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Paul the Octopus

By choosing from two food boxes (with national flags), Paul
predicted the winner of football matches. In 2008, correct 4/6
times. In 2010, correct 7/7 times.

Is this something that might easily happen by chance? Or does it
indicate a good prediction skill?

https://en.wikipedia.org/wiki/Paul_the_Octopus

https://en.wikipedia.org/wiki/Paul_the_Octopus


Hypothesis testing, contrasted to posterior inference

On previous lectures, we learned how we can infer a full distribution
for an unknown parameter θ, if we have two ingredients:

• prior f (θ) — which values of θ are probable in the first place

• likelihood f (~x | θ) — the stochastic model of how the data
are generated, if θ has a particular value

What if we are not able to formulate any prior f (θ)? Can we do
any inference only from the data and the likelihood function?

We can still do something. We can consider a particular value
of θ, and choose to reject it, if that θ makes the observed data
seem “too unlikely”. [We’ll make this more precise.]

This leads to the classical hypothesis testing, which is the topic of
this lecture. (This is an alternative to Bayesian inference.)



Hypothesis testing — first idea (not good)

Suppose we know the general stochastic model: X ∼ Bin(1000, θ)
(one thousand coin tosses), but don’t know the parameter θ. We
are considering if θ = 0.5 seems plausible — or if the data seems
too surprising (unlikely) for this parameter value.

Example 1. Observe x = 510 heads. If θ = 0.5 is true,

P(X = 510 | θ = 0.5) =

(
1000

510

)
0.5510 0.5490 ≈ 2.1%.

Is this surprising? Should we reject θ = 0.5?

Example 2. Observe x = 500 heads. If θ = 0.5 is true,

P(X = 500 | θ = 0.5) =

(
1000

500

)
0.5500 0.5500 ≈ 2.5%.

Is this surprising? Should we reject θ = 0.5? Probably not!



Hypothesis testing — classical method
Step Example

Formulate a hypothesis H0

about how data are generated.

~X = 30 coffee cups, each from
N(10, 32)

Formulate a test statistic t =
t(~X ), calculated from data

Sample mean m(~X )

Work out the distribution of t
(if H0 is true).

m(~X ) ∼ N(. . .)

Reject H0 if the observed value
t(~x) is in the tails of the dis-
tribution; choose tails to have
probability α

α = 0.05

Idea: t in the 5% tails is surprising if H0 is true. We reject H0 in
that case. The tails are called critical region (rejection region).

Even if H0 is true, this procedure may cause H0 to be rejected —
but only α = 5% of the time. This is called the significance level
of the test. −→ Illustration on blackboard



Hypothesis testing — another view, with p-value

Step Example

Formulate a hypothesis H0

about how data are generated.

~X = 30 coffee cups, each from
N(10, 32)

Formulate a test statistic t =
t(~X ), calculated from data

Sample mean m(~X )

Work out the distribution of t
(if H0 is true).

m(~X ) ∼ N(. . .)

Calculate both tail probabilities
corresponding to t(~x). This is
the p-value

p = 0.018

Reject H0 if p < α reject

Here we first calculated a p-value, and then applied the
significance level α = 0.05. A p-value 0.018 < 0.05 was considered
“surprising enough” that H0 should be rejected.
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Coffee machine — Normal model

A coffee machine is meant to give 10.0 cl coffee in each cup, at
least on average. We assume the coffee volumes are normally
distributed, but we don’t know the mean. To test the hypothesis
(µ = 10.0), 30 cups were taken and measured:

11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12
11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10
10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15

Is the machine correctly calibrated (on average)?

Sample mean m(~x) = 10.473, which differs from the intended
µ0 = 10.0.

But since the data are random, it is quite expected that the sample
mean is not exactly 10.0!

Is the observed difference statistically significant?



