
Kuva 2.17. A thin-walled cross-section.

2.9 Torsion of beams with open thin-walled cross-sections

2.9.1 Sectorial coordinate

Consider a thin walled beam cross-section of arbitrary shape where the wall thickness
is small as compared to the other measures of the cross-section shown in Figure 2.17.
The origin of the global coordinate system x, y, z is located at the center of gravity of
the cross-section, and the axial coordinate x coincides the beam axis. The coordinate s
is chosen to coincide with the centerline of the cross-section. Then, an arbitrary point
Po is chosen for the origin, and point A for an estimation for the shear center or a pole.
The sectorial coordinate ω̂A is defined according to Figure 2.17 as a gradient

dω̂A = ±hA(s)ds (2.68)

where the subscript A refers to the pole and the superscript hat to the estimation of the
sectorial coordinate, determined with respesct to the arbitrary point Po. The definition
of the gradient of the sectorial coordinate can be expressed also as the projections in the
direction of the global coordinate axes

dω̂A = −(z − zA)dy + (y − yA)dz (2.68a)

The same definition can still be given as the length of the vector parallell to the beam
axis, which is obtained as the vector product of of the position vector from point A to
point Po, and the tangent vector of the centerline d~s on the cross-section plane

d~̂ωA = (~rP − ~rA)× d~s (2.68b)

where the vectors utilized are ~rP − ~rA = (y − yA)~j + (z − zA)~k ja d~s = dy~j + dz~k. Or
further, as the doubled area of the shaded triangle in the figure according to the definition
of the vector product of two vectors.
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Figure 2.18. The sectorial coordinate ω̂B(s).

The sectorial coordinate can be determined by utilizing the definition and direct
integration and using the point Po as the origin, when

ω̂A =

∫ P

Po

dω̂A = ±
∫ P

Po

hA(s)ds = −
∫ P

Po

[(z − zA)dy − (y − yA)dz] (2.69)

As an Example, we define the distribution of the sectorial coordinate for a U-profile
shown in Figure 2.18, when point B is used as a pole, and point Po, the free end of the
upper flange, as the origin of s coordinate. Sectorial coordinate at the interval 0 ≤ s ≤ 3b
is

ω̂B(s) =



∫ s

0

b

2
ds =

b

2
s, kun 0 ≤ s ≤ b

ω̂B(b) +

∫ s

b

b

2
ds =

b

2
s, kun b ≤ s ≤ 2b

ω̂B(2b)−
∫ s

2b

3b

2
ds = 4b2 − 3b

2
s, kun 2b ≤ s ≤ 3b

Consider next, how the distribution of the sectorial coordinate will change, if the
pole is relocated, for example at point A. Thus we can write very generally by applying
directly the definition

ω̂A =−
∫ P

Po

[(z − zA)dy − (y − yA)dz]

= −
∫ P

Po

[(z − zB + zB − zA)dy − (y − yB + yB − yA)dz]

= −
∫ P

Po

[(z − zB)dy − (y − yB)dz]−
∫ P

Po

[(zB − zA)dy − (yB − yA)dz]

= ω̂B − (zB − zA)(y − yo) + (yB − yA)(z − zo)

(2.70)

Let’s define now the sectorial coordinate for the U-profile by using as the pole point
C, at the corner of the upper flange and the web. Thus, zB − zC = b

2 ja yB − yC = − b
2
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Figure 2.19. Sectorial coordinate ω̂C.

and we get

ω̂C =



b

2
s− b

2
0 + (− b

2
)s = 0, kun 0 ≤ s ≤ b

b

2
s− b

2
(s− b) + (− b

2
)b = 0, kun b ≤ s ≤ 2b

4b2 − 3b

2
s− b

2
b+ (− b

2
)(3b− s) = 2b2 − bs, kun 2b ≤ s ≤ 3b

This distribution is shown in Figure 2.19.

