
NEPPI —
Outsourcing

Pekka Nikander
Nov 23th, 2020

Learning goals

• Outsourcing: You should not try to do everything yourself
• Defining core competencies and core value
• Finding partners: quality or cost optimisation
• Defining the rules for collaboration
• Best practices for small company subcontracting
• Support during product life cycle

• Approaches to collaborative resourcing
• Open source software
• Open source hardware

Outline

• Partnering
• Competencies: Core and other
• Partners: Hardware & software development
• Example: Solu machines
• Best practices

• Collaborative resourcing
• Crowdsourcing
• Open source software and hardware
• Crowd funding

Outsourcing: Competencies

• Core competencies (Prahalad & Hamel, 1990):
• Potential access to a wide variety of markets
• Significant contribution to customer benefits
• Difficult to imitate by competitors

• Everything else is non-core
• But consider also Treacy and Wiersema’s value disciplines

• Prahalad and Hamel (1990). "The core competence of the corporation.” Harvard Business
Review (v. 68, no. 3) pp. 79–91.

• Treacy, M., & Wiersema, F. (2007). The discipline of market leaders: Choose your
customers, narrow your focus, dominate your market. Basic Books.

Competencies: Extreme example

• Concept design as the (only) core competence
• Everything else outsourced

• User experience (UX) design
• Software development
• Hardware development
• Packaging and shipping
• Marketing and sales
• User support

• Problem: How make it hard to imitate?

Core competencies: Senseg

• Product area: Electrostatic surface haptics
• Core competencies:

• Haptics: physiology, psychology, …
• Space and energy efficient high voltage

(~1kV) generation
• Thin film surface physics

• Problem: Too wide compared to resources

Outsourcing: Partnering

• Why to have a partner:
• Easier to find and attract competence
• Faster time to market
• Needed less than a full-time person

• Why not to have a partner:
• Harder and more expensive to manage
• Partner has also other priorities
• Paying with equity usually does not work

Partnering: Hardware development

• Very segmented market:
• Mechanics design
• Electronics design
• Small scale PCB manufacturing
• Small scale PCB assembly and testing
• Large scale device production (ODM)

• Comprehensive hardware design subcontractors

Hardware development: 101 facts

• Hardware is still built in stages
• Overall product design
• Module-based prototype

• 2 weeks – 2 months
• 3–10 prototype PCB rounds

• Each takes about a month (2 weeks minimum)
• 1–3 pre-production prototype rounds

• Each takes about a month
• Raising alternative: Build it around a Raspberry Pi

Hardware development: Examples

• Comprehensive hardware design
• Haltian (Oulu): revenue ~6M, 70 employees
• Wireless System Integration (Stockholm): similar?

• Electronics design
• e-Hapines (Vantaa): ~50k, 1 part time employee
• Convergens (Espoo): ~700k, 6 employees

• Small scale PCB assembly & testing
• Jopaco (Lahti): ~3M, 9 employees
• Sanmina (worldwide & Oulu): ~7B, 46000 employees

Hardware development: ODMs

• Original Design Manufacturer
• Designs and manufactures a product
• Device rebranded by another firm for sale

• Tier 1 (largest) ODMs:
• Pegatron
• Quanta Computer
• Compal Electronics

• Some Tier 3 (smallish) ODMs:
• Skyworth
• Victory concept

Partnering: Software development

• Very segmented but differently
• Horizontal rather than vertical

• Main areas
• “Full stack” and parts of it
• Mobile (iOS and Android)
• Embedded
• Artificial and augmented intelligence

• Lots of more specialised fields

Software development: 101 facts

• Personal productivity varies > 100x
• Worst programmers: < less 10 LoC/day
• Best programmers: > 1000 LoC/day

• Team productivity varies > 10x
• Best scrum teams: > 3000 LoC / day
• Worst scrum teams: < 100 LoC /day

• Agile methods today’s de facto standard
• You can change the specs on the fly

Software development: Examples

• Full stack / mobile houses:
• Reaktor: 67M, 400 employees
• Futurice: 62M, 530 employees
• Codento: 4M, 37 employees

• Embedded:
• Etteplan: 240M, 3000 employees
• Offcode: 1M, 12 employees

Outsourcing: Example

• Solu machines
• Hardware outsourcing from scratch
• Software in-house (team or ~5 people)

