) = collect(Force_Disp_help(vO, L, EI, P), P)
A ——

% The raw result being now: Force_Disp(v0O, L, EI, P) =

- 8192xPxL"10 + 8192*EI*pi~2*L"8 + 4096*EI*pi~4*L"6*xv0~2 +

+ 3072*EI*pi~6*L"4*v0"4 + 960*EI*pi~8*L"2xv0"6 + 315%EI*pi~10%v0~8

In the following section, a Finite Element full post-buckling analysis will be done
for the same column and the results (graphs) compared.

FE-based post-buckling analysis of axially compressed column

A column of length ¢ = 1 m made of aluminium is compressed with a centric
load P. The column is simply supported. The column is initially straight. A
tiny transverse load combination (Figure margin) is introduced as an initial per-
turbation for the purpose of the post-buckling analysis. Linearly increasing axial
displacement u was imposed at both ends of column. The displacements (flexural
and axial) are shown in (Figure 1.125). We see clearly that after the bifurcation,
the post-buckling behaviour is of symmetric-stable type as was found in the pre-
vious asymptotic analysis (Figure 1.123). Figure (1.126) combines the results of
the post-buckling analysis, both analytical asymptotic and FE-based. N.B., how
shallow is the shape of the post-bifurcation neighbourhood (black curve). This
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Posl-tuking analys:s of simply supported columin, disp control [Baroud, 2019] Postbuckling ansiysis of simply supported column, dap contml [Baroud), 2019)
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Figure 1.125: Post-buckling FE-analysis of a simply supported column (dis-
placement control). Deflection at £/2 (left) and the column axial shortening
(right). The column was initially perturbed by a combination of tiny trans-
verse loads. Notez bien, how shallow is the shape of the post-bifurcation
neighbourhood (black curve).

means that, the asymptotic analysis needs much more terms if one wants to see
safely farther that, let’s say § > 0.15.

Recall that the axial shortening of the column after buckling (in right Fig.
1.125) is mainly due the second order term foz 1/2v 24z, so summing the pre-
buckhng axial deformauon at Pg gives the total axial displacement at the roller

u(l) =~ ”f (% ) + Z PE[ as shown by Equation (1.698).

K =140 2+ 3780
2\awmpt0tlc E
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&
3 —_— — Buck]gs ———————— i
(2]
St e 3
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Figure 1.126: Post-buckling analysis by FEM and analytical asymptotic
method. Note the very shallow shape at bifurcation point neighbourhood.
N.B., how shallow is the shape of the post-bifurcation neighbourhood (black
curve).
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The data for this example are: rectangular cross-section £ = 1 m, h = 50
mm, b = £/10, Pg = 720 kN, EI = 72.917 kN.m?, E = 70 GPa, v = 0.33.

1.12.10 Buckling of columns on elastic foundation

Let’s start by giving examples of existence of such yet not visible conceptual
object being labelled as colummn-beam on elastic foundation, by engineers. Indeed,
new names, I mean the label of the box and the concept it contains, comes to life
only through mathematically well-posed models, at least for us, engineers. The
first example that the reader must know comes from civil engineering applications
known as pile foundations (Margin figure) in which the soil-structure mechanical
interaction can be captured by the one-parameter model of Winkler?®. The
buckling considerations of such is crucial for safety of the structural design. Pile
Buckling (instability) failure can be of to types: a) global buckling or b) local
buckling where the (large) deformation and consequently the damages remains
local. Global buckling may occur when piles are partially exposed or are in highly
soft soil or under driving loads while installing them. Local buckling may occur
in end-bearing piles fully embedded in stratified soil with soft layers, especially
during earthquakes as a consequence of liquefaction of soils?6Y.

The second example, high practical importance of use of such simplified model
for such soil-structure interaction model are railway rails (track) bonded to the
soil or to carrying substructure. The rail can be continuous welded rail track
or jointed track. When loaded compressively by inertia acceleration forces com-
ing from trains or extreme increase of temperature rail track can buckle (Figure
1.127) with catastrophic consequences for the people safety in moving trains. The
extreme increase of temperature leads to restraint thermal elongations which con-
sequently can lead to excessive compressive thermal stresses resulting in thermally
induced buckling. Track buckling occurs, usually, in the lateral plane. However,
observations of cases with vertical buckling exits. The stability behaviour of such
rails can be modelled using the well-known most simple theory named beam on
elastic foundation.