2.9.2Axial displacement and stress distributions

V.Z. Vlasov derived already in the 1950s the theory for the torsion of open thin-walled
beams or girders. He assumed that no shear strain will take place at the centerline of
the walls, or

γxs = 0 (2.71)

Consequently, no shear flow, similar to closed ring-type cross sections, doesn’t appear.
On the base of the definition of the shear strain it is obtained

γxs =
∂u

∂s
+
∂us
∂x

= 0 =⇒ ∂u

∂s
= −∂us

∂x
(2.72)

From this, it can be deduced that according to Figure 2.20, the displacement us is

us = hA(s)ϕ(x)

and thus
∂u

∂s
= −∂hA(s)ϕ(x)

∂x
= −hA(s)ϕ′(x) (2.73)

If at point Po the axial displacemnet is zero, it is obtained by interating directly

u =

∫ P

Po

∂u

∂s
ds = −

∫ P

Po

hA(s)ϕ′(x)ds = −ω̂A(s)ϕ′(x) (2.74)
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Figure 2.20. Rotation of the cross-section.

The normal or axial strain is obtained according to the definition by differentiating

εx =
∂u

∂x
= −ω̂A(s)ϕ′′(x) (2.75)

and the normal stress by adopting the one-dimensional linear elasticity as the material
model

σω̂ = σx = Eεx = −Eω̂A(s)ϕ′′(x) (2.76)

When the loading of the beam consists of pure torsion only, the equilibrium equation
states

N ≡
∫
A

σω̂dA = 0 =⇒
∫
A

ω̂AdA = 0 ⇐⇒ SωA = 0 (2.77)

If the condition SωA = 0 is valid, the distribution of the sectorial coordinate is called
normalized. Further, according to the equilibrium equations it is obtained

My ≡
∫
A

σω̂zdA = 0 =⇒
∫
A

ω̂AzdA = 0 ⇐⇒ Iω̂Az = 0

Mz ≡
∫
A

σω̂ydA = 0 =⇒
∫
A

ω̂AydA = 0 ⇐⇒ Iω̂Ay = 0

(2.78)

These two conditions determine the location of the shear center of the cross-section.
By inserting the expression of the sectorial coordinate, the location of the shear

center will be calculated from the equations

Iω̂Ay =

∫
A

ω̂AydA

=

∫
A

ω̂BdA− (zB − zA)(

∫
A

y2dA− yo
∫
A

ydA) + (yB − yA)(

∫
A

yzdA− zo
∫
A

ydA)

= Iω̂By − (zB − zA)(Iz − yoSz) + (yB − yA)(Iyz − zoSz)
(2.79a)

Correspondingly, the equation

Iω̂Az = Iω̂Bz − (zB − zA)(Iyz − yoSy) + (yB − yA)(Iy − zoSy) (2.79b)
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is derived. When we will take still into account that the origin of the yz coordinates is
located at the center of gravity of the cross-section, giving the conditions Sy = Sz = 0, it
is obtained by requiring the disappearance of the two equations (2.79a,b) the coordinates
of the shear centre

yA = yB +
IzIω̂Bz − IyzIω̂By

IyIz − I2
yz

zA = zB −
IyIω̂By − IyzIω̂Bz

IyIz − I2
yz

(2.80)

If the yz-coordinates are in addition principal coordinates of the cross-section, when
Iyz = 0, the simple expressions are obtained

yA = yB +
Iω̂Bz

Iy

zA = zB −
Iω̂By

Iz

(2.81)

Normalization of the sectorial coordinate is done by applying the condition

SωA
=

∫
A

ωAdA = 0 (2.82)

When we take into account that the surface integral in the definition of the sectorial
coordinate can be split into pieces so that

ωA(s) =

∫ P

Po

dωA =

∫ P

P′
o

dωA −
∫ Po

P′
o

dωA = ω̂A(s)− ω̂A(so) (2.83)

When this is inserted into the expression (2.82) it is obtained

SωA
=

∫
A

ω̂AdA− ω̂A(so)A = Sω̂A
− ω̂A(so)A = 0 (2.84)

From this , the location of the origin Po of coordinate s can be determined

ω̂A(so) =
Sω̂A

A

and finally, the expression for the sectorial coordinate is reached.

ωA(s) = ω̂A(s)− Sω̂A

A
(2.85)

Illustrative example

The task is to determine the location of the shear center and the origin of s-
coordinate for a U-profile, and then the distribution of the sectorial coordinate. In
addition, we will determine the diagram of the sectorial static moment and the warping
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Figure 2.21. Determining the shear center of a thin-walled cross-section.

constant of the cross-section. The distance between the web of the cross-section and the
centre of gravity is

