MS-A0503 First course in probability and statistics

6A Hypothesis testing

Jukka Kohonen

Deparment of mathematics and systems analysis
Aalto SCI
Academic year 2020-2021
Period III

Contents

Introduction to hypothesis testing

Examples and models

Variants

Decisions and errors

Further topics

Paul the Octopus

By choosing from two food boxes (with national flags), Paul predicted the winner of football matches. In 2008, correct 4/6 times. In 2010, correct 7/7 times.

Opponent *	Tournament ${ }^{-1}$	Stage *	Date *	Prediction *	Result ${ }^{\text {- }}$	Outcome *
- Poland	Euro 2008	group stage	8 June 2008	Germany	2-0	Correct
IE Croatia	Euro 2008	group stage	12 June 2008	Germany ${ }^{[3][20]}$	1-2	Incorrect
- Austria	Euro 2008	group stage	16 June 2008	Germany	1-0	Correct
- Portugal	Euro 2008	quarter-finals	19 June 2008	Germany	3-2	Correct
C. Turkey	Euro 2008	semi-finals	25 June 2008	Germany	3-2	Correct
I Spain	Euro 2008	final	29 June 2008	Germany ${ }^{[3]}$	0-1	Incorrect
\% Australia	World Cup 2010	group stage	13 June 2010	Germany ${ }^{[31]}$	4-0	Correct
- ${ }^{\text {ben }}$ Serbia	World Cup 2010	group stage	18 June 2010	Serbia ${ }^{[31]}$	0-1	Correct
E Ghana	World Cup 2010	group stage	23 June 2010	Germany ${ }^{[31]}$	1-0	Correct
+ England	World Cup 2010	round of 16	27 June 2010	Germany ${ }^{[32]}$	4-1	Correct
\ldots Argentina	World Cup 2010	quarter-finals	3 July 2010	Germany ${ }^{[23]}$	4-0	Correct
- Spain	World Cup 2010	semi-finals	7 July 2010	Spain ${ }^{[33]}$	0-1	Correct
\because O Uruguay	World Cup 2010	3rd place play-off	10 July 2010	Germany	3-2	Correct

Is this something that might easily happen by chance? Or does it indicate a good prediction skill?
https://en.wikipedia.org/wiki/Paul_the_Octopus

Hypothesis testing, contrasted to posterior inference

On previous lectures, we learned how we can infer a full distribution for an unknown parameter θ, if we have two ingredients:

- prior $f(\theta)$ - which values of θ are probable in the first place
- likelihood $f(\vec{x} \mid \theta)$ - the stochastic model of how the data are generated, if θ has a particular value

What if we are not able to formulate any prior $f(\theta)$? Can we do any inference only from the data and the likelihood function?

We can still do something. We can consider a particular value of θ, and choose to reject it, if that θ makes the observed data seem "too unlikely".
[We'll make this more precise.]
This leads to the classical hypothesis testing, which is the topic of this lecture. (This is an alternative to Bayesian inference.)

Hypothesis testing - first idea (not good)

Suppose we know the general stochastic model: $X \sim \operatorname{Bin}(1000, \theta)$ (one thousand coin tosses), but don't know the parameter θ. We are considering if $\theta=0.5$ seems plausible - or if the data seems too surprising (unlikely) for this parameter value.

Example 1. Observe $x=510$ heads. If $\theta=0.5$ is true,

$$
\mathbb{P}(X=510 \mid \theta=0.5)=\binom{1000}{510} 0.5^{510} 0.5^{490} \approx 2.1 \%
$$

Is this surprising? Should we reject $\theta=0.5$?
Example 2. Observe $x=500$ heads. If $\theta=0.5$ is true,

$$
\mathbb{P}(X=500 \mid \theta=0.5)=\binom{1000}{500} 0.5^{500} 0.5^{500} \approx 2.5 \%
$$

Is this surprising? Should we reject $\theta=0.5$? Probably not!

