Kul-24.4130
Shipyard engineering

Lecture 6-1: Outfitting
Lecture in course contents

- Introduction
- Outfitting
- Production planning
- Shipbuilding process and shipyard productivity
- Design process and materials management
- Hull production
Objectives, contents and literature

• Learning objective:
 – Understand the main factors that affect the outfitting production
 – Can create a product hierarchy of outfitting
 – Can determine the appropriate sub-assemblies for outfitting production

• Contents:
 – Product hierarchy for outfitting
 • Construction method – Productization - Work breakdown structure - product hierarchy
 – Stages of outfitting production
 • Workshops - block outfitting - area outfitting

• Literature
 – Ship production, Storch et al., SNAME
Starting point for Productization

What factors have an effect?
System-based Work Breakdown Structure

System-based construction method
- The ship is seen to be composed of systems
 - E.g. hull, propulsion, air conditioning, cabins
- The hull is constructed first almost completed
- Number of professional groups make their own sub-system on board at same time
- challenges:
 - All unfinished until the end (Readiness %?)
 - Fighting between professional groups and labor leaders
 - Drawings based on systems
Area-based Work Breakdown Structure

Area-based construction method

- The ship is constructed area by area
- Area supervisor is a key
 - Multi-professional skills are required
- System aspects are suffered
 - Construction is fragmented
 - Responsible for commissioning and operation is not clear
- Training and exact definition for responsibilities are necessary
Area and system interaction

• The ship may include
 – System, which serves only one area
 – System, which serves one or a few areas. Part of system can be located outside the area (for example, air conditioning aggregate)
 – System that runs through the area without serving it
 – System, which is located on the border of area

• Alternative solutions for design
 – Avoid system, which runs through the area without serving it
 – Minimizing the disturbing effects (routing, space reservations)
 – Utilization of product hierarchy ("Installation box")
Product, what is it?

- A part of the ship
- Any work package (working place)
- The product has a content and definition
- It is always associated with the input and output (interfaces)
- Examples:

 Hull production
 - Ship
 - Aft ship
 - Block

 Outfitting production
 - Area or space
 - Cabin
 - Separator module
Productization

• Target of productization
 – Dividing of the ship into the sub parts, which can be manufactured by the yard or someone else as cheaply as possible

• Criteria for productization
 – It should be appropriate for the yard's activities; steel construction in most cases the common factor
 – Manufacturing constraints (recourse and time)
Productization

- Technical aspects on the basis of ship project
 - System-area matrix
 - Passing through system
- Suppliers and sub-contractors
 - Supply, competition
- Design process
 - Agreement in the various design stages
- Production control
- Transport technology
Ship product hierarchy

Ship
 └── GA
 ├── Kansi 1
 │ ├── Mehiistötilat
 │ └── Baari
 ├── Kansi 2
 │ └── Hyttiakueet
 └── Kansi 3
 ├── Yleiset tilat
 │ └── Ravintola
 └── Kansi 4
 ├── Catering-tilat
 │ └── Sisäänuloaula
 ├── Pesutilat
 └── Varastot
 ├── Kellut
 └── LVI-järjestelmät
 └── Sähköjärjestelmät
 └── Zones
 ├── Palo-osasto 1
 │ └── VT-osasto 1
 ├── Palo-osasto 2
 │ └── VT-osasto 2
 └── Palo-osasto 3
 └── VT-osasto 3
 └── Hull
 ├── Suurlohko 1
 │ └── Lohko 1
 └── Suurlohko 2
 └── Lohko 2
 └── Suurlohko 3
 └── Lohko 3
 └── LVI-järjestelmät
 └── Sähköjärjestelmät
 └── System
 ├── Sähköjärjestelmät
 │ └── Sähkön tuotto
 └── Koneistojärjestelmät
 └── Hallintajärjestelmät
Ship product hierarchy

Ship – General arrangement
Ship product hierarchy

Ship – Zone, Hull, Systems
Product hierarchy for the restaurant roof

Kansi xx

- Ravintola NN
- Sähköjärjestelmät
 - IV järjestelmät
 - LV järjestelmät
Product hierarchy for the restaurant roof

- Kattovuoraus
 - Tyyppi 1
 - Tyyppi 2
 - Tyyppi 3
 - Paloeristys
 - Eriste
 - Kiinnitys
 - Päälystys
 - Lämpöeristys
 - Aänieristys
- Valaistus
 - Yleisvalaistus
 - Show-valaistus
 - Valaisin
 - Kannakkeet
- Äänentoisto
 - Yleisääni
 - Show-ääni
 - Kauhitin
 - Kannakkeet
- Palohälytys
 - Anturi
- Tulolima
 - IV-elin
 - Anturi
 - Kannakkeet
- Poistolima
 - IV-elin
 - Kannakkeet
- Ikkunapuhallus
 - IV-elin
 - Kannakkeet