3bt · e = 2bt · 1
2 b =⇒ e = 1

3 b

The second moments or moments of inertia are correspondingly

Iy = 1
3 b

3t

Iz = 7
12 b

3t

Next, we calculate the sectorial product moments

IωBy =

∫
A

ωBydA =

∫
s

ωB(s)y(s)tds

IωBz =

∫
A

ωBzdA =

∫
s

ωB(s)y(s)tds

In Figure 2.21, the diagrams of ωB(s), y(s) ja z(s) are presented. When calculating
line-integrals, various practical tables can be used. We get

IωBy =
1

2
b
b2

2
(− b

2
)t+

b

6
[
b2

2
(−2

b

2
+
b

2
) + b2(− b

2
+ 2

b

2
)]t+

b

2
(b2 − b2

2
)
b

2
t =

b4t

24

IωBz =
1

6
b
b2

2
(−2b

3
+ 2

b

3
)t+

b

2
(
b2

2
+ b2)

b

3
t+

b

6
[b2(2

b

3
− 2b

3
)− b2

2
(
b

3
− 2

2b

3
)]t =

b4t

3

Now, y, z are the principal coordinates, when the coordinates of the shear centre are
obtained by using the definitions

yA = yB +
IωBz

Iy
= −b+

b4t/3

b3t/3
= 0

zA = zB −
IωBy

Iz
=

5

6
b− b4t/24

7b3t/12
=

16

21
b

Now, when the location of the shear centre is known, the sectorial coordinate is
determined by using the shear centre as the pole. By applying the definition directly, we
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Figure 2.22. Sectorial coordinate ω̂A.

get

ω̂A(s) =



∫ s

0

− b
2

ds = − b
2
s, kun 0 ≤ s ≤ b

ωB(b) +

∫ s

b

3b

7
ds = −13b2

14
+

3b

7
s, kun b ≤ s ≤ 2b

ωB(2b)−
∫ s

2b

3b

2
ds =

13b2

14
− b

2
s, kun 2b ≤ s ≤ 3b

which is depicted in Figure 2.22.

The integral due to the sectorial first moment over the whole cross-section takes the
value

Sω̂A =

∫
A

ω̂AdA =

∫
s

ωA(s)tds

=
1

2
b(−b

2

2
)t+

1

2
b(−b

2

2
− b2

14
)t+

1

2
b(− b

2

14
− 8b2

14
)t = −6b3t

7

Now, the final diagram of the sectorial coordinate is obtained by normalizing

ωA = ω̂A −
Sω̂A

A
= ω̂A −

−6b3t/7

3bt
= ω̂A +

2

7
b2

and the sectorial coordinate diagram is finally

ωA(s) =



2

7
b2 − b

2
s, kun 0 ≤ s ≤ b

− 9

14
b2 +

3b

7
s, kun b ≤ s ≤ 2b

17

14
b2 − b

2
s, kun 2b ≤ s ≤ 3b

It is presented in Figure 2.23.

We determine still the distribution of the sectorial first moment of the cross section
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Figure 2.23. Sectorial coordinate ωA.

SωA . It is obtained by direct integration

SωA
(s) =

∫ s

0

ωA(s)tds

=



∫ s

0

(
2

7
b2 − 1

2
bs)tds =

2

7
b2ts− 1

4
bts2, kun 0 ≤ s ≤ b

1

28
b3t−

∫ s

b

(
9

14
b2 − 3

7
bs)tds =

13

28
b3t− 9

14
b2ts+

3

14
bts2, kun b ≤ s ≤ 2b

1

28
b3t+

∫ s

2b

(
17

14
b2 − 1

2
bs)tds = −39

28
b3t+

17

14
b2ts− 1

4
bts2, kun 2b ≤ s ≤ 3b

Figure 2.24. Sectorial first momenti SωA
(s).

and it is depicted in Figure 2.24. The warping constant Iω is

Iω =

∫
A

ω2
AdA =

∫ 3b

0

ω2
A(s)tds =

5

84
b5t
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Figure 2.25. Equilibrium of a wall element.