Hypothesis testing - classical method

Step	Example
Formulate a hypothesis H_{0} about how data are generated.	$\vec{X}=30$ coffee cups, each from
Formulate a test statistic $\left.t=3^{2}\right)$ $t(\vec{X})$, calculated from data	Sample mean $m(\vec{X})$
Work out the distribution of t (if H_{0} is true).	$m(\vec{X}) \sim \mathrm{N}(\ldots)$
Reject H_{0} if the observed value $t(\vec{x})$ is in the tails of the dis- tribution; choose tails to have probability α	$\alpha=0.05$

Idea: t in the 5% tails is surprising if H_{0} is true. We reject H_{0} in that case. The tails are called critical region (rejection region).

Even if H_{0} is true, this procedure may cause H_{0} to be rejected but only $\alpha=5 \%$ of the time. This is called the significance level of the test.
\longrightarrow Illustration on blackboard

Hypothesis testing - another view, with p-value

Step	Example
Formulate a hypothesis H_{0} about how data are generated.	$\vec{X}=30$ coffee cups, each from $\mathrm{N}\left(10,3^{2}\right)$
Formulate a test statistic $t=$ $t(\vec{X})$, calculated from data	Sample mean $m(\vec{X})$
Work out the distribution of t (if H_{0} is true).	$m(\vec{X}) \sim \mathrm{N}(\ldots)$
Calculate both tail probabilities corresponding to $t(\vec{x})$. This is the p-value	$p=0.018$
Reject H_{0} if $p<\alpha$	reject

Here we first calculated a p-value, and then applied the significance level $\alpha=0.05$. A p-value $0.018<0.05$ was considered "surprising enough" that H_{0} should be rejected.

Contents

Introduction to hypothesis testing

Examples and models

Variants

Decisions and errors

Further topics

Coffee machine - Normal model

A coffee machine is meant to give 10.0 cl coffee in each cup, at least on average. We assume the coffee volumes are normally distributed, but we don't know the mean. To test the hypothesis ($\mu=10.0$), 30 cups were taken and measured:
11.059 .6510 .939 .4610 .2710 .0210 .0710 .7411 .1510 .4010 .12
11.2010 .0710 .279 .999 .8010 .8310 .2111 .2610 .1110 .4910 .10 10.1511 .0210 .0011 .6810 .5111 .2011 .2910 .15

Is the machine correctly calibrated (on average)?
Sample mean $m(\vec{x})=10.473$, which differs from the intended $\mu_{0}=10.0$.

But since the data are random, it is quite expected that the sample mean is not exactly 10.0 !

Is the observed difference statistically significant?

Coffee machine - Normal model

11.059 .6510 .939 .4610 .2710 .0210 .0710 .7411 .1510 .4010 .1211 .20
10.0710 .279 .999 .8010 .8310 .2111 .2610 .1110 .4910 .1010 .1511 .02 10.0011 .6810 .5111 .2011 .2910 .15

Sample mean $m(\vec{x})=10.473$, sample standard deviation $\operatorname{sd}(\vec{x})=0.563$
$H_{0}: \mu=\mu_{0}=10.0$
$H_{1}: \mu \neq \mu_{0}=10.0$
Test statistic of the observed data:

$$
t(\vec{x})=\frac{m(\vec{x})-\mu_{0}}{\operatorname{sd}(\vec{x}) / \sqrt{n}}=\frac{10.473-10.0}{0.563 / \sqrt{30}}=4.60
$$

Because sample size $n=30$ fairly large, we work as if $\sigma=\operatorname{sd}(\vec{x})=0.563$ exactly ("known variance"). Then $t(\vec{X})$ has standard normal distribution. [We could be more exact and use t distribution.]

$$
\mathrm{p} \text { value } \approx \mathbb{P}\left(|t(\vec{X})| \geq|t(\vec{x})| \mid H_{0}\right) \approx \mathbb{P}(|Z| \geq 4.60) \approx 4.2 \times 10^{-6}
$$

Result: p-value very small. If H_{0} were true, it would be very unlikely to obtain a sample mean so far (or further) from the hypothesized $\mu=10.0$.