- Peruskoolaus
 - Apukoolaus
 - Kannakkeet
 - Pintamateriaali
Product hierarchy for the restaurant roof
Product hierarchy for outfitting

- Basic elements
 - Device such as a pump or electric central
 - Equipment such as suction filter, sensor or switch
 - The raw material such as pipe or steel rod (6m)
- Prefabricated
 - The lowest level of assembly manufactured from raw materials based on the ship-related drawings
 - Rectangular channel, platform, pipe support
- Assembly
 - Modules, which are installed into blocks or areas of the ship
 - Consist of devices, equipment, raw materials, prefabrications, and sub-assemblies
 - Pipe package, container, aggregate, machine module
 - Sofa, bar desk, wall or roof element, cabin, deckhouse of cargo ship
Product hierarchy for outfitting

- **Basic elements**
 - Device such as a pump or electric central
 - Equipment such as suction filter, sensor or switch
 - The raw material such as pipe or steel rod (6m)

- **Prefabricated**
 - The lowest level of assembly manufactured from raw materials based on the ship-related drawings
 - Rectangular channel, platform, pipe support

- **Assembly**
 - Modules, which are installed into blocks or areas of the ship
 - Consist of devices, equipment, raw materials, prefabrications, and sub-assemblies
 - Pipe package, tank, aggregate, machine module
 - Sofa, bar desk, wall or roof element, cabin, deckhouse of cargo ship
Machine unit (aggregate) - Example
Product hierarchy for outfitting

Pre-fabrication
Product hierarchy for outfitting

Block
• In perfect case, the internally fully equipped assembly unit
• Block-boundary outfitting connects the fully outfitted blocks to each other using raw materials and fitting part

Area
• In practice the assemblies, prefabrications, equipment, devices, and raw materials are installed on board
Class room assignment

Crew cabin area

1. Identify the factors affecting the productization
 – Area versus system
 – Etc...

2. Specify the product hierarchy
 – Basic elements
 – Prefabrications
 – Assemblies

Aalto University
School of Engineering
Stages of outfitting production

• Workshops
 – Basic elements
 – Prefabrications

• Block outfitting
 – Basic elements
 – Prefabrications
 – Assemblies

• Ship and area outfitting
 – Basic elements
 – Prefabrications
 – Assemblies
Workshops

• Traditional workshops at the shipyard
 – Machine workshop
 – Pipe workshop
 – Module workshop
 – Heavy plate workshop
 – Sheet metal workshop
 – Wood workshop
 – Electrical workshop
 – Rigging workshop

• Workshops today in co-operation with suppliers
 – Subcontractor for contract products
 • Subcontractor has specialized workshops for their products
 • Shipyard has had only basic equipment and workers
 • Co-operation is based on annual contracts
 – Shipyard workshops support the installation work
 • Installers operates
 • Close to the working place
 • Fitting pars (e.g. special pipe parts)
 – Extension of equipment delivery
 • Deliveries includes workshop work
Block outfitting - motivation and savings

- In shipbuilding, the amount of installation work is decreased when the work is transferred to an earlier production stage.
- This decrease can be roughly estimated as follows:

<table>
<thead>
<tr>
<th>Production stage</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine unit construction</td>
<td>1.0</td>
</tr>
<tr>
<td>Module construction</td>
<td>1.2</td>
</tr>
<tr>
<td>Panel block outfitting</td>
<td>1.5</td>
</tr>
<tr>
<td>Block outfitting</td>
<td>2.0</td>
</tr>
<tr>
<td>Area outfitting</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Advantage of block outfitting

- **Good working environment**
 - Opportunity to maximize the downhand installation
 - Workshop conditions: warm, lighting, ventilation
 - Easier transportation of the material and tools to the work site (closeness and openness)

- **Other benefits**
 - Lesser need for repair painting
 - Reduction of the scaffold and other supporting work
 - Better balancing of outfitting work
 - Small disturbances due to other workers
Disadvantages of block outfitting

- Production of block is started earlier
- Design for outfitting is started earlier (increase)
- Block size restrict the outfitting design
- Block division and block size is affected by outfitting aspect
- Increased block weight affects the transport
- Accuracy requirements for the block installation is higher than that of the onboard installation
- Risk for the broken equipment is increase
- Labor and material costs are committed earlier
Stage of block outfitting

- Parts manufacturing (OVA)
 - During the manufacturing of sub-assembly, e.g. windows installation
- Before the painting to sub-block (EMO)
 - During the manufacturing of panel block (Block is located top to down)
- After the painting to sub-block (JMO)
 - Installations into the pre-painted blocks (A separate production step)
- Before the painting (EM)
 - During the manufacturing of grand block (Block is located right side up)
- After the painting (JM)
 - Installations into the painted grand block (A separate production step)
 - Production step between the block production and hull erection

(Abbreviation used in Helsinki shipyard)