Coffee machine — Normal model
11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20
10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02
10.00 11.68 10.51 11.20 11.29 10.15

Sample mean m(~x) = 10.473, sample standard deviation sd(~x) = 0.563

H0: µ = µ0 = 10.0
H1: µ 6= µ0 = 10.0

Test statistic of the observed data:

t(~x) =
m(~x)− µ0

sd(~x)/
√
n

=
10.473− 10.0

0.563/
√

30
= 4.60

Because sample size n = 30 fairly large, we work as if σ = sd(~x) = 0.563

exactly (“known variance”). Then t(~X ) has standard normal distribution.
[We could be more exact and use t distribution.]

p value ≈ P(|t(~X )| ≥ |t(~x)| |H0) ≈ P(|Z | ≥ 4.60) ≈ 4.2× 10−6

Result: p-value very small. If H0 were true, it would be very unlikely to
obtain a sample mean so far (or further) from the hypothesized µ = 10.0.
We reject H0.



Hypothesis testing vs. confidence interval

Often, hypothesis testing at significance level α can be
alternatively framed as the question:

If we calculate a 1− α confidence interval for the unknown
parameter θ, does the interval contain the value θ0 claimed by the
null hypothesis?

If the interval contains θ0, then the data is compatible with the
possibility that θ = θ0, as claimed.

If the interval is fully below or fully above θ0, then the data speaks
against the possibility that θ = θ0.

(Possibly illustration on blackboard)



Coffee machine — testing vs. confidence interval

11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20
10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02
10.00 11.68 10.51 11.20 11.29 10.15

Sample mean m(~x) = 10.473, sample standard deviation sd(~x) = 0.563

H0: µ = µ0 = 10.0
H1: µ 6= µ0 = 10.0

Again, work as if σ = sd(~x) = 0.563 exactly (“known variance”).

Computing e.g. 99% confidence interval, we obtain

10.473± 2.58 · 0.563√
30
≈ 10.473± 0.265,

so the interval is completely above 10.0. Thus we reject the null
hypothesis (that µ = 10.0) at 1% significance level.

Caveat: In some situations, there are subtle differences between
hypothesis testing and confidence intervals, but in the most common
situations, this connection is probably helpful for understanding.



Null hypothesis H0

The starting point of a hypothesis test is the null hypothesis H0,
which generally indicates that nothing new or surprising is needed
to explain the observations. Often this is of the form
“parameter=value” (and the most common parameter is mean).

Example

H0: Paul’s predictions are correct with probability θ = 0.5

H0: Coffee machine gives µ = 10.0 cl on average, as intended

H0: A proposed new medicine is no better than placebo

H0: A portfolio manager performs no better than market average

The alternative hypothesis H1 is usually the complement of the null
hypothesis. So if H0 says µ = 10, then H1 says µ 6= 10. Note that
such an alternative hypothesis does not claim any single value!



Test statistic and p-value
The “surprisingness” of an observed data ~x = (x1, . . . , xn) is
measured by first calculating a test statistic,

t(~x) = t(x1, . . . , xn),

which condenses the n-dimensional data vector into one real
number.

Then the p-value (related to the test statistic) is the probability
that the test statistic would have the observed value t(~x), or
something even further away from the expected value.

The probability and the expected value are calculated by assuming
that the H0 is true. Some typical interpretations

p-value Interpretation

> 0.10 Data quite compatible with H0

≈ 0.05 Data suggests against H0

< 0.01 Data suggests strongly against H0



Some more examples

Example (Coin tossing — Discrete data)
A coin that was claimed to be fair, was tossed 50 times, with 42 heads.
H0: Heads probability θ = 1/2
H1: Heads probability θ 6= 1/2

Example (Noisy observation — Little data)
Star brightness measurements claimed to be normal, with µ = 5 and
σ = 3. Measured once, with result x1 = 9.8.
H0: µ = 5
H1: µ 6= 5

Example (Quality control — Composite hypothesis)
Shopkeeper claims that at most 5% of their tomatoes are bad. 50
tomatoes were tested, 4 were bad.
H0: Proportion of bad θ ≤ 0.05
H1: Proportion of bad θ > 0.05
This is an example where H0 is composite (allows many values).