Consider a simply supported beam or pile bounded to an elastic foundation with
centric and axial compressive end-load P. what would be the critical load? Con-
sider only flexural buckling in the weakest plan of inertia. Assume a constant

259Emil Winkler (1835-1888), German civil engineer and professor. He was the first to
formulate and solve the now classical problem of elastic beam on deformable foundation.
He has, among other books, published a book closely related to rails: Lecture on Railway
Engineering (1867). His model assumes a linear relation-ship between the foundation
reaction and the beam deflection (Winkler foundation).

260Ref: S. Bhattacharya, T.M. Carrington & T.R. Aldridge Buckling considera-
tions in pile design. rontiers in Offshore Geotechnics: ISFOG 2005 — Gourvenec &
Cassidy (eds) 2005 Taylor & Francis Group, London, ISBN 0 415 39063 X. DOI:
10.1201/NOE0415390637.ch93
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“ sine-shaped Track buckling

Figure 1.127: Buckled rail track. Keep in mind, for later use, the sine-
shaped buckles. (Ref: Technical report: M.A. Van Buckling analysis of con-
tinuous welded rail track. Technical University Delft, Department of Civil Engi-
neering, Mechanics and Structures Group, Stevinweg 1, 2628 CN Delft.)

cross-section with FT constant and the soil elasticity coefficient k also modelled
by a constant. A axially loaded pile within a soil (foundation piles, Margin figure)
or a beam-column having transversal elastic restraints (Figure 1.128) behave as
a compressed beam on elastic foundation.

The buckling behaviour of such columns or piles becomes very rich and de-
pends highly on the relative rigidities (bending rigidity EI of the beam and
stiffness coefficient &, [N/m.m]?6!, of the elastic foundation). The soil-pile inter-
action is modelled by a Winkler model (one parameter model) as linear bilateral
springs. In such model, the soil-reaction is simply proportional to deflection

r(z) = kv(z). (1.703)

and the contact is bilateral (the beam and the soil remain bonded during defor-

P El P

Thatle
m/w AN A AN T R T AT R A P

k

Figure 1.128: Beam bonded to an elastic foundation under axial thrust.

mations)?%2.

261The units of k are [N/m] over the unit width b = 1 m of the beam cross-section. so
[k] = N/m.m

262There exists contact models with unilateral interaction but they are more complex
to deal with analytically. In the simplest of such models the soil reaction (or interaction
force) is given as r(x) = kw(z) when the beam and the soil move together in the same
direction, @+ 7 < 0, and r(z) = 0 otherwise. It is his discontinuous relation which makes
such model analytically more challenging. So, we may come back to such interaction
model in some numerical example. In this lecture note, only bilateral continuous contact
model will be addressed.
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Assume a straight primary (initial) equilibrium configuration. By increasing
the compressive end-force P to a threshold-value P,.., the column on the elastic
foundation buckles in a flexural mode. The deviation from the straight line
corresponds to deflection v = wv(x). The total potential energy increment is
the same as for a beam-column in compression. There is an additional strain-
energy term 1/2kv?(x) accounting for the elastic deformation of the foundation.
Therefore

l ¢
All = ;/O EIN"(2)]* + k[v(z))*dw — P/O %[v'(m)]zdx. (1.704)

Equation (1.704) can be used for finding approximate solutions (Rayleigh-Ritz) or
for deriving the discrete eigenvalue problem by FE-element and obtain the needed
stiffness- and geometric matrices Ky, and K¢, respectively. This last subject on
numerical methods will be addressed later. The linearised stiffness matrix is
already known to the reader from previous course of structural mechanics; K, is
the one obtained for the Euler-Bernoulli beam in bending for a beam on elastic
foundation.

Applying the energy criterion §(AIl) = 0 will give the linearised stability
equations. The additional term as compared to the standard previous beam-
column problem is given by the variation of the new term

1 4 74
4] (/ kv(x)Zda:> :/ kv dvdex. (1.705)
2 Jo 0 ~~
new add to ODE

Taking the variation §(AII) = 0 one obtains
¢ ¢
/ EIv"§v" + kvdvdz — P/ v'6v'dz = 0, Vv (1.706)
0 0
which becomes after twice integration by parts

74
/ [ETv™Y + kv + Pv") Svda+ [EIV" 60" — [(EIv" +Pv')du]§ = 0, Véu (1.707)
0 ~ ™
=0 -M -Q

The linearised buckling equation follows now straight-forwardly?®? as

EIvW + Py + kv =0 (1.708)

The boundary terms of the integral provides the consistent boundary conditions.
Important: Already at this stage, the reader is encouraged to keep in mind the
structure of the linearised buckling equation (1.708) since it is similar, as will be
addressed later, to axisymmetric linearised buckling equation of thin cylindrical
shells under axial compression.