2.9.4 Sectorial shear stresses

Consider an element cut out of the wall of an open thin-walled girder under torsion
without volume forces, presented in Figure 2.25. In figure, all the stress components
parallel to the beam axis are presented. The equilibrium between them gives

(σωt+
∂(σωt)

∂x
dx)ds− σωtds+ (τωt+

∂(τωt)

∂s
ds)dx− τωtdx = 0

The shear stresses take the form

∂(τωt)

∂s
= −∂(σωt)

∂x
= EωA(s)ϕ′′′(x)t(s)

of which we get by integrating

τωt− τω(0)︸ ︷︷ ︸
=0

t(0) = Eϕ′′′(x)

∫ s

0

ωA(s)t(s)ds = Eϕ′′′(x)SωA
(s)

Consequently,

τω(s) = Eϕ′′′(x)SωA
(s)

1

t(s)
(2.86)

The shear stresses due to Saint Venant eli vapaan väännön leikkausjännitykset ovat
puolestaan

τt(s) = ±Gϕ′(x)t(s) (2.87)

and the total shear stress distribution is the sum of both of these

τ(s) = τω(s) + τt(s) (2.88)

Under torsion only, the stress resultants

N = Qy = Qz = My = Mz ≡ 0
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must disappear. Instead, the external torque loading Mx has to be in equilibrium with
the internal shear stress resultants. The external loading will generate in the beam shear
stresses of Saint Venant and warping analyses. The torque resultant for warping stresses
Mω is obtained by considering the equilibrium at the cross section plane and utilizing
the expression (2.86) when we get

Mω =

∫
A

τωhAdA = Eϕ′′′(x)

∫ s`

0

SωA(s)hA(s)ds (2.89)

Performing once the integration by parts with

dωA(s)

ds
= hA(s)

dSωA
(s)

ds
= ωA(s)

we get

Mω = Eϕ′′′(x)

[ [
SωA(s)ωA(s)︸ ︷︷ ︸

]s=s`

s=0

=0

−
∫ s`

0

ωA(s)t(s)ωA(s)ds

]

= −Eϕ′′′(x)

∫
A

ω2
A(s)dA = −EIωϕ′′′(x)

(2.90)

because SωA
(0) = SωA

(s`) = 0. Thus, the shear stresses due to warping torsion are of
the form

τω(s) = −MωSωA
(s)

Iωt(s)
(2.91)

Saint Venant shear stress resultant is correspondingly

Mt = GItϕ
′(x)

and shear stress distribution

τt(s) = ±Mtt(s)

It
(2.92)

The total resultant, equilibrating the external loading, is thus the sum of these

Mx = Mω +Mt = −EIωϕ′′′(x) +GItϕ
′(x) (2.93)

For the bimoment B, the definition is obtained on the base of equation (2.76)

B =

∫
A

σωωAdA = −Eϕ′′(x)

∫
A

ω2
AdA = −EIωϕ′′(x) (2.94)

and from this further, the expression for the axial or warping stresses as expressed by
the bimoment

σω(s) = −B
Iω
ωA(s) (2.95)
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Figure 2.26. Equilibrium of a beam element.

Finally, it is useful to observe that the connection between the bimoment and the torque
due to warping torsion is

Mω =
dB

dx
(2.96)

2.9.4 Equilibrium of a beam element

Consider generally an element of length dx cut out from a beam under torsional loading,
shown in Figure 2.26. The equilibrium of this element states

Mx +
dMx

dx
dx−Mx +mt(x)dx = 0

when we get
dMx

dx
+mt = 0 (2.97)

According to (2.93), the total torque is the sum

Mx = Mω +Mt = −EIωϕ′′′(x) +GItϕ
′(x)

and by inserting this into the equilibrium equation it is obtained

EIωϕ
′′′′(x)−GItϕ′′(x)−mt(x) = 0 (2.98)

Dividing the equation by the warping stiffness, the equation takes the form

ϕ′′′′(x)− k2

`2
ϕ′′(x) = f(x) (2.99)

where

k = `

√
GIt
EIω

ja f(x) =
mt(x)

EIω

Equation (2.99) can be expressed by utilizing the definition of the bimoment also in the
form

B′′(x)− k2

`2
B(x) = mt(x) (2.100)

11
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Solving these equations is categorized into three different cases depending on the mutual
value of the torsional stiffness due to Saint Venant and warping torsion. If the coefficient
k > 10(...20), Saint Venant torsion is more dominant and the first term due to warping
torsion can be dropped out of the equations. This corresponds to beams with massive
solid and box-type cross-sections. The differential equation is simplified to the form

GItϕ
′′(x) = −mt(x) (2.101)

If k < 1
2 , Saint Venant torsion is more or less meaningless. Thus we have pure warping

torsion, and it is often met with very thin-walled coldformed steel cross-sections. The
differential equation is then of the form

EIωϕ
′′′′(x) = mt(x) (2.102)

The complete equation(2.99) with both parts covers the range 1
2 < k < 10(...20). In this

group, there are the hot-rolled steel profiles and thin-walled reinforced concrete girders.