Example. Coin tossing

Coin claimed to be fair, results 42 heads on 50 tosses.
H0: Heads probability θ = 1/2
H1: Heads probability θ 6= 1/2
Test statistic = heads count: t(x) = 42
T = t(X ) = “heads count according to H0”

f (x) = P(T = x |H0) =

(
50

x

)(
1

2

)x (
1− 1

2

)50−x

Test statistic has mean t0 = E(T |H0) = 25.

p-value = P(|T − t0| ≥ |t(x)− t0| |H0)

= P(|T − 25| ≥ 17 |H0)

=
8∑

x=0

f (x) +
50∑

x=42

f (x) ≈ 1.2× 10−6.

Data is strongly against H0.



Example. Noisy observation

Star brightness measurements claimed to be normal µ = 5 and
σ = 3. Single observation: x1 = 9.8.
H0: Mean µ = 5
H1: Mean µ 6= 5
Test statistic = normalized difference from the hypothesized mean:
z(~x) = x1−2

3 = 1.6

p-value = P(|Z | ≥ 1.6 |H0) = 2P(Z ≥ 1.6 |H0) ≈ 11%,

Observation compatible with regular random chance.
Observation does not lead to rejection of H0
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Variant: Testing for µ, large non-normal data

Suppose the data source generates independent, identically
distributed numbers X1,X2, . . . ,Xn from some distribution with
unknown mean µ. We study whether the mean could be µ0.

H0: µ = µ0
H1: µ 6= µ0

Distribution unknown =⇒ impossible to test?
No; if sample is big, and independent, then CLT says the sample
mean is normal, even if the individual observations are not.

Test statistic just like in the normal model:

t(~x) =
m(~x)− µ0
sd(~x)/

√
n
.



Variant: Unknown variance

Often, the standard deviation σ of the data source is not known,
but is estimated by the sample standard deviation sd(~x).

If the sample is large (e.g. n > 30), the estimate is decent, but . . .

For small samples, we must note that the test statistic

t(~X ) =
m(~X )− µ0
sd(~X )

√
n

is the quotient of two random variables, and there is no reason to
believe its distribution would be normal. It is not!

The real distribution of t(~X ) is the Student’s t-distribution with
parameter n − 1. The parameter is called “degrees of freedom”.
All is still fine — you simply do all computations with this
t-distribution instead of the normal distribution. Again, you can
use tables, or a computer. In R, pt is the CDF, and qt is the
quantile function. (Compate to pnorm and qnorm.)



Student’s t-distribution

Picture credit: Skbkekas, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9546828

https://commons.wikimedia.org/w/index.php?curid=9546828


Interlude: Computing with distributions in R

distribution density CDF quantile function generate random

uniform dunif punif qunif runif

beta dbeta pbeta qbeta rbeta

normal dnorm pnorm qnorm rnorm

Student dt pt qt rt

exponential dexp pexp qexp rexp

. . . d... p... q... r...

Compare the 0.975-quantiles of standard normal, and Student with
n = 50 and n = 10.

> qnorm(.975)

[1] 1.959964

> qt(.975, 49)

[1] 2.009575 => Slightly wider confidence intervals.

> qt(.975, 9)

[1] 2.262157 => Clearly wider confidence intervals.



Interlude: Computing with distributions in Matlab/Octave
distribution density CDF quantile function generate random

uniform unifpdf unifcdf unifinv unifrnd

beta betapdf betacdf betainv betarnd

normal normpdf normcdf norminv normrnd

Student tpdf tcdf tinv trnd

exponential exppdf expcdf expinv exprnd

. . . ...pdf ...cdf ...inv ...rnd

Compare the 0.975-quantiles of standard normal, and Student with
n = 50 and n = 10.

>> norminv(.975)

ans =

1.959963984540054

>> tinv(.975, 49)

ans =

2.009575237129235

>> tinv(.975, 9)

ans =

2.262157162798204



Variant: Composite hypothesis
Shopkeeper claims that at most 5% of their tomatoes are bad.
50 tomatoes were tested, 4 were bad.
H0: Proportion of bad θ ≤ 0.05
H1: Proportion of bad θ > 0.05
This is an example where H0 is composite (allows many values).