• Starting point:
• We want a Computer as a Service

• Successful ending point:
• Working very early product prototypes

Example: First round

• Chose a Finnish embedded design house
• I knew them already
• They believed they can do it
• They were willing to work partially on equity
• They had some experience with Qualcomm

• Result: It didn’t work out (2 partially working prototypes)
• Hardware cost for this round: ~150k
• Qualcomm licence would have cost ~1M$
• The design house knew only industrial, not consumer

Example: Second round

• Worked with WSI (Wireless System Integration)
• Recommended by NVIDIA
• They believed they can do it
• Had some experience with consumer products

• Result: Real working prototypes (~10 of them)
• Hardware cost for this round: ~600k

• Own “tablet”: altogether around 400k
• Special square display, with luck only ~200k

Outsourcing: Best practices

• Get a partner, not just a subcontractor
• You are too small and high risk anyway
• Build gradually a relationship
• Become an opportunity for them
• Partnering ensure product lifetime support

• Hire someone who knows the field
• If you don’t, you pay a premium and fail
• Personal trust is much better than best written contracts

• Try to find someone local
• Only if specialisation requires, go further

Outline

• Partnering
• Competencies: Core and other
• Partners: Hardware & software development
• Example: Solu machines
• Best practices

• Collaborative resourcing
• Crowdsourcing
• Open source software and hardware
• Crowd funding

Crowdsourcing

• Use Internet to "outsource work to the crowd”
• Generic term with very wide variation

• E.g. open source may be crowdsourcing
• May be peer production or not

• Most interesting: commons-based peer production

• Howe (June 2, 2006). "Crowdsourcing: A Definition”. Crowdsourcing Blog.
• Benkler and Nissenbaum. "Commons-based peer production and virtue."

Journal of political philosophy 14.4 (2006): 394-419.

Collaborative resourcing:
Open source software
• In 1950s–60s most software was open source
• 70s–90s were prime time for closed source
• Today many new major projects are open source

• Main exception: Pure cloud backend
• Reasons:

• Accepted good licensing modes
• Customer expectations
• Community benefits
• Relative cost of entering an OSS project has risen

Open source: Market reality

• For most common ICT problems, there is at least
one Open Source solution
• How to find it?
• Is it good enough quality wise?

• If there isn’t one,
• Chance is that the research is still going on

• E.g. collaborative editing 5 years ago
• Or it is monetised as a backend platform

Open source: IPR and licenses

• Whoever writes the software, owns the copyright
• E.g. with Linux, there are thousands

• Many projects have “Contributor License Agreement” requiring
copyright transfer (but not e.g. Linux)

• Open source license gives others access
• Different licenses have different terms
• FSF Gnu Licenses (GPL, LGPL et al) require source code

even from commercial binary-only vendors
• Other licenses are usually more business friendly

• Most registered with Open Source Initiative (OSI)

Open source: Finding software
• Search github

• May need to iterate with keywords…
• Look at forks, stars, and activity

• > 1000 stars, > 100 forks, still active

Open source: Adopting a solution

• Hire someone from the community
• Must know the language and the field in large
• May or may have worked with the SW itself

• Preferably someone working actively
• If not possible, hire experienced professional

• Expect 1– 6 months adoption time
• Takes time to learn the software
• Takes time to learn the community

• If not possible, forget in-house SW development

Collaborative resourcing:
Open source hardware
• Relatively new phenomenon

• Arduino from ~2006
• More common since 2010

• More dispersed, less established than OSS
• Many schematics and PCB layout designs exist
• You still have to manufacture them yourselves!

• Changing the practices elsewhere in the industry
• More chip vendors providing design examples as

open source schematics and PCB design

Open source hardware: Arduino

Crowd funding

• Kickstarter
• Best known platform
• Some restrictions on supported countries

• IndieGoGo
• Today larger than Kickstarter
• Specialised in technology and hardware

• Note: Some consumers don’t understand the difference
between crowdfunding and purchases
• Better to design one’s campaign to be clear on this

Summary

• Partnering
• Competencies: Core and other
• Partners: Hardware & software development
• Example: Solu machines
• Best practices

• Collaborative resourcing
• Crowdsourcing
• Open source software and hardware
• Crowd funding