2.9.5 Solution for the differential equation

The solution for the homogeneus equation

ϕ′′′′(x)− k2

`2
ϕ′′(x) = 0 (2.103)

is searched by a trial function ϕ(x) = exp(rx). Inserting this to the differential equation
gives the characteristic equation of the problem

(r4 − k2

`2
r2) exp(rx) = 0

Its roots
r1,2 = 0

r3,4 = ±k
`

are all real numbers, and one of them is double root. Thus, the general solution of the
homogeneous equation is

ϕ(x) = c1 + c2x+ c3 exp (
k

`
x) + c4 exp (−k

`
x)

= c1 + c2x+
c3 − c4

2
(exp (

k

`
x)− exp (−k

`
x)) +

c3 + c4
2

(exp (
k

`
x) + exp (−k

`
x))

Because the hyperbolic functions are defined by

sinh(x) =
1

2
(exp(x)− exp(−x))

cosh(x) =
1

2
(exp(x) + exp(−x))

we can write further

ϕ(x) = C1 + C2x+ C3 sinh (
k

`
x) + C4 cosh (

k

`
x) (2.104)
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The complete solution for the differential equation is obtained by combining this with
the particular solution corresponding to the cureent loading ϕ̄(x), or

ϕ(x) = C1 + C2x+ C3 sinh (
k

`
x) + C4 cosh (

k

`
x) + ϕ̄(x) (2.105)

The constants C1, C2, C3 and C4 are solved from the boundary conditions at each end of
the beam. The stress rsultants can then be differentiated from the solution as

Mt = GItϕ
′(x) = GIt[C2 + C3

k

`
cosh (

k

`
x) + C4

k

`
sinh (

k

`
x) + ϕ̄′(x)] (a)

B = −EIωϕ′′(x) = −GIt[C3 sinh (
k

`
x) + C4 cosh (

k

`
x) + (

`

k
)2ϕ̄′′(x)] (b)

Mω = B′ = −EIωϕ′′′(x) = −GIt[C3
k

`
cosh (

k

`
x) + C4

k

`
sinh (

k

`
x) + (

`

k
)2ϕ̄′′′(x)] (c)

Mx = Mt +Mω = GIt[C2 + ϕ̄′(x)− (
`

k
)2ϕ̄′′′(x)] (2.106d)

2.9.6 Some particular solutions

When the beam is loaded by an evenly along the length distributed torque mo
t , the

inhomogeneous term on the right hand side of the differential equation

ϕ′′′′(x)− k2

`2
ϕ′′(x) = f(x)

is of the form

f(x) =
mo

t

EIω

The particular solution can be searched by a trial function ϕ̄(x) = Cx2. Inserting this
into the differential equation results in the value for C as

C = − mo
t

2GIt

and the particular solution takes the form

ϕ̄(x) = −1

2

mo
t

GIt
x2 (2.107)

If the loading torque is distributed along linearly increasing function mo
tx/` the

inhomogeneous term in the differential equation is of the form

f(x) =
mo

t

EIω

x

`

and the particular solution is searched bu the trial function of ϕ̄(x) = Cx3. Constant C
takes the value

C = − mo
t

6GIt`
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and the particular solution is

ϕ̄(x) = −1

6

mo
t

GIt`
x3 (2.108)

A concentrated point torque as loading Mo
t at x = a corresponds to the particular

solution

ϕ̄(x) =


0, kun x ≤ a
Mo

t `

GIt
[
1

k
sinh(

k

`
(x− a))− 1

`
(x− a)], kun x > a

(2.109)

and a concentrated point bimoment Bo at x = a correspondingly to the solution

ϕ̄(x) =


0, kun x ≤ a
Bo

GIt
[cosh(

k

`
(x− a))− 1], kun x > a

(2.110)

2.9.7 Boundary conditions

The solution of a fourth order ordinary differential equation assumes four integration
constants to be solved on the base of boundary conditions. Two conditions are usually
adopted from each end. The most general restrictions are:
1. Rotation of the cross-section plane about the beam axis is prevented i.e. the angle of
torsion is zero

ϕ = 0

2. Warping of the cross section plane is prevented

u ≡ −ωAϕ
′ = 0 =⇒ ϕ′ = 0

3. The known external torque is Mo at one end of the beam ( can be also zero )

Mx ≡Mω +Mt = −EIωϕ′′′ +GItϕ
′ = Mo

4. The known external bimoment Bo at one end of the beam ( can be also zero )

B = −EIωϕ′′ = Bo

The traditional suports in the practice:

Fixed end with respect to the twisting

ϕ = 0, ϕ′ = 0 (2.111)

Fully free end of the beam:
Mx = 0, B = 0 (2.112)

Simply supported end of the beam:

ϕ = 0, B = 0 (2.113)
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Figure 2.27. Beam of the example.