Test statistic: Count of bads: t(~x) = 4
If the real proportion is θ (in the data source), then

Pθ(T = t) = fθ(t) =

(
50

t

)
θt(1− θ)50−t

Because H0 claims proportion is small, we apply a one-sided test: only
high values above claimed mean are significant. We would like to find

Pθ
(
T − Eθ(T ) ≥ t(~x)− Eθ(T )

)
= Pθ(T ≥ t(~x)) =

50∑
t=4

fθ(t).

Trouble: the probability depends on θ. So let us choose the the highest
possible p-value, from any θ that H0 allows:

p-value = max
θ≤0.05

Pθ(T ≥ t(~x)) = P0.05(T ≥ t(~x)) =
50∑
t=4

f0.05(t) ≈ 24%
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Accepting or rejecting

You could compute a p-value and just report it, refraining of
making further decisions like “accept” or “reject”.

But often you need to make a decision. Based on the test, you
either accept or reject H0. This may affect e.g. further studies
(performed or not), taking a medicine for use, . . .

To make a decision, you choose (either before or after
computing p) a significance level α (0 < α < 1).

• If p-value ≥ α, the null hypothesis is accepted

• If p-value < α, the null hypothesis is rejected

Typical, conventional significance levels are α = 1% and α = 5%.

(This is a very crude way of making decisions. More advanced
methods would explicitly consider the consequences of the
decisions −→ decision theory, but outside the scope of this course.)



Type I and II errors

Whichever decision we make (accept or reject), it may be correct
or incorrect.

Decision
H0 accepted H0 rejected

Reality H0 true Correct Type I error

H0 false Type II error Correct

If rejection of H0 is considered discovering an interesting
phenomenon (deviation from the null hypothesis), then

• type I error is a false positive (false discovery)

• type II error is a false negative (failure to discover)

In statistical inference, it is not possible to avoid both errors
completely. But by probability calculus, we may try to calculate
the probabilities of making type I and II errors.



Probabilities of the errors
p(~x) = the p-value computed from data ~x
p(~X ) = random variable: what p-values can be obtained (when ~X
follows a distribution)

If H0 is true, then the probability of rejecting it (Type I error) is

P(H0 rejected |H0) = P(p(~X ) < α |H0) ≈ α

If H0 is false, then the probability of accepting it (Type II error) is

P(H0 accepted |H1) = P(p(~X ) ≥ α |H1)

By changing α, we can change both probabilities . . . with a tradeoff

α Type I error rate Type II error rate

Small Small Large
Large Large Small



Two caricatures

Eve Eager

• Applies significance level
α = 5%

• Is eager to reject null
hypotheses, so makes many
discoveries

• Has approx 5% rate of Type I
errors (rejecting a true null
hypothesis)

• Has lower type II rate than
Cathy

Cathy Cautious

• Applies significance level
α = 1%

• Is cautious of rejecting a null
hypothesis, so makes fewer
discoveries

• Has approx 1% rate of type I
errors (rejecting a true null
hypothesis)

• Has higher type II error rate
than Ann (failure to make a
discovery)



Example. Coin tossing

A coin is tossed 10 times and ~x = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0) is observed.
Test the fairness at significance 5%.

H0: Heads probability θ = 0.5,
H1: Heads probability θ 6= 0.5.

Test statistic: t(~x)=# heads

Stochastic model of the test statistic: T = t(~X )

fH0(t) = P(T = t |H0) =

(
10

t

)(
1

2

)10

From this observed data ~x , we compute

p(~x) = P( |t(~X )− 5| ≥ 4 | H0) =
1∑

t=0

fH0(t) +
10∑
t=9

fH0(t) ≈ 2.1%.

Decision: Null hypothesis rejected at 5% level.
But what do we know about the error probabilities?