263GQee references Alfutov, Stability of Elastic Structures. Springer 2000, for more read-
ing on this example.
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Let’s go back to our actual problem of beam buckling on elastic foundation
and consider simply supported boundary conditions where

, (1.709)
: (1.710)

The solution is easy to find by following the classical case of Euler buckling.
Direct substitution of trial?®* (eigenmodes, Fig. 1.129)

Up(x) =sin —, n=1,2,3,... (1.711)

into the differential equations shows that they satisfy it together with the bound-
ary conditions. Therefore, the function set constitute the solution?%°.

Buckling modes of beams on elastic foundation
nnT P P

R ==

/\ He g

0.2 0.4 0.6 0.8 1
x/L

o

Figure 1.129: Buckling modes.

264The homogeneous linear differential equation with constant coefficients has a general
solution of the form v(z) = Z?:l A;e"*. The variables r; are the four roots of the
bi-quadratic characteristic equation. This is the correct way to solve the problem for
arbitrary four boundary conditions. Inserting the boundary conditions and asking for
existence of non-trivial solution (zero-determinant), one obtains the buckling load.

265This procedure is done to shorten the derivations. The reader should find the com-
plete system of solutions by solving the ode with constant coefficient in a canonical and
more systematic way
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The critical load is now

2 2
P, = (”Z) ET + (jﬂ) k (1.712)
Bl 1 k?
Pg
2ET 1 4
:l”p] ”2+n2ﬁ§1(7€) .n=123,... (1.714)
=g
=Py [nQ + 7’162} . (1.715)

The smallest critical load P.. = P, depends on the half-wave number n. As-
suming the variable n continuous one obtains the smallest critical load from the
extremum condition

dP,
dn
which leads to

P.. =2Pg\/B = 2VEkEI. (1.717)

In reality, the number of half-waves n is integer variable (discrete) and the min-
imum for the critical buckling load given by Equation (1.717) is a limit for rel-
atively long beams ¢ = /4 > 3 (see following discussion). The exact buckling
load is given in Figure (1.130 c)) for arbitrary relative length.

In the above equation next dimensionless parameters were defined as

ket
= 1.71
b= (1.718)
_ P> P,
P, = = — 1.719
" m2El 5 ( )
The critical load P,, can be written now in the dimensionless form as
= P 2, B
which represents, graphically, a set of straight lines for n = 1,2,3,..., etc. in

function of the relative stiffness 8. The graph P, — (3 shows the lowest values for
P,, which correspond to the critical loads as function of the parameter 5.
Analysis of the results

The buckling as function of a the relative length of the beam will be investigate
and compared to the case of a compressed column without foundation restraining
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effects. For this let define a relative length by
7= g4 = ; Lj]] i (1.721)
and a relative compression load by
P= \/:ﬁ. (1.722)

Buckling of beam on elastic foundation

o8| P, =k VKEI
i oy »
RS L
I
%
UD 1 2 3 4 5 (3 7 a8 i}
a 0 1 2 3 4 5 6
b) _ ¢ % 1/4 C)
I=2|—
T lEI ]

Figure 1.130: Stability behaviour of an elastic beam bonded to an elastic
foundation.

are related by the buckling equation defined previously as

| S SR N/ ) (1.723)
n = 7y ST = cr — her . .
14 n VvVEEIT

=ker
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The graph of buckling relation (1.723) and for buckling coefficient k., is shown
in (Figure 1.130 c)).

Recall that for a column in the air (no elastic restraining along the axis of
the column), the critical load decreases monotonically with the increase of the
column length. On the contrary, for a column bonded to an elastic foundation,
the critical load does not decrease monotonically with the increase of the length.
For instance, for £ > 3 (Figure 1.130 c)), the critical load becomes practically
constant and equal to

P.. ~ 2VkEI. (1.724)

In general, the critical load will be given by

Po = ke VEET (1.725)

where the stability coefficient?®6 k.. = P is provided by the graph in figure (1.130
c)).

Note that the relative elasticity of the foundation S plays a critical role:
for 0 < k < 4 the beam buckles in one half-wave. Two half-wave appear for
4 < k < 36 for a bit higher critical load (Figure 1.130 a) & b))). This mode
transition phenomenon is sometimes called by mode switching. Increasing the
relative stiffness of the foundation lead to wrinkling®®” of the surface because of

mode accumulation.

Figure (1.131) illustrates an example of buckling modes that a column on elastic
foundation may have. It is a result of linear buckling analysis done using FEM?258.
The FE-analysis will be presented in details in a dedicated subsection. The idea
of providing, already now, the figure was just to give a picture and to open more
the appetite of the reader.