Illustrative example

Consider a cantilever beam, shown in Figure 2.27, which is loaded by a uniformly
distributed vertical load q along the beam axis. The load passes through the centre
of gravity of the cross section. The geometry of the beam and cross-section is given by
the mutual ratios of the measures ` : b : t = 100 : 10 : 1. Poisson’s ratio ν = 0.3. We
have been considering the cross-section before and determined the location of the shear
center and all the moment of inertia (second moments). The distibuted loading through
the centre of gravity generates a distributed torque with the intensity of the load value
times the distance between the shear centre and the centre of gravity of the cross-section,
or

mo
t = q( 1

3 b+ 3
7 b) = 16

21 qb

The second moments are
Iω = 5

84 b
5t = 5

840 b
6

It = 3 1
3 bt

3 = 1
1000 b

4

Iz = 7
12 b

3t = 7
120 b

4

When ν = 0.3, G = E/2.6, the constant k is

k = `

√
GIt
EIω

= 2.542

The full solution of the differential equation is the sum of the solution of the homogeneous
equation and the particular solution

ϕ(x) = C1 + C2x+ C3 sinh (
k

`
x) + C4 cosh (

k

`
x)− mo

t

2GIt
x2

From the boundary conditions which are in this case

ϕ(0) = 0 =⇒ C1 + C4 = 0

ϕ′(0) = 0 =⇒ C2 +
k

`
C3 = 0

Mx(`) = 0 =⇒ GItC2 +mo
t ` = 0

B(`) = 0 =⇒ −GIt(C3 sinh(k) + C4 cosh(k))− (
`

k
)2mo

t = 0
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Kuva 2.28. Normal stress distributions.

we get for the integration constants C1, C2, C3 and C4 the values

C1 = −C4 =
mo

t `
2

GItk2
(k tanh(k) + cosh−1(k))

C2 = −k
`
C3 =

mo
t `

2

kGIt

the angle of rotation and the force quatities obtained by differentiating are thus

ϕ(x) =
mo

t `
2

kGIt

[
x

`
− sinh(

k

`
x) + (tanh(k) + k−1 cosh−1(k))(cosh(

k

`
x)− 1)− k(

x

`
)2

]
Mt(x) = mo

t `

[
1− x

`
− cosh(

k

`
x) + (tanh(k) + k−1 cosh−1(k)) sinh(

k

`
x)

]
Mω(x) = mo

t `

[
cosh(

k

`
x)− (tanh(k) + k−1 cosh−1(k)) sinh(

k

`
x)

]
B(x) =

mo
t `

2

k2

[
1 + k sinh(

k

`
x)− (k tanh(k) + cosh−1(k)) cosh(

k

`
x)

]
We determine at first the maximum values for the normal stresses due to bending and
warping. Both the bimoment and the bending moment take the maximum values at the
fixed end of the beam. The maximum value of the bending moment is

Mmax
z = Mz(0) =

1

2
q`2

Correspondingly, the maximum value of the bimoment is

Bmax = B(0) =
mo

t `
2

k2

[
1− (k tanh(k) + cosh−1(k))

]
= −0.2580mo

t `
2 = −19.66qb3

The normal and warping stresses are calculated from the equation

σx =
Mz

Iz
y(s) +

B

Iω
ω(s) = −857.1

q

b2
y(s)− 3302

q

b3
ω(s)

Figure 2.28 shows the normal stress distributions.
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Kuva 2.29. Shear stress distribution.