Coin tossing — Type I error rate

Possible p-values, as a function of the test statistic t(~x) = #heads:

# heads 0 1 2 3 4 5 6 7 8 9 10

fH0
(t) [%] 0.1 1.0 4.4 11.7 20.5 24.6 20.5 11.7 4.4 1.0 0.1

p-value [%] 0.2 2.1 10.9 34.4 75.4 100 75.4 34.4 10.9 2.1 0.2

At 5% level, we reject the null at the critical region {0, 1, 9, 10}.
If H0 is true, we land there with probability

P(t(~X ) ∈ {0, 1, 9, 10} |H0) =
1∑

t=0

fH0(t) +
10∑
t=9

fH0(t) ≈ 2.1%.

So the type I error rate is 2.1% ≤ 5%.

It is not exactly 5% because in the discrete distribution of the test statistic, we do not

have a point where the tail probabilities would be exactly 5%. Values 2 and 8 are in

the acceptance region because their p-values are > 5%.



Coin tossing — Type II error rate??
Possible p-values, as a function of the test statistic:

# heads 0 1 2 3 4 5 6 7 8 9 10

fH0
(t) [%] 0.1 1.0 4.4 11.7 20.5 24.6 20.5 11.7 4.4 1.0 0.1

p-value [%] 0.2 2.1 10.9 34.4 75.4 100 75.4 34.4 10.9 2.1 0.2

At 5% level, we accept the null in the complement of the critical
region, that is {2, 3, . . . , 7, 8}.
If H1 is true, how probably do we land there (⇒ type II error)?
This is more difficult to calculate, because it depends on the true
value of θ, and H1 allows many values.
For example, if θ = 0.5001, we have

P(t(~X ) ∈ {2, 3, . . . , 8} | θ = 0.5001) ≈ P(t(~X ) ∈ {2, 3, . . . , 8} |H0)

=
8∑

t=2

fH0(t) ≈ 97.9%,

so we have a huge type II error rate.



Type II error rate, if single alternative known

A coin tossed 10 times and ~x = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0) is observed.
Extra assumption: We know that either θ = 0.5 or θ = 0.9. Test the
fairness hypothesis at α = 0.05.

H0: Heads probability θ = 0.5,
H1: Heads probability θ = 0.9.

Our computations are as before (same H0, same test statistic, same
decisions). Now if H1 is true, then the test statistic has distribution

fH1(t) = P(T = t |H1) =

(
10

t

)
0.9t(1− 0.9)10−t

and the type II error rate is

P( t(~X ) ∈ {2, 3, . . . , 8} |H1) =
8∑

t=2

fH1(t) ≈ 26%.
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Further topics in hypothesis testing

The previous statistical tests concerned hypotheses about the
mean, for example p = 1/2 or µ = 10.0, and were based on strong
simplifying assumptions, for example “data are normal” or “lots of
data, so test statistic is normal”.

Classical statistics offers more tests for advanced questions, e.g.

• Hypotheses of other parameters. E.g. is the standard
deviation of our star measurements σ = 3 or not?
−→ χ2 test etc.

• Weaker assumptions. E.g. data not normal and sample small,
so sample mean not normal.
−→ distribution-specific tests; or nonparametric tests

• Tests for distribution shape. E.g. we would like to test
whether the data are normal. −→ more tests . . .



Further topics in hypothesis testing

For many specific yes/no questions about the unknown distribution
(that generates the data), one can still apply the same generic
framework of hypothesis testing:

1. Formulate a hypothesis H0 about how the data are generated.

2. Formulate a test statistic t(~X ) and work out its distribution, if
H0 is true.

3. Study how well the observed t(~x) fits into that distribution (is
it in the tails or not).

Details of the test statistics and their distributions are different in
each case.

More about such advanced tests e.g. on MS-C1620 Statistical
inference.



Last lecture on Friday, Feb 19. We will try to wrap up what we
have learned during the course, see how it fits together, and
perhaps fill in some gaps.

For the last lecture, you are encouraged to bring your questions
about any topics related to the course. You can also send such
questions in advance by e-mail, or in the chat now.

Course exam on Wednesday, Feb 24. Remote exam due to
circumstances. Problems in MyCourses, you work out your
solutions on paper, take a photo, and submit. (Detailed
instructions later)
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