Other types of boundary conditions

For cases other than simply supported for both ends, one should obtain a general
complete solution of the ODE (1.708) through standard solution procedure for
differential equations with constant coefficients

oW 4+ 2" + b0 =0 (1.726)

266Nurjahduskerroin, lommahduskerroin (sf).

267This problem of wrinkling is closely related to the surface instability problem of Biot.

268Tmportant note: It is about dimension reduction and use of correct physical param-
eters in only are known the beam properties : ¢, EI, kpeam [N/m.m]. The beam in this
example was modelled by a narrow thin plate on an elastic foundation. So what will be
the corresponding foundation spring coefficient to be used in the narrow plate model?
The width of the plate was b and its length ¢ equal the length of the beam. The founda-
tion spring coefficient kpqre (Spring constant per unit area) [N/m.m?]. So, the relation
Epiate = Kkveam /b holds. To cross-check this result, compute the resultant of foundation
reactions in both cases for a constant and uniform deflection wo: Rpeam = KpeamWol and
Rplate = platewobf' Equating Rycam = Rplate - kplate = kbeam/b~
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Buckling of axially compressed
column on elastic foundation

sapow 3uipong

Figure 1.131: Example of buckling modes of a column bonded to an elastic
foundation. The number of half-waves, n, increases with increase of the

. . 4
relative stiffness parameter 5 = %%

where p? = P/EI and b* = k/EI Tt comes out that to have a canonical and clean
treatment of the general solution for all cases, one have to rewrite the above ODE
using notation?%?

2
2 P _ Pk
o= = oo b =7 (1.727)
The general solution of (Equation 1.726) is the standard basis
v(z) = Ae"™. (1.728)

269Gee M. Tuomala. Rakenteiden Stabiilisuusteoria. Lecture notes (in Finnish).
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Once one solves the roots 7; , te full solution will be constructed as

4
v(x) =) A" (1.729)
=1

Inserting the trial into the ODE one obtains the bi-quadratic characteristic equa-
tion
4+ 2a%r% + b1 =0, (1.730)

with solution
r? = —a® £Va* — bt (1.731)

Next the general solutions will be discussed as function of the sign of the dis-
criminant A = a* — b*.

e A > 0, the roots are

rp=4iVa2 VA i=1,...,4 (1.732)
2

where i* = —1 and r; = —ry = ik, r3 = —ry == ike. and the general
solution is

v(z) = ¢1 cos kix + C2sin kyx + Cs cos kox + Cy sin kox (1.733)
where (ky, ko) = \/a? £ VA.
e A =0, the roots are
r1 =13 =1b, 19 = 14 = —Iib. (1.734)
and the corresponding general solution

v(x) = (Crz + C3) cos bz + (Csx + Cy) sin bx. (1.735)
e A <0, the roots are

r; = +iVa?2 FivV-A,i=1,23,4. (1.736)
Let’s define (ky, ko) = vb2 & a2/v/2. Then we have
ri =tk + iks. (1.737)
and the corresponding general solution
v(z) = A1e"? + Age™" + Age”T 4 Aye’? (1.738)
or in a equivalent but more practical form for computing

v(z) =C1 cos kyx cosh kox + Co sin kyx cosh koz+ (1.739)
+C35 cos kix sinh kox + C4 sin k12 sinh ko (1.740)
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Buckling of a column on elastic foundation - a summary

This section is some kind of summary for the previous subsection above. In
textbooks, usually, repetitions are avoided or even banned. The following, ap-
proximately one and a half page length, subsection is a such repetition. I found
a summary resuming solutions of buckling of columns on elastic foundation?°
that I decided to share an adaptation of it with the student readers. Repetitio
est mater studiorum?®™! the Latin proverb (This proverb exists in all languages).
So let’s start.

Assume constant k£ and EI, the basic buckling equation is the well-known
forth order ordinary differential equations with constant coefficients

P k
o =+ 2z =0 (1.741)
4
o
where A}, = P/EI (= p?) and 8 = 4k/EI (= 4b*)*™.

o™® 423" + 0 (1.742)

Recall the general solutions:
L4 )\P > /Bku
v(z) = C1 cos px + Cy sin px + Cs cos qr + Cy sin gz (1.743)
p=3 5N - B & a= 5N+ 5 - 5N -
L >\P < Bka
v(x) = C; cosh px + Cy sinh px + Cj5 cosh gz + Cy sinh gz (1.744)
p=3\ Vb AR5\ & a= 5N+ A - 3/0R - 0%
e \p= /Bkv
v(z) = (C1 4+ Cax) cos ()\k/\/i) + (C5 4+ Cyz) sin (AU\@) (1.745)

To close the problem, boundary conditions should be specified.

