

ELEC-E7210 Communication Theory

Course Plan, fall 2020

Olav Tirkkonen & Roope Vehkalahti Department of Communications and Networking, Aalto University

General

- Course in M.Sc. Program in Communications Engineering
- Acceptable for post-graduate studies
- Prerequisites: Working understanding of
 - Linear algebra
 - Digital communication in AWGN channels
 - Matlab & some mathematica
- Teachers
 - Dr. Roope Vehkalahti, responsible teacher, lecturer
 - Prof. Olav Tirkkonen, responsible teacher.
 - Dr Jialing Liao, tutorials
 - Mr Mohsen Amidzade, tutorials, homework.
- Exam:
 - Thu Dec 10, 2020, 16:30 19:30
 - Mon Feb 1, 2021, 16:30 19:30
 - Mon March 29, 2021, 16:30 19:30

F2F Teaching

- Lectures: Tue 12-14 (Kept remotely)
 - Not on Oct 20
- Tutorials: Wed 12-14 (Kept remotely)
 - Not on Oct 21
 - Eight analytic tutorial sessions
 - Two MATLAB-tutorial sessions, each session doubled
- Reception of R. Vehkalahti on Wednesday from 11-12. Please contact by an e-mail and we can organize a ZOOM meeting.
- ☐ All the teaching will be kept remotely. Links for the corresponding ZOOM meetings are in Lectures and Tutorials sections.

Schedule II

Week starting	Lecture Tue 12-14	Tutorials Wed 12-14
7.9.	Lecture 1	Tutorial 1
14.9.	Lecture 2	Tutorial 2
21.9.	Lecture 3	Tutorial 3
28.9.	Lecture 4	Matlab tut 1
5.10.	Lecture 5	Tutorial 4
12.10.	Lecture 6	Matlab tut 1
19.10.		
26.10.	Lecture 7	Tutorial 5
2.11.	Lecture 8	Matlab tut 2
9.11.	Lecture 9	Tutorial 6
16.11.	Lecture 10	Matlab tut 2
23.11.	Lecture 11	Tutorial 7
30.11.	Lecture 12	Tutorial 8

Teaching Material

- Slides & tutorial solutions distributed in MyCourses.
- Textbook A. Goldsmith: "Wireless Communication"
 - e-copy at https://aalto.finna.fi/Record/vaari.1619470.
 - Click "Show all details".
 - 2. Then "Show full text or availability in other libraries".
 - Then click the first "Go" link, immediately after "Full text available via Knovel Electronics & Semiconductors Academic".
 - Aalto account needed
- Other recommended books: Tse-Viswanath, "Fundamentals of Wireless Communications", Haykin-Moher, "Modern Wireless Communications, Proakis, "Digital Communications".

Learning Objectives

- After the course the student
 - Understands the functionalities of the physical layer in a modern communication system in multipath fading channels
 - Understands principles of multiantenna and multiuser communication
 - Understand principles of link adaptation
 - Can operate a link simulator

Course Evaluation

- Students get points from
 - 1. Active participation in tutorial exercises (15 %)
 - Analytical & matlab exercises are solved together during tutorial sessions
 - 2. Homework assignments (25 %)
 - 3. Exam (60 %)
- Points from items 1 & 2 honored in exams during academic year
 2020--2021.
- One point added to exam result for students that fill in feedback form
 - ☐ If there is more than 10 students giving feedback. With less students, the list of students giving feedback is not available to course teachers.
- Points are counted together, and passing the course and course grade depends on total number of points
- Mapping points to Grade depends on the difficulty of the exam.
 - Typically some 33% of points needed to pass the course

Exam

- The Exam will have 5 questions
- 1-2 questions are based on explaining theoretical concepts, of the type discussed in the lectures
- 3-4 questions are analytic calculations of the kind discussed in the tutorials

Flow of Knowledge & Evaluation

Assumed Starting Level & Equalization

- B.Sc. course level knowledge on principles of digital communications in AWGN channels
 - As exemplified by course by O. Tirkkonen
 - The material of this course will be disseminated in MyCourses
 - Lectures 2-8,10-11 of the course
 - □ The material has references to the textbook B.P. Lathi & Z. Ding: Modern Digital and Analog Communication Systems, International 4th ed, Oxford University Press 2010.

Questions, comments?