Hypothesis testing vs. confidence interval

Often, hypothesis testing at significance level α can be alternatively framed as the question:

If we calculate a $1-\alpha$ confidence interval for the unknown parameter θ, does the interval contain the value θ_{0} claimed by the null hypothesis?

If the interval contains θ_{0}, then the data is compatible with the possibility that $\theta=\theta_{0}$, as claimed.

If the interval is fully below or fully above θ_{0}, then the data speaks against the possibility that $\theta=\theta_{0}$.
(Possibly illustration on blackboard)

Coffee machine - testing vs. confidence interval

11.059 .6510 .939 .4610 .2710 .0210 .0710 .7411 .1510 .4010 .1211 .20
10.0710 .279 .999 .8010 .8310 .2111 .2610 .1110 .4910 .1010 .1511 .02
10.0011 .6810 .5111 .2011 .2910 .15

Sample mean $m(\vec{x})=10.473$, sample standard deviation $\operatorname{sd}(\vec{x})=0.563$
$H_{0}: \mu=\mu_{0}=10.0$
$H_{1}: \mu \neq \mu_{0}=10.0$
Again, work as if $\sigma=\operatorname{sd}(\vec{x})=0.563$ exactly ("known variance").
Computing e.g. 99\% confidence interval, we obtain

$$
10.473 \pm 2.58 \cdot \frac{0.563}{\sqrt{30}} \approx 10.473 \pm 0.265
$$

so the interval is completely above 10.0. Thus we reject the null hypothesis (that $\mu=10.0$) at 1% significance level.

Caveat: In some situations, there are subtle differences between hypothesis testing and confidence intervals, but in the most common situations, this connection is probably helpful for understanding.

Null hypothesis H_{0}

The starting point of a hypothesis test is the null hypothesis H_{0}, which generally indicates that nothing new or surprising is needed to explain the observations. Often this is of the form "parameter=value" (and the most common parameter is mean).

Example

H_{0} : Paul's predictions are correct with probability $\theta=0.5$
H_{0} : Coffee machine gives $\mu=10.0 \mathrm{cl}$ on average, as intended H_{0} : A proposed new medicine is no better than placebo
H_{0} : A portfolio manager performs no better than market average
The alternative hypothesis H_{1} is usually the complement of the null hypothesis. So if H_{0} says $\mu=10$, then H_{1} says $\mu \neq 10$. Note that such an alternative hypothesis does not claim any single value!

Test statistic and p-value

The "surprisingness" of an observed data $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ is measured by first calculating a test statistic,

$$
t(\vec{x})=t\left(x_{1}, \ldots, x_{n}\right),
$$

which condenses the n-dimensional data vector into one real number.

Then the p-value (related to the test statistic) is the probability that the test statistic would have the observed value $t(\vec{x})$, or something even further away from the expected value.
The probability and the expected value are calculated by assuming that the H_{0} is true. Some typical interpretations

p-value	Interpretation
>0.10	Data quite compatible with H_{0}
≈ 0.05	Data suggests against H_{0}
<0.01	Data suggests strongly against H_{0}

Some more examples

Example (Coin tossing - Discrete data)

A coin that was claimed to be fair, was tossed 50 times, with 42 heads.
H_{0} : Heads probability $\theta=1 / 2$
H_{1} : Heads probability $\theta \neq 1 / 2$
Example (Noisy observation - Little data)
Star brightness measurements claimed to be normal, with $\mu=5$ and $\sigma=3$. Measured once, with result $x_{1}=9.8$.
$H_{0}: \quad \mu=5$
$H_{1}: \quad \mu \neq 5$
Example (Quality control - Composite hypothesis)
Shopkeeper claims that at most 5% of their tomatoes are bad. 50 tomatoes were tested, 4 were bad.
H_{0} : Proportion of bad $\theta \leq 0.05$
H_{1} : Proportion of bad $\theta>0.05$
This is an example where H_{0} is composite (allows many values).