Example - buckling of a clamped beam on elastic foundation

Determine the buckling load for te pile shown in margin. Consider only the case
with A = a* —b* > 0. It can be shown that for other cases, there will be no
bifurcation. Let’s recall that

270[Chap. 4.5] in: Wai-Fah Chen, Toshio Atsuta Theory of Beam-Columns, Volume 1:
In-Plane Behavior and Design. J. Ross publishing (2008). (First published in 1976 by
Mec-Graw-Hill)

2T1Repetition is the mother of learning.

2"2Notation p and b are those of previous subsection.
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=, b=_—. (1.746)
For this case we have previously obtained the general solution as

v(z) = Cy coskix + Cysin ki + C3 cos kax + Cy sin kox (1.747)

where (ki1, ko) = \/a2 = V/A. The boundary conditions are

v(—L) =v(L)
V'(=L) ='(L)

0, (1.748)
0. (1.749)

Accounting for the four boundary conditions on obtains

coskiL sin ky L cos koL sin ko L C4
cos k1L —sink; L cos koL —sinkoL | |Cy
—ki1sinkiL kycoskiL —kosinkoL kocoskoL| |Cy
kisinkiL kicoskiL kosinkoL kocoskoL| |Cy

(1.750)

o O O O

The criticality condition (zero determinant for non-trivial solution) will provide
the critical load. Instead of solving the above four equations in once, we con-
sider separately the symmetric and antisymmetric buckling cases for which the
corresponding critical load will be solved. Then the smallest critical load from
the two will be critical buckling load of the complete problem.

Symmetric buckling: The above four equations simplify to two for a symmet-
ric buckling mode. So, because of symmetry Cy = C4 = 0 and the system of
equations simplifies to

coski1L cos koL Ci| |0
k‘l sin k’lL ]{2 sin kQL] |\C;| o |f;| ) (1'751)
Finally, non-trivial solution (zero determinant) gives
| f(k1L, ko L) = kaLtan ki L — ko Ltan ky L = 0}, (1.752)

The smallest positive zero gives P, for this case. The equation above is ’easier’
to solve graphically. For this purpose, let express the arguments k; L and koL in
the characteristic equation (zero determinant) in more tractable form as

(k1L)? =17 kEL;[l -, (1.753)
(k2L)* =17 k—ﬁ[l + 77, (1.754)
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where n = n(P,,) = Py/P, with Py = 2V/kEI. Inserting the above definition into
Equation (1.752) on obtains the non-triviality condition rewritten in function of
a non-dimensional argument 7 as

kL*
fF 7)) =0 (1.755)

where kL*/(EI) plays the role of a parameter that should be supplied. Now
the smallest critical load P, correspond to the smallest positive zero 7. of the
function f. Naturally, it comes out that it is easier to find the roots graphically
by drawing the graph of f(n) as function of the scalar n = 0 : An : max(n) (for
instance, one may chose max(n) = 10...100).

Antisymmetric buckling: Now we obtain (C; = C3 = 0)

sin k1L sinkoL | [C2| |0
lkl coskiL ks coskng [CJ = lol ) (1.756)

where the critical load P, is found as the smallest root of

|g(k1L,ksL) = ki Leot ky L — ks Leot by L = 0}, (1.757)

As was done previously for the symmetric buckling case, the smallest critical load
will be found from the smallest root 7., of

kL*
g(m; ﬁ) =0. (1.758)

Finally the smallest critical load from the two symmetric and antisymmetric cases
will be the buckling load. This buckling load will be expressed in the form

Py = p-2VkEI|, (1.759)

where the numerical value of y is found from the smallest root of the determi-
nants.

Numerical application Lets fix some values for kL*/EI in order to finalise
the numerical solution of this example. Assume that the relative stiffness of the
foundation and the beam bending rigidity is such that the parameter kL*/ET =
274, Graphical solution of Equations (1.752 & 1.757) gives the smallest root as
Ner = 0.4173%73 and it corresponds to the antisymmetric mode (Figure 1.132).
Therefore the buckling load will be

Por = P/t = 2.4 - 2VKET, (1.760)
H Py
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Criticalitg_conditlon: _§e_a_m on elastic _foundation
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Figure 1.132: The zeros of the determinant for the buckling of a column on
elastic foundation.

where Py = 2v kFEI corresponds to the limit case of buckling of simply supported
beam on elastic foundation. Note that the buckling mode corresponding to the
smallest critical load is antisymmetric since there is only one root of the deter-
minant and which correspond to this mode. The Matlab-code used too draw the
graphs is also provided in Figure (1.133).

