MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 3.3. at 14-16 (?) Solutions due: Mon 8.3. at 10

Exercise 1. If \mathfrak{X} is a finite set, and μ, ν are two probability measures on \mathfrak{X}, we define the total variation distance between μ and ν as

$$
\varrho_{\mathrm{TV}}(\mu, \nu)=\max _{E \subset \mathfrak{X}}|\mu[E]-\nu[E]| .
$$

(a) Show that the total variation distance can be alternatively expressed as

$$
\varrho_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{x \in \mathfrak{X}}|\mu[\{x\}]-\nu[\{x\}]| .
$$

(b) Prove that the total variation distance is a metric ${ }^{1}$ on the set of probability measures on \mathfrak{X}.

Exercise 2. Let σ be a uniformly distributed random permutation of the set $\{1,2, \ldots, n\}$. Compute the following quantities about its cycle decomposition. ${ }^{2}$
(a) Let L be the length of the cycle that contains the element 1 . What is the distribution of L, i.e. probabilities $\mathrm{P}[L=\ell]$? Calculate also $\mathrm{E}[L]$.
(b) Let S be the number of cycles in the cycle decomposition. Calculate $\mathrm{E}[S]$.
(c) What is the probability that elements 1 and 2 belong to the same cycle?

Exercise 3.

(a) Let $E_{1}, \ldots, E_{n} \subset \Omega$ be events. Prove the inclusion-exclusion formula:

$$
\begin{aligned}
& \mathrm{P}\left[\bigcup_{j=1}^{n} E_{j}\right]=-\sum_{\substack{J \subset\{1, \ldots, n\} \\
J \neq 0}}(-1)^{\# J} \mathrm{P}\left[\bigcap_{j \in J} E_{j}\right] \\
= & \sum_{1 \leq j_{1} \leq n} \mathrm{P}\left[E_{j_{1}}\right]-\sum_{1 \leq j_{1}<j_{2} \leq n} \mathrm{P}\left[E_{j_{1}} \cap E_{j_{2}}\right]+\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \mathrm{P}\left[E_{j_{1}} \cap E_{j_{2}} \cap E_{j_{3}}\right]-\cdots .
\end{aligned}
$$

(b) What is the probability that a uniformly distributed random permutation of the set $\{1,2, \ldots, n\}$ has a fixed point, i.e., a cycle of length 1 ? Compute the limit of this probability as $n \rightarrow \infty$.

Hint: In part (a), you may want to use indicator random variables and consider the complementary event. In part (b), set $E_{j}=\{$ the point j is a fixed point $\}$.

[^0]Exercise 4. Let $\left(X_{n}\right)_{n \in \mathbb{Z}}$ 价 be the symmetric simple random walk with ± 1 steps, i.e. $X_{n}=\sum_{k=1}^{n} \xi_{k}$ where $\left(\xi_{k}\right)_{k \in \mathbb{N}}$ are i.i.d. and $\mathrm{P}\left[\xi_{k}=+1\right]=\frac{1}{2}, \mathrm{P}\left[\xi_{k}=-1\right]=\frac{1}{2}$. Prove that for any n and for any $x>0$ we have

$$
\mathrm{P}\left[X_{n}>x\right] \leq e^{-\frac{1}{2 n} x^{2}}
$$

Hint: Compute the exponential moments $\mathrm{E}\left[e^{\theta X_{n}}\right]$, and use Markov inequality. Choose the parameter θ judiciously.

Exercise 5. Consider bond percolation on \mathbb{Z}^{d}, i.e., the probability measure on $\Omega=\{0,1\}^{\mathrm{E}\left(\mathbb{Z}^{d}\right)}$ obtained as the product of Bernoulli distributions on $\{0,1\}$ for each bond $e \in \mathrm{E}\left(\mathbb{Z}^{d}\right)$. Recall that for a given configuration $\omega=\left(\omega_{e}\right)_{e \in \mathrm{E}\left(\mathbb{Z}^{d}\right)} \in \Omega$, we interpret $\omega_{e}=1$ as "the bond e is open", and we consider connectivity along paths of open bonds. The sigma algebra \mathscr{F} on $\Omega=\{0,1\}^{\mathrm{E}\left(\mathbb{Z}^{d}\right)}$ is the cylinder sigma algebra (product sigma algebra), i.e., the smallest sigma algebra with respect to which the projections $\omega \mapsto \omega_{e}$ are measurable for all $e \in \mathrm{E}\left(\mathbb{Z}^{d}\right)$. Prove the following measurability properties.
(a) For any $x, y \in \mathbb{Z}^{d}$, the event $\{x$ s $\rightarrow y\}$ that x is connected to y is measurable.
(b) For any $x \in \mathbb{Z}^{d}$, the size $\# \mathcal{C}_{x}$ of the connected component \mathcal{C}_{x} of x is a measurable random variable.
(c) The event that there exists an infinite connected component is measurable.

Exercise 6. Consider the regular infinite tree \mathcal{T} of degree $B \geq 3$ (see Figure). Declare each nearest neighbor bond of the tree open or closed, with respective probabilities p and $1-p$, independently. Denote by \mathcal{C} the set of sites of the tree which are connected to the root site \emptyset by a path of open bonds. Let $S=\# \mathcal{C}$ be the number of such sites. Calculate $\mathrm{E}[S]$ as a function of p. For which values of p is $\mathrm{E}[S]$ finite?

Figure: Regular infinite trees of degree 3 and 5.

[^0]: ${ }^{1}$ Recall: A metric on a set A is a function $\varrho: A \times A \rightarrow[0, \infty)$ such that for any $a, b, c \in A$ we have (1): $\varrho(a, b)=0 \Leftrightarrow a=b,(2): \varrho(a, b)=\varrho(b, a)$, and $(3): \varrho(a, c) \leq \varrho(a, b)+\varrho(b, c)$.
 ${ }^{2}$ Recall: A permutation can be written as a composition of disjoint cycles so that each element appears in exactly one cycle, and up to the order of cycles this cycle decomposition is unique.