Example. Coin tossing

Coin claimed to be fair, results 42 heads on 50 tosses.
H_{0} : Heads probability $\theta=1 / 2$
H_{1} : Heads probability $\theta \neq 1 / 2$
Test statistic $=$ heads count: $t(x)=42$
$T=t(X)=$ "heads count according to H_{0} "

$$
f(x)=\mathbb{P}\left(T=x \mid H_{0}\right)=\binom{50}{x}\left(\frac{1}{2}\right)^{x}\left(1-\frac{1}{2}\right)^{50-x}
$$

Test statistic has mean $t_{0}=\mathbb{E}\left(T \mid H_{0}\right)=25$.

$$
\begin{aligned}
\text { p-value } & =\mathbb{P}\left(\left|T-t_{0}\right| \geq\left|t(x)-t_{0}\right| \mid H_{0}\right) \\
& =\mathbb{P}\left(|T-25| \geq 17 \mid H_{0}\right) \\
& =\sum_{x=0}^{8} f(x)+\sum_{x=42}^{50} f(x) \approx 1.2 \times 10^{-6}
\end{aligned}
$$

Data is strongly against H_{0}.

Example. Noisy observation

Star brightness measurements claimed to be normal $\mu=5$ and $\sigma=3$. Single observation: $x_{1}=9.8$.
H_{0} : Mean $\mu=5$
H_{1} : Mean $\mu \neq 5$
Test statistic $=$ normalized difference from the hypothesized mean: $z(\vec{x})=\frac{x_{1}-2}{3}=1.6$

$$
\text { p-value }=\mathbb{P}\left(|Z| \geq 1.6 \mid H_{0}\right)=2 \mathbb{P}\left(Z \geq 1.6 \mid H_{0}\right) \approx 11 \%
$$

Observation compatible with regular random chance.
Observation does not lead to rejection of H_{0}

Contents

Introduction to hypothesis testing

Examples and models

Variants

Decisions and errors

Further topics

Variant: Testing for μ, large non-normal data

Suppose the data source generates independent, identically distributed numbers $X_{1}, X_{2}, \ldots, X_{n}$ from some distribution with unknown mean μ. We study whether the mean could be μ_{0}.

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu \neq \mu_{0}
\end{aligned}
$$

Distribution unknown \Longrightarrow impossible to test?
No; if sample is big, and independent, then CLT says the sample mean is normal, even if the individual observations are not.

Test statistic just like in the normal model:

$$
t(\vec{x})=\frac{m(\vec{x})-\mu_{0}}{\operatorname{sd}(\vec{x}) / \sqrt{n}}
$$

Variant: Unknown variance

Often, the standard deviation σ of the data source is not known, but is estimated by the sample standard deviation $\operatorname{sd}(\vec{x})$.
If the sample is large (e.g. $n>30$), the estimate is decent, but \ldots
For small samples, we must note that the test statistic

$$
t(\vec{X})=\frac{m(\vec{X})-\mu_{0}}{\operatorname{sd}(\vec{X}) \sqrt{n}}
$$

is the quotient of two random variables, and there is no reason to believe its distribution would be normal. It is not!
The real distribution of $t(\vec{X})$ is the Student's t-distribution with parameter $n-1$. The parameter is called "degrees of freedom". All is still fine - you simply do all computations with this t-distribution instead of the normal distribution. Again, you can use tables, or a computer. In R, pt is the CDF, and qt is the quantile function. (Compate to pnorm and qnorm.)

Student's t-distribution

Picture credit: Skbkekas, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9546828

Interlude: Computing with distributions in R

distribution	density	CDF	quantile function	generate random
uniform	dunif	punif	qunif	runif
beta	dbeta	pbeta	qbeta	rbeta
normal	dnorm	pnorm	qnorm	rnorm
Student	dt	pt	qt	rt
exponential	dexp	pexp	qexp	rexp
\ldots	d...	p...	q...	r...