Often, even as an engineer, it is valuable to be able to reduce a complex prob-
lem to the essential in order to obtain the key parameters deciding of some key
behaviour aspects. For that, one need then to solve the reduced problem exactly
analytically or approximately analytically. When analytical solutions are not
possible, hand-size numerical solutions are the solution. Rayleigh-Ritz method,
a powerful one, is already known to the reader. In the following two subsec-
tions, we will present two additional such numerical methods which conserve the
analytical parameters of the specific problem (the handles of the problem: the
dimensionless groups I-numbers*™.) and at the same time which result in a
tractable and solvable numerical eigenvalue problem. The methods are: 1) Fi-
nite element method (FEM) and 2) Finite difference method (FDM). Note that
the FEM meant here is not a software but a handy calculation procedure. No
need to re-write badly Abaqus®”® or similar well-established software. Examples

273 This result should be cross-checked. I have not yet done it!
2™ Good to read on the Buckingham Pi- theorem
275SIMULIA Abaqus.
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. Buckling_elastic_foundation example_1.m 3 | buckling beam_elastic_foundation_curves.m %
R R 1 s ik e e )
2 =5
3 of a column on elastic foundation
L] % Both ends are clamped {jdykkakiinnitys - molemmat pait)
5 %
& & e e S e
7 % eta [2 agrt(k )1 P
8 % == Pcr = [2 sgrtlk ® ET)] / eta
5 N ms - e
10— eta = 0:0.001:10;
11
12 = KL4_EI = 2* pi~4;
13— kl L sq = eta .* (agrt(KL4_EI)) .* ( 1 - agrt(l - eta .* eta)
4T k2 L =g = eta .* (agrt(KL4_EI}) .* {1 + agrt(l - eta .* eta)
15
16 = kl_L = sqrt(kl L aq):
17 = k2 L = sqrt(k2 L ag):
18
19 % Determinant is zero: det = ) ===>
20—~ f =kl L .* tan(kl L) - k2_L .* tan(k2 L)z
21- g=klL .* cot(kl L) - k2 L .* cot(k2 L}:
22
23 F —
24— figure
25 = plot (eta, f£,'r-*);
26— hold on
XY = plot(eta, g, 'k=")s
28 = grid on
28 = legend("f (symmetric mode}';'q (antisymmetric mede)',"\eta (cr)')
30— xlabel ('nta')
- ylabel('f(\eta), g(\eta)'})
A title(' Criticality condition: Beam on elastle foundation')
33 % SO ] R e s

Figure 1.133: The Matlab-code to determine the zeros of the determinant
for the buckling of a column on elastic foundation of Figure (1.132).

will be provided.

1.12.11 Discrete energy method - FEM

Assume a beam-column under centric thrust causing the internal axial force
NO(x) to equilibrate. The compression is thought here positive. For instance,
in case of end compression load P = —N%(z) > 0. During buckling, we con-
sider only change in the flexural strain energy of the beam and consequently, the
additional strain energy change in the elastic foundation. Consider a column of
length L discretized into elements of length #(¢). The element e has two nodes
with two degrees of freedom per node: transversal displacement v and rotation
f. Note that, when not necessary, and to make lighter notation, the superscript
(e) will be dropped.

For Euler-Bernoulli beam of constant EI, the cubic Hermite polynomials
solve exactly the classical homogeneous equation of equilibrium without elastic
foundation (k = 0). Let’s use these polynomials as a basis function set (shape
functions) for the problem of the buckling of the beam bonded to elastic founda-
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tion. Recall Hermite shape functions (Figure 1.134):

Ni(z) =1 —3(x/0)* + 2(x/0)?, (1.761)
No(z) = z(1 — z/0)?, (1.762)
N3(z) = 3(z/0)? — 2(x/€)3, (1.763)
Ny(x) = z((z/0)* — x/¢) (1.764)
as shape functions (Figure 1.134) Note that one obtains the exact elementary

Hermite cubic shape functions for EB-beam

12

-'Vl JVS
0.8

0 0.2 0.4 0.6 0.8 1
x/L

Figure 1.134: Hermite cubic splines.

linearised stiffness matrix for bending only (k = 0), K£B) will be

12 6/ —12 6/
(B _ ET |60 4* —60 20°
Kpo = B |=12 —6¢ 12 —6¢ (1.765)

60 202 —60 442

and the consistent stiffness matrix from the elastic foundation

26 114/3 9 ~13¢/6
(P k€| 116/3  20%/3 130/6  —(*/2
Ki'=% 9 13¢/6 26 —114/3 (1.766)
—13¢/6 —(2/2 —114/3 20%/3
and the geometric elementary matrix is
36 3¢ —36 3¢
P |30 4? -3¢ —1?
Ke="300 136 -3¢ 36 -3¢ (1.767)

3¢ —02 30 442
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where P = —NY(z) for compression.

