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Statistical inference

Goal: To infer what kind of process created the observed data.

1. Choose a suitable stochastic model for the process.
family of probability distributions, e.g. “all normal distributions” or “all uniform

distributions [0,m]”

2. Fit the model to the data (estimate the model parameters)

3. Perform calculations based on the fitted model

4. Make inference and decisions

We try to “guess” the truth out there.

• What is the true distance of a star, when four measurements gave
4.0, 4.2, 4.3 and 6.0 astronomical units?

• How many Finns will vote for party X, when in the latest poll 140
out of 1000 said they would do so?

• Will the price of crude oil rise or fall during this year?
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Knowing a distribution, except for its parameters
We know/assume our data comes from a distribution with density
f (x), from known family but some parameters are unknown.

E.g. (only one unknown parameter):

• Bernoulli distribution: fp(1) = p and fp(0) = 1− p

• Exponential distribution: fλ(x) = λe−λx , x > 0

• Uniform over interval [0, b]: fb(x) = 1
b

E.g. (2 unknown parameters):

• Uniform over interval [a, b]: fa,b(x) = 1
b−a

• Normal distribution: fµ,σ2(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

Having observed data (x1, . . . , xn), what is the best guess for the
value of the unknown parameter?

Notation: Here a subscript contains parameters that specify one particular

density function from a family (and not the name of a random variable like

fX (x)). Another notation (e.g. Ross) is with vertical bar: f (x |λ).



Parameter estimation

We know/assume our data comes from a distribution with density
fθ(x), from known family but with unknown parameter(s) θ.

We have obtained n independent observations x1, . . . , xn, each
from that same distribution fθ.

For the parameter θ:

• an estimate is a guess of the value of θ, calculated from data
~x = (x1, . . . , xn) by some rule.

• an estimator is a function (calculating rule)
(x1, . . . , xn) 7→ g(x1, . . . , xn) that gives an estimate.

For a given parameter, there might not be a unique “best”
estimator.
We can form several desirable properties that an estimator should have. On this

lecture: maximum likelihood and unbiasedness. But these might be contradictory.



Example: Proportion of defectives

A factory is producing components, and each has (independently)
probability p of being defective. We have inspected 200
components and observed 22 to be defective. How should we
estimate the unknown parameter p?

One natural choice is the observed proportion

p̂ =
22

200
= 11%

But is this the best estimate, in some sense? Are there other
possibilities?

Notation: Hatted letters p̂ usually denote estimated values, and hatless letters p might

denote the true value in the generating distribution or population.



Example: Parameter for discrete uniform distribution

We assume the enemy has n battle tanks with serial numbers
1, 2, . . . , n. We have captured three tanks whose serial numbers
were x1 = 63, x2 = 17, x3 = 203. How should we estimate n,
which is an unknown parameter?

Assuming each captured tank is randomly one of the n tanks, its
serial number has discrete uniform distribution

fn(k) =

{
1
n , k = 1, . . . , n,

0, otherwise.

Here, after some thought, we will find at least two different
“natural” estimators n̂(~x). Each has some nice properties but they
give different numerical values. More about this in Exercise 4B.

See also Wikipedia: German tank problem.
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Likelihood function

Stochastic model: n independent observations (X1, . . . ,Xn), each
from density fθ.

According to the model, the probability of obtaining the values
(x1, . . . , xn) (which we observed) is

P(X1 =x1, . . . , Xn =xn) = fθ(x1) · · · fθ(xn)

in the discrete case. For continuous case (with ε small)

P(X1 = x1±
ε

2
, . . . , Xn = xn±

ε

2
) ≈ εnfθ(x1) · · · fθ(xn).

We define the likelihood function L(θ) = fθ(x1) · · · fθ(xn), which
indicates how probable our observed data was, according to the
model fθ, if the parameter had value θ.



Maximum likelihood estimate (ML estimate)

Likelihood function L(θ) = fθ(x1) · · · fθ(xn) indicates how probable
our observed data was, according to the model fθ, if the parameter
had value θ.

We would like to find a value of θ that assigns high probability for
our observed data, because that makes it easy to believe that
fθ can actually have produced such data.
(More about this on later lectures about Bayesian inference.)

In fact we want the θ that maximizes the likelihood function. We
call it the maximum likelihood estimate θ̂ = θ̂(~x).

To find the point where a function is maximized . . . is a typical
problem solved in differential calculus!

Note that data x is given — we cannot change that. The only
thing we can change is θ.