Compare the 0.975 -quantiles of standard normal, and Student with $n=50$ and $n=10$.
> qnorm(.975)
[1] 1.959964
> qt(.975, 49)
[1] $2.009575 \quad=>$ Slightly wider confidence intervals.
> qt (.975, 9)
[1] 2.262157 => Clearly wider confidence intervals.

Interlude: Computing with distributions in Matlab/Octave

distribution	density	CDF	quantile function	generate randor
uniform	unifpdf	unifcdf	unifinv	unifrnd
beta	betapdf	betacdf	betainv	betarnd
normal	normpdf	normcdf	norminv	normrnd
Student	tpdf	tcdf	tinv	trnd
exponential	exppdf	expcdf	expinv	exprnd
...	...pdf	...cdf	...inv	...rnd

Compare the 0.975 -quantiles of standard normal, and Student with $n=50$ and $n=10$.
>> norminv(.975)
ans =
1.959963984540054
>> tinv(.975, 49)
ans =
2.009575237129235
>> $\operatorname{tinv}(.975,9)$
ans =
2.262157162798204

Variant: Composite hypothesis

Shopkeeper claims that at most 5% of their tomatoes are bad.
50 tomatoes were tested, 4 were bad.
H_{0} : Proportion of bad $\theta \leq 0.05$
H_{1} : Proportion of bad $\theta>0.05$
This is an example where H_{0} is composite (allows many values).
Test statistic: Count of bads: $t(\vec{x})=4$
If the real proportion is θ (in the data source), then

$$
\mathbb{P}_{\theta}(T=t)=f_{\theta}(t)=\binom{50}{t} \theta^{t}(1-\theta)^{50-t}
$$

Because H_{0} claims proportion is small, we apply a one-sided test: only high values above claimed mean are significant. We would like to find

$$
\mathbb{P}_{\theta}\left(T-\mathbb{E}_{\theta}(T) \geq t(\vec{x})-\mathbb{E}_{\theta}(T)\right)=\mathbb{P}_{\theta}(T \geq t(\vec{x}))=\sum_{t=4}^{50} f_{\theta}(t)
$$

Trouble: the probability depends on θ. So let us choose the the highest possible p-value, from any θ that H_{0} allows:

$$
\text { p-value }=\max _{\theta \leq 0.05} \mathbb{P}_{\theta}(T \geq t(\vec{x}))=\mathbb{P}_{0.05}(T \geq t(\vec{x}))=\sum_{t=4}^{50} f_{0.05}(t) \approx 24 \%
$$

Contents

Introduction to hypothesis testing

Examples and models

Variants

Decisions and errors

Further topics

Accepting or rejecting

You could compute a p-value and just report it, refraining of making further decisions like "accept" or "reject".

But often you need to make a decision. Based on the test, you either accept or reject H_{0}. This may affect e.g. further studies (performed or not), taking a medicine for use, ...

To make a decision, you choose (either before or after computing p) a significance level $\alpha(0<\alpha<1)$.

- If p-value $\geq \alpha$, the null hypothesis is accepted
- If \mathbf{p}-value $<\alpha$, the null hypothesis is rejected

Typical, conventional significance levels are $\alpha=1 \%$ and $\alpha=5 \%$.
(This is a very crude way of making decisions. More advanced methods would explicitly consider the consequences of the decisions \longrightarrow decision theory, but outside the scope of this course.)

Type I and II errors

Whichever decision we make (accept or reject), it may be correct or incorrect.

		Decision	
		H_{0} accepted	H_{0} rejected
Reality	H_{0} true	Correct	Type I error
	H_{0} false	Type II error	Correct

If rejection of H_{0} is considered discovering an interesting phenomenon (deviation from the null hypothesis), then

- type I error is a false positive (false discovery)
- type II error is a false negative (failure to discover)

In statistical inference, it is not possible to avoid both errors completely. But by probability calculus, we may try to calculate the probabilities of making type I and II errors.