Some times instead of using the consistent fiull siffness marix of the foun-
dation (Equation 1.766), it is better to use its lumped version obtained by an
integration scheme leading to a giagonal stiffness matrix. Physically, this means
that rotational contributions are ignored and only deflectional component are in-
corporated. This is indeed, the primary idea of the physics of Winkler foundation
in the equation r(z) = kv(z) - deflection v(xy) at neighbour points do not affect
the reaction r(z;) at point x; where i # k. So, the diagonalised stiffness matrix
from the elastic foundation

k(") — H

5 (1.768)

O O O
o O O O
o = O O
o O O O

The above elementary matrices KI(JF), KI(JF) and K¢ are obtained by exactly

integrating the elemental integrals of the stability energy criterion given by the
weak form below. For pedagogical purpose, the explicit procedure of obtaining
elementary matrices is done in Matlab symbolic toolbox and is provided here for
those interested (Figure 1.135).

The starting point for deriving the elementary matrices above is the total poten-
tial energy functional (1.704) or more directly, its variation which is known as
Virtual Work Principle. The idea is the write the variation of the total functional
as a sum over the elements

N o(e) o)
J(AID) = Z ; EIV"(2)6v" + kv(x)év(x)dx + ; NO(z) v/ (z)0v' (x)dz| =0
e=1 —Pv<€>
(1.769)
N

¢(e) o(e)
= [ EIV"(2)6v" + kv (x)0v(x)de — P©) / v/(m)év’(a})dx] =0
e=1 L70 0

(1.770)

N o) o)
= 3 ()T / N"T(z) EI -N"(z)de + [ NT(2) k- N(z)de+
0 0

KiB) K£F)
(1.771)

- N'"(z) - P . N'(z)dz| al® = 0, vsa'® (1.772)
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where P(®) = —NO(z) (compression P(e) > 0 ) and N°(z) being the membrane
stress-resultant in the element number e. The element matrices are shown in
the under-braced terms of the weak form. Note that the axial force P, in the
geometric stiffness matrix, plays formally the role of an effective ’stiffness’ when
comparing with bending and foundation terms. The transversal displacement
being approximated locally as

v (z) = Zqﬁi(a:)age) = N(z)al®, (1.773)

where the number of degrees of freedom per element, being M = 4 and the nodal
degree of freedom vector being

a(e):{vl 91 V2 92.}T (1.774)

The shape functions N(z) = [Ny(z) Na(x) N3(x) Ny(x)] being now the the ana-
lytical solution for the classical bending problem of Euler-Bernoulli beams. In
other words, Hermite cubic splines (polynomials) are used as shape functions
to achieve the needed C'-continuity.

Some words of explanations for for the transition from the weak form (virtual
work principle) to the discretized FE-form: According to Galerkin approach,
the arbitrary variation dv(x) is chosen locally within each element e as

Sv(x) = N(z)6a'®), (1.775)

where N;(z) are the shape functions in Equation (1.773). In other words the
shape functions and the variations (or test functions) are the same. (The reader
is encouraged to refer to some Basic textbooks?”® on Finite Element Method).

Diagonalized foundation stiffness matrix: For the diagonalised stiffness
matrix version of the foundation KiF), the result (1.768) is obtained using the

following thought. Let’s integrate the elementary contribution of the foundation

¢(e)

(A | = / ko(2)5o(z)dz (1.776)
0

to the total strain energy such that convergence is ensured. For that, it is enough

to ensure at least a piece-wise constant integrand. Here, we use a piecewise linear

approximation of the deflection v(z) = Na(®) for the contribution of the integral

in (Equation 1.776). Using for the foundation displacement approximation

A,

Np=[1-2/t 0 2/t 0] (1.777)

276The classical: O. Zienkiewicz, R. Taylor & J.Z. Zhu. The Finite Element Method:
Its Basis and Fundamentals. 7th Edition. 2013. (1st Ed. 1967 published by Mc-Graw-
Hill)
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and test functiondv(z) = Néal® where al® being the full elementary nodal
degrees of freedom vector given by Equation (1.775). One can, of course, use a
more harmonious approach and keep the same shape and test functions for all the
terms in the weak form. The diagonalisation of the foundation stiffness matrix
being achieved by performing an under-integration?””.

