MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 3.3. at 14-16 (?) Solutions due: Mon 8.3. at 10

Exercise 1. If \mathfrak{X} is a finite set, and μ, ν are two probability measures on \mathfrak{X} , we define the total variation distance between μ and ν as

$$\varrho_{\mathrm{TV}}(\mu,\nu) = \max_{E \subset \mathfrak{X}} \big| \mu[E] - \nu[E] \big|.$$

(a) Show that the total variation distance can be alternatively expressed as

$$\varrho_{\rm TV}(\mu,\nu) = \frac{1}{2} \sum_{x \in \mathfrak{X}} \left| \mu[\{x\}] - \nu[\{x\}] \right|.$$

(b) Prove that the total variation distance is a metric¹ on the set of probability measures on \mathfrak{X} .

Exercise 2. Let σ be a uniformly distributed random permutation of the set $\{1, 2, \ldots, n\}$. Compute the following quantities about its cycle decomposition.²

- (a) Let L be the length of the cycle that contains the element 1. What is the distribution of L, i.e. probabilities $P[L = \ell]$? Calculate also E[L].
- (b) Let S be the number of cycles in the cycle decomposition. Calculate $\mathsf{E}[S]$.
- (c) What is the probability that elements 1 and 2 belong to the same cycle?

Exercise 3.

(a) Let $E_1, \ldots, E_n \subset \Omega$ be events. Prove the inclusion-exclusion formula:

$$\mathsf{P}\Big[\bigcup_{j=1}^{n} E_{j}\Big] = -\sum_{\substack{J \subset \{1,\dots,n\}\\ J \neq \emptyset}} (-1)^{\#J} \mathsf{P}\Big[\bigcap_{j \in J} E_{j}\Big]$$
$$= \sum_{1 \le j_{1} \le n} \mathsf{P}[E_{j_{1}}] - \sum_{1 \le j_{1} < j_{2} \le n} \mathsf{P}[E_{j_{1}} \cap E_{j_{2}}] + \sum_{1 \le j_{1} < j_{2} < j_{3} \le n} \mathsf{P}[E_{j_{1}} \cap E_{j_{2}} \cap E_{j_{3}}] - \cdots$$

(b) What is the probability that a uniformly distributed random permutation of the set $\{1, 2, ..., n\}$ has a fixed point, i.e., a cycle of length 1? Compute the limit of this probability as $n \to \infty$.

Hint: In part (a), you may want to use indicator random variables and consider the complementary event. In part (b), set $E_j = \{$ the point j is a fixed point $\}$.

¹*Recall:* A metric on a set A is a function $\varrho: A \times A \to [0, \infty)$ such that for any $a, b, c \in A$ we have (1): $\varrho(a, b) = 0 \Leftrightarrow a = b$, (2): $\varrho(a, b) = \varrho(b, a)$, and (3): $\varrho(a, c) \leq \varrho(a, b) + \varrho(b, c)$.

²*Recall:* A permutation can be written as a composition of disjoint cycles so that each element appears in exactly one cycle, and up to the order of cycles this cycle decomposition is unique.

Exercise 4. Let $(X_n)_{n \in \mathbb{Z}_{\geq 0}}$ be the symmetric simple random walk with ± 1 steps, i.e. $X_n = \sum_{k=1}^n \xi_k$ where $(\xi_k)_{k \in \mathbb{N}}$ are i.i.d. and $\mathsf{P}[\xi_k = +1] = \frac{1}{2}$, $\mathsf{P}[\xi_k = -1] = \frac{1}{2}$. Prove that for any n and for any x > 0 we have

$$\mathsf{P}[X_n > x] \le e^{-\frac{1}{2n}x^2}.$$

Hint: Compute the exponential moments $\mathsf{E}[e^{\theta X_n}]$, and use Markov inequality. Choose the parameter θ judiciously.

Exercise 5. Consider bond percolation on \mathbb{Z}^d , i.e., the probability measure on $\Omega = \{0,1\}^{\mathbb{E}(\mathbb{Z}^d)}$ obtained as the product of Bernoulli distributions on $\{0,1\}$ for each bond $e \in \mathbb{E}(\mathbb{Z}^d)$. Recall that for a given configuration $\omega = (\omega_e)_{e \in \mathbb{E}(\mathbb{Z}^d)} \in \Omega$, we interpret $\omega_e = 1$ as "the bond e is open", and we consider connectivity along paths of open bonds. The sigma algebra \mathscr{F} on $\Omega = \{0,1\}^{\mathbb{E}(\mathbb{Z}^d)}$ is the cylinder sigma algebra (product sigma algebra), i.e., the smallest sigma algebra with respect to which the projections $\omega \mapsto \omega_e$ are measurable for all $e \in \mathbb{E}(\mathbb{Z}^d)$. Prove the following measurability properties.

- (a) For any $x, y \in \mathbb{Z}^d$, the event $\{x \leftrightarrow y\}$ that x is connected to y is measurable.
- (b) For any $x \in \mathbb{Z}^d$, the size $\#\mathcal{C}_x$ of the connected component \mathcal{C}_x of x is a measurable random variable.
- (c) The event that there exists an infinite connected component is measurable.

Exercise 6. Consider the regular infinite tree \mathcal{T} of degree $B \geq 3$ (see Figure). Declare each nearest neighbor bond of the tree open or closed, with respective probabilities p and 1-p, independently. Denote by \mathcal{C} the set of sites of the tree which are connected to the root site \emptyset by a path of open bonds. Let $S = \#\mathcal{C}$ be the number of such sites. Calculate $\mathsf{E}[S]$ as a function of p. For which values of p is $\mathsf{E}[S]$ finite?

FIGURE: Regular infinite trees of degree 3 and 5.