The shear stresses are also a combination of the stresses due to bending and due to
torsion. The shear stresses due to bending are distributed according to the first moment
of the cross sectioni Sz, when the wall-thickness t is constant.The distribution of the first
moment on the cross-section is

Sz(s) =

∫ s

0

y(s)tds =

∫ s

0

− b
2
tds = −bt

2
s, kun 0 ≤ s ≤ b

=Sz(b) +

∫ s

b

y(s)tds = −b
2t

2
+

∫ s

b

(s− 3b

2
)tds =

b2t

2
− 3bt

2
s+

t

2
s2, kun b ≤ s ≤ 2b

=Sz(2b) +

∫ s

2b

y(s)tds =

∫ s

2b

b

2
tds = −3b2t

2
+
bt

2
s, kun 2b ≤ s ≤ 3b

The shear force takes its maximum value also at the fixed end of the beam, and it is

Qmax = Qy(0) = q` = 10qb

The shear stresses due to this are

τ = −QySz(s)

Izt
= −1714

q

b4
Sz(s)

The torque due to warping Mω takes also its maximum value at the fixed end

Mmax
ω = mo

t ` =
160

21
qb2

when the maximum shear stresses due to sectorial torsion are

τω = −MωSω(s)

Iωt
= −12800

q

b5
Sω(s)

When the moment resultant due to Saint Venant torsion vanishes at the fixed end, the
total shear stresses there consist only of the shear stresses due to bending and warping
torsion, and are

τ(s) = −QySz(s)

Izt
− QySz(s)

Izt
= −1714

q

b4
Sz(s)− 12800

q

b5
Sω(s)

Figure 2.29 shows the distributions separately and as summed together.
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Instead on the other sections of the beam, the shear stresses due to Saint Venant
torsion do not vanish. The torque Mt(x) reaches its maximum value at x = 0.467`

Mmax
t = 0.301mo

t ` = 2.293qb2

At this section the maximum shear stress values are

τt = ±Mtt

It
= 229.3

q

b

These stresses are distributed linearly over the wall-thickness and are zero on the centre
line of the wall according to Vlasov’s assumption. At the same section, the shear stresses
due to warping torsion are constant over the wall-thickness, and are (Mω = 0.232mo

t `)

τω(0.467`) = −MωSω(s)

Iωt
= 2968

q

b5
Sω(s)

and also due to bending

τ(0.467`) = −0.533q`Sz(s)

Izt
= −913.6

q

b4
Sz(s)

Figure 2.30 shows the corresponding shear stress distributions. It can be observed that
the shear stresses due to Saint Venant torsion have clearly higher values as compared to
the other effects. For the maximum value of existing shear stresses we get the value

τmax = (57.5 + 5.3 + 231.9)
q

b
= 294.7

q

b

Kuva 2.30. Shear stress distributions.
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2.9.8 Analogy between the solution procedures of beam in combined tension
and bending and alternatively of combined torsion of a thin-walled beam

The formulation of the problem of combined torsion of a thin-walled beam is
analogous to the analysis of the beam under combined bendig and tension/compression,
and results in similar ordinary differential equation. Thus each quantity here has a
corresponding one in the bending analysis. The table besides shows the analogy between
these two theories.

Bending Torsion

EIzv
′′′′ −Nv′′ = q(x) EIωϕ

′′′′ −GItϕ′′ = mt(x)

deflection v angle of torsion ϕ

slope v′ warping displacement ϕ′

coordinate y sectorial coordinate ω

first moment of the cross section Sz(s) sectorial first moment of the cross-
section Sω(s)

moment of inertia (second moment) Iz warping constant Iω

intensity of distributed loading q(x) intensity of distributed torque mt(x)

concentarted load F = lim
∆x→0

∫
∆x

q(x)dx concentrated torqueM = lim
∆x→0

∫
∆x

m(x)dx

axial normal force N Saint Venant torsion stiffness GIt

normal force versus shear force Nv′ torque due to Saint Venant torsion
Mt = GItϕ

′

bending moment Mz = −EIzv′′ bimoment B = −EIωϕ′′

normal stress distribution σx =
Mz

Iz
y warping normal stress distribution

σω =
B

Iω
ω

shear force Q = M ′z = −EIzv′′ warping torque Mω = B′ = −EIωϕ′′

shear stress distribution τ = −Qy(x)Sz(s)

Izt
shear stress distribution due to sectorial
torsion

τω = −Mω(x)Sω(s)

Iωt

vertical shear force component
V = Nv′ +Q = Nv′ − EIzv′′

total internal torque
Mx = GItϕ

′ − EIωϕ′′′

Taulukko 2.1 Analogy between various quantities and concept in bending and
torsions.
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