Probabilities of the errors

$p(\vec{x})=$ the p -value computed from data \vec{x}
$p(\vec{X})=$ random variable: what p -values can be obtained (when \vec{X} follows a distribution)
If H_{0} is true, then the probability of rejecting it (Type I error) is

$$
\mathbb{P}\left(H_{0} \text { rejected } \mid H_{0}\right)=\mathbb{P}\left(p(\vec{X})<\alpha \mid H_{0}\right) \approx \alpha
$$

If H_{0} is false, then the probability of accepting it (Type II error) is

$$
\mathbb{P}\left(H_{0} \text { accepted } \mid H_{1}\right)=\mathbb{P}\left(p(\vec{X}) \geq \alpha \mid H_{1}\right)
$$

By changing α, we can change both probabilities ... with a tradeoff

α	Type I error rate	Type II error rate
Small	Small	Large
Large	Large	Small

Two caricatures

Eve Eager

- Applies significance level $\alpha=5 \%$
- Is eager to reject null hypotheses, so makes many discoveries
- Has approx 5% rate of Type I errors (rejecting a true null hypothesis)
- Has lower type II rate than Cathy

Cathy Cautious

- Applies significance level $\alpha=1 \%$
- Is cautious of rejecting a null hypothesis, so makes fewer discoveries
- Has approx 1% rate of type I errors (rejecting a true null hypothesis)
- Has higher type II error rate than Ann (failure to make a discovery)

Example. Coin tossing

A coin is tossed 10 times and $\vec{x}=(0,0,1,0,0,0,0,0,0,0)$ is observed. Test the fairness at significance 5%.

$$
H_{0}: \text { Heads probability } \theta=0.5,
$$

H_{1} : Heads probability $\theta \neq 0.5$.
Test statistic: $t(\vec{x})=\#$ heads
Stochastic model of the test statistic: $T=t(\vec{X})$

$$
f_{H_{0}}(t)=\mathbb{P}\left(T=t \mid H_{0}\right)=\binom{10}{t}\left(\frac{1}{2}\right)^{10}
$$

From this observed data \vec{x}, we compute

$$
p(\vec{x})=\mathbb{P}\left(|t(\vec{X})-5| \geq 4 \mid H_{0}\right)=\sum_{t=0}^{1} f_{H_{0}}(t)+\sum_{t=9}^{10} f_{H_{0}}(t) \approx 2.1 \%
$$

Decision: Null hypothesis rejected at 5\% level. But what do we know about the error probabilities?

Coin tossing - Type I error rate

Possible p-values, as a function of the test statistic $t(\vec{x})=$ \#heads:

\# heads	0	1	2	3	4	5	6	7	8	9	10
$f_{H_{0}}(t)[\%]$	0.1	1.0	4.4	11.7	20.5	24.6	20.5	11.7	4.4	1.0	0.1
p-value [\%]	0.2	2.1	10.9	34.4	75.4	100	75.4	34.4	10.9	2.1	0.2

At 5\% level, we reject the null at the critical region $\{0,1,9,10\}$. If H_{0} is true, we land there with probability

$$
\mathbb{P}\left(t(\vec{X}) \in\{0,1,9,10\} \mid H_{0}\right)=\sum_{t=0}^{1} f_{H_{0}}(t)+\sum_{t=9}^{10} f_{H_{0}}(t) \approx 2.1 \%
$$

So the type I error rate is $2.1 \% \leq 5 \%$.
It is not exactly 5% because in the discrete distribution of the test statistic, we do not have a point where the tail probabilities would be exactly 5%. Values 2 and 8 are in the acceptance region because their p-values are $>5 \%$.

Coin tossing - Type II error rate??