Example: Proportion of defectives
A factory is producing components, and each has (independently)
probability p of being defective. We have inspected 200
components and observed 22 to be defective.
But p is unknown. Find its ML estimate.

First we form the stochastic model. If we inspect n = 200
components, we will see K defectives, where K follows the
binomial distribution with parameters n and p:

fp(k) = P(K = k) =

(
n

k

)
pk(1− p)n−k , k = 0, 1, . . . , 200

So which value of p maximizes this likelihood function?

L(p) =

(
200

22

)
p22(1− p)200−22

We only have one free variable p, so we are maximizing a
one-variable function. (The quantities n = 200 and k = 22 are
given and fixed, we cannot change them.)



Example: Proportion of defectives

L(p) =

(
200

22

)
p22(1− p)178

attains its maximum when `(p) = log L(p) attains its maximum, and

`(p) = log fp(22) = log

(
200

22

)
+ 22 log p + 178 log(1− p)

`′(p) = 22
1

p
− 178

1

1− p

`′′(p) = −22
1

p2
− 178

1

(1− p)2
≤ 0

Thus the ML estimate for p is found where `′ is zero:

`′(p) = 0 ⇐⇒ 22

p
=

178

1− p
⇐⇒ p =

22

200

Taking the logaritm was just a trick for getting a nicer derivative. Alternatively, we

could have tried to maximize the function L directly.



ML estimate for the binomial probability parameter

Fact
If K follows Bin(n, p), with n known but p unknown, and we
observed K = k, then the ML estimate for p is

p̂ =
k

n
.

Proof.
Repeat the previous calculation with 200 7→ n and 22 7→ k.



ML estimates for the two parameters of normal

The density function for a normal distribution

f(µ,σ)(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

has two parameters µ and σ. What if both are unknown?

Fact
Having observed ~x = (x1, . . . , xn), the ML estimates for (µ, σ) are

µ̂ = m(~x) =
1

n

n∑
i=1

xi and σ̂ = sd(~x) =

√√√√1

n

n∑
i=1

(xi −m(~x))2

that is, the average and standard deviation of the observed data ~x
(note: using divisor n, not n − 1).

Proof: Take both partial derivatives (w.r.t. both parameters), set them to zero and

solve. See e.g. Ross p. 242.
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Unbiased estimator

Suppose the data ~X = (X!, . . . ,Xn) are coming from distribution
fθ, with θ unknown. We are using an estimator ~x 7→ θ̂(~x). So the
estimate we compute is a random variable θ̂(~X ).

We say our estimator is unbiased if

Eθ̂(~X ) = θ

that is, if the expectation of our estimator is “correct”.

Long-run interpretation: If we took many such n-element samples,
we would get a series of (varying) estimates θ̂, but at least on
average they would equal θ.



Example: Proportion of defectives

Recall that the ML-estimate for the p parameter of Bin(n, p)
having seen k defectives in n components, is

p̂(k) =
k

n
.

Now suppose p is the true probability (for each component to be
defective). Then K follows Bin(n, p), and we the expectation of
the estimate that we compute is

E (p̂(K )) = E
(
K

n

)
=

1

n
E(K ) =

1

n
× np = p.

Thus the function we are using,

k 7→ p̂(k)

is an unbiased estimator for the parameter k .



Example: Normal distribution, ML-estimator of µ

Recall that the ML-estimate for the µ parameter of normal
distribution is

m(~x) =
1

n

n∑
i=1

xi .

If the data Xi are normal with mean µ, then

E[m(~X )] = E

(
1

n

n∑
i=1

Xi

)
= µ,

so the function m is an unbiased estimator for µ.



Example: Normal distribution, ML-estimator for σ2

The value of σ2 (variance parameter) that maximizes the likelihood
is the variance of the empirical distribution,

var(~x) =
1

n

n∑
i=1

(xi −m(x))2.

If the data Xi are normal with mean µ and variance σ2, then

E[var(~X )] = E

(
1

n

n∑
i=1

(Xi −m(~X )2

)
= · · · =

n − 1

n
σ2,

thus our ML-estimator var(~x) is biased. On average it is too small!

Since we know the bias, we could correct it by multiplying by
n/(n − 1). We get the so called (Bessel-)corrected sample variance

vars(~x) =
1

n − 1

n∑
i=1

(xi −m(~x))2.

which is unbiased, but no longer ML-estimator!
(If n is large, there is not much difference.)



On next lecture, we form “confidence intervals” for our parameters.
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