Deriving elementary matrices using computer algebra: Bellow an exam-
ple of how to use Symbolic toolboxes (Matlab) or any other Computer Algebra
tools to derives elementary matrices (1.135). The elementary matrices are re-

55 1 S S
5§ % shape function matsix - Hermite polynomials

oz fn = (KL HZ W3 W4]:

58 17715t ¢ skcond derivatives of Fifxl, L= 1...4
58 '

6~ Al W(x, L) = simplify[ difC(N, x) }:

6l - Az Wfx, L) =  simplify( dLCC{d) M, x) ):

&
63 A lst decivacives of Ni(x), 3 = 1...4
o " —
[

T - ' 1B =~ simplify{ int( d2_M(x,

76 - EX_LF = asimplify( int( Wiz, 3 , § Bix, L), =, [0, LI} }&
n- EE G = mimplify{ dnt{ dl_N{x, L)' * P * dl N{x, L}, = [0, LI} )¢
™ L]
8 A END elementary macrices lel
6 f N(z) - BT - N"(z)dz -
.0
| a K™
74 L1 —- = #e)
75 — EK LB = aimplify( int( d2 M(x, L)' * EI * d2 N(x, L), x, [0 L] ) }4 f N{z) - k- N(x)dz-
76 - EK LF = simplify( int{ N(x, L)' " k * N(x, L), x, [0, L]) ):4me®
7 - 'EK G = simplify( inc( dl N(x, L)* * P * dl N(x, L), =x, [0, LI} };: K"
78 ] i
Finite Element Method L
| 2. Pl N Ords
The Elementary Matrices programmed in iL N'(z) - P N'(x)dz
Matlab Symbolic Toolbox Benddng Elastie, fusdtion FEM._ itmbobe, MATRICES dbami16.12000) O 12'3

Figure 1.135: Example of Matlab-code to determine symbolically the ele-
ment matrices.

written explicitly to show how they are derived in a Matlab symbolic toolbox

o(e)
K® = / N""(z)- EI - N"(z)dz, (1.778)
0
” ¢(e)
K\ = NT(z) - k- N(z)dz, (1.779)
0
¢(e) T
Kg = — N’ (z) - P . N/(z)dz. (1.780)
0

and an example of the script used for the determining the term (Kg)i2 (1.135)
is provided: The shape functions and their derivatives:

2T"We will come back to this point later (TO DO).
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% Hermite cubic splines in physical coordinates
% for Euler-Bernoulli beam

Ni(x, L) = 1 -3 * (x/L).”2 + 2 * (x/L).”3 ;
N2(x, L) = x .*x (1-x/L)."2 ;

N3(x, L) = 3*%(x/L).72 - 2% (x/L)."3 ;

Nda(x, L) = =x .*x ( (x/L).”2 - x/L ) ;

The elementary stiffness and geometrical matrices

% __________________________________________________________________

% shape functions and derivative matrices - Hermite polynomials

% __________________________________________________________________

N = [N1 N2 N3 N4];
dli_N(x, L) = simplify( diff (N, x) );
d2_N(x, L) = simplify( diff(d1_N, x) );

% __________________________________________________________________

% Elementary matrices - symbolic integration

% __________________________________________________________________

EK_LB = simplify( int( d2_N(x, L)’ * EI * d2_N(x, L), x, [0 L] ) );
EK_LF = simplify( int( N(x, L)’ * k =* N(x, L), x, [0, L]) );
EK_G = simplify( int( d1_N(x, L)’ = P * di_N(x, L), x, [0, L1) );

which finally results in the following elementary matrices below

The elementary matrices (Figure 1.136) are the result of the symbolic integration
by the script programmed in the Matlab symbolic toolbox. Sometimes, it is useful
to use the help of such computer algebra, at least from cross-checking.

In the following two examples of application of the above ’pocket-size’ FE-approach
will be shown.

Other numerical approaches as Rayleigh-Ritz or finite difference method can
be also used to solve approximately various problems of stability. It should
be reminded that our purpose here is not to compete with full well-established
Finite Element Software but to gain conceptual understanding of stability
behaviour of structures®’®.

2"8Deriving formulae forces us to create meta-concepts which are the "handles’ for un-
derstanding and doing correct structural analysis and design. Recall that one you solve
a stability problem by a 3D-FE model, in some computer software, you will obtain only
real numbers mapped to 3D nodal or integration points. No true understanding is pos-
sible through numbers only. For instance, the meta-concepts or phenomena, known to
you as lateral-torsional buckling, torsional buckling, 