Possible p-values, as a function of the test statistic:

\# heads	0	1	2	3	4	5	6	7	8	9	10
$f_{H_{0}}(t)[\%]$	0.1	1.0	4.4	11.7	20.5	24.6	20.5	11.7	4.4	1.0	0.1
p-value [\%]	0.2	2.1	10.9	34.4	75.4	100	75.4	34.4	10.9	2.1	0.2

At 5\% level, we accept the null in the complement of the critical region, that is $\{2,3, \ldots, 7,8\}$.
If H_{1} is true, how probably do we land there (\Rightarrow type II error)?
This is more difficult to calculate, because it depends on the true value of θ, and H_{1} allows many values.
For example, if $\theta=0.5001$, we have

$$
\begin{aligned}
\mathbb{P}(t(\vec{X}) \in\{2,3, \ldots, 8\} \mid \theta=0.5001) & \approx \mathbb{P}\left(t(\vec{X}) \in\{2,3, \ldots, 8\} \mid H_{0}\right) \\
& =\sum_{t=2}^{8} f_{H_{0}}(t) \approx 97.9 \%
\end{aligned}
$$

so we have a huge type II error rate.

Type II error rate, if single alternative known

A coin tossed 10 times and $\vec{x}=(0,0,1,0,0,0,0,0,0,0)$ is observed. Extra assumption: We know that either $\theta=0.5$ or $\theta=0.9$. Test the fairness hypothesis at $\alpha=0.05$.

$$
\begin{aligned}
& H_{0}: \text { Heads probability } \theta=0.5, \\
& H_{1}: \text { Heads probability } \theta=0.9 .
\end{aligned}
$$

Our computations are as before (same H_{0}, same test statistic, same decisions). Now if H_{1} is true, then the test statistic has distribution

$$
f_{H_{1}}(t)=\mathbb{P}\left(T=t \mid H_{1}\right)=\binom{10}{t} 0.9^{t}(1-0.9)^{10-t}
$$

and the type II error rate is

$$
\mathbb{P}\left(t(\vec{X}) \in\{2,3, \ldots, 8\} \mid H_{1}\right)=\sum_{t=2}^{8} f_{H_{1}}(t) \approx 26 \% .
$$

Contents

Introduction to hypothesis testing

Examples and models

Variants

Decisions and errors

Further topics

Further topics in hypothesis testing

The previous statistical tests concerned hypotheses about the mean, for example $p=1 / 2$ or $\mu=10.0$, and were based on strong simplifying assumptions, for example "data are normal" or "lots of data, so test statistic is normal".

Classical statistics offers more tests for advanced questions, e.g.

- Hypotheses of other parameters. E.g. is the standard deviation of our star measurements $\sigma=3$ or not? $\longrightarrow \chi^{2}$ test etc.
- Weaker assumptions. E.g. data not normal and sample small, so sample mean not normal.
\longrightarrow distribution-specific tests; or nonparametric tests
- Tests for distribution shape. E.g. we would like to test whether the data are normal.
\longrightarrow more tests ...

Further topics in hypothesis testing

For many specific yes/no questions about the unknown distribution (that generates the data), one can still apply the same generic framework of hypothesis testing:

1. Formulate a hypothesis H_{0} about how the data are generated.
2. Formulate a test statistic $t(\vec{X})$ and work out its distribution, if H_{0} is true.
3. Study how well the observed $t(\vec{x})$ fits into that distribution (is it in the tails or not).

Details of the test statistics and their distributions are different in each case.

More about such advanced tests e.g. on MS-C1620 Statistical inference.

Last lecture on Friday, Feb 19. We will try to wrap up what we have learned during the course, see how it fits together, and perhaps fill in some gaps.

For the last lecture, you are encouraged to bring your questions about any topics related to the course. You can also send such questions in advance by e-mail, or in the chat now.

Course exam on Wednesday, Feb 24. Remote exam due to circumstances. Problems in MyCourses, you work out your solutions on paper, take a photo, and submit. (Detailed instructions later)

