MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 10.3. at 14-16 Solutions due: Mon 15.3. at 10

Exercise 1. Let $\left(X_{j}\right)_{j \in \mathbb{N}}$ be independent, $X_{j} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, and $S_{n}=\sum_{j=1}^{n} X_{j}$.
(a) Show that for all $x>0$ we have

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \exp \left(-\frac{x^{2}}{2}\right) \leq \int_{x}^{\infty} \exp \left(-\frac{y^{2}}{2}\right) \mathrm{d} y \leq \frac{1}{x} \exp \left(-\frac{x^{2}}{2}\right) .
$$

(b) For $a>\mu$, calculate the following rate of large deviations

$$
-\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{P}\left[S_{n} \geq n a\right]
$$

Interpretation: For $a>\mu$, the probability of $\left\{S_{n} \geq n a\right\}$ is exponentially small in n, approximately given by $\mathrm{P}\left[S_{n} \geq n a\right] \approx e^{-n J(a)}$, where $J(a)$ is the limit in part (b).

Exercise 2. Let X_{1}, X_{2}, \ldots be independent and identically distributed real valued random variables with a continuous cumulative distribution function $F: \mathbb{R} \rightarrow[0,1]$.
(a) Show that for any $n=1,2, \ldots$, almost surely (i.e., with probability one) there exists a unique permutation $\sigma_{n} \in \mathfrak{S}_{n}$ such that

$$
X_{\sigma_{n}(1)}>X_{\sigma_{n}(2)}>\cdots>X_{\sigma_{n}(n)} .
$$

Show moreover, that the random permutation σ_{n} follows the uniform distribution on \mathfrak{S}_{n}, i.e. $\mathrm{P}\left[\sigma_{n}=\pi\right]=\frac{1}{n!}$ for all $\pi \in \mathfrak{S}_{n}$.
Hint: Show that the probabilities that $\sigma_{n}=\pi$ and $\sigma_{n}=\pi^{\prime}$ are the same for any $\pi, \pi^{\prime} \in \mathfrak{S}_{n}$.
(b) Let $\sigma_{n} \in \mathfrak{S}_{n}$ and $\sigma_{n+1} \in \mathfrak{S}_{n+1}$ be the random permutations defined in part (a). Show that for any $\pi \in \mathfrak{S}_{n}$ we have

$$
\mathrm{P}\left[\sigma_{n+1}(1)=n+1 \mid \sigma_{n}=\pi\right]=\frac{1}{n+1} .
$$

For all $n=1,2, \ldots$, define the event $R_{n}=\left\{X_{n}>\max \left(X_{1}, \ldots, X_{n-1}\right)\right\}$.
(c) Show that the events R_{1}, R_{2}, \ldots are independent.

Hint: Observe that $R_{n}=\left\{\sigma_{n}(1)=n\right\}$ and use previous results.
(d) Show that almost surely R_{n} occurs for infinitely many n.
(e) Show that almost surely $R_{n} \cap R_{n+1}$ occurs only for finitely many n.

Interpretation: Think of an annual sports contest, where X_{n} is the score (e.g., javelin throw distance) of the winner in the contest of year n. Then R_{n} is the event that the earlier record score is broken by the winner of year n. The conclusions of parts (d) and (e) say that there are infinitely many years when a new record is set, but there are only finitely times when new records are set in two consecutive years.

Exercise 3. Define a function λ by

$$
\lambda(n)=\sqrt{n \log (\log (n))}
$$

Let $\alpha>1$ and for $k \in \mathbb{N}$ let $^{1} n_{k}=\left\lfloor\alpha^{k}\right\rfloor$. Calculate the limits

$$
\lim _{k \rightarrow \infty} \frac{n_{k}}{\alpha^{k}}, \quad \lim _{k \rightarrow \infty} \frac{\lambda\left(n_{k}\right)}{\lambda\left(n_{k+1}\right)}, \quad \lim _{k \rightarrow \infty} \frac{\lambda\left(n_{k+1}-n_{k}\right)}{\lambda\left(n_{k+1}\right)} .
$$

Exercise 4. Let $X_{j}, j \in \mathbb{Z}_{>0}$, be independent identically distributed random variables with $X_{j} \sim \operatorname{Exp}(\lambda)$. Denote the maximum of the first n of them by $M_{n}=\max _{1 \leq j \leq n} X_{j}$, and consider the shifted maxima $R_{n}=M_{n}-\frac{1}{\lambda} \log (n)$. Calculate the cumulative distribution functions $F_{n}(x)=\mathrm{P}\left[R_{n} \leq x\right], n \in \mathbb{Z}_{>0}$, and show that they converge pointwise as $n \rightarrow \infty$. Calculate the limit, and show that it is a cumulative distribution function. ${ }^{2}$

Exercise 5.

(a) Let $P \sim \operatorname{Poisson}(\lambda)$, i.e., $\mathrm{P}[P=k]=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for $k \in \mathbb{Z}_{\geq 0}$. Calculate the characteristic function $\mathrm{E}\left[e^{\mathrm{i} \theta P}\right]$.
(b) Let $B \sim \operatorname{Bin}(n, p)$, i.e., $\mathrm{P}[B=k]=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$. Calculate the characteristic function $\mathrm{E}\left[e^{\mathrm{i} \theta B}\right]$.
(c) For $n \in \mathbb{N}$, let $B_{n} \sim \operatorname{Bin}\left(n, p_{n}\right)$, and assume $n p_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. Calculate the limit $\lim _{n \rightarrow \infty} \mathrm{E}\left[e^{\mathrm{i} \theta B_{n}}\right]$.

Exercise 6. Let $F_{n}: \mathbb{R} \rightarrow[0,1]$ be cumulative distribution functions, for $n \in \mathbb{N}$.
(a) Prove that the sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ has a subsequence $\left(F_{n_{k}}\right)_{k \in \mathbb{N}}$ which converges pointwise at all rational points, i.e., there exists a function $G: \mathbb{Q} \rightarrow[0,1]$ s.t.

$$
\forall q \in \mathbb{Q} \quad \lim _{k \rightarrow \infty} F_{n_{k}}(q)=G(q)
$$

Prove also that if $q, q^{\prime} \in \mathbb{Q}$ and $q<q^{\prime}$, then we have $G(q) \leq G\left(q^{\prime}\right)$.
Assume now that the collection of c.d.f.'s is tight, i.e., for all $\varepsilon>0$ there exists $R>0$ such that for all n we have $F_{n}(-R) \leq \varepsilon$ and $F_{n}(R) \geq 1-\varepsilon$.
(b) Let $G: \mathbb{Q} \rightarrow[0,1]$ be as in part (a). Prove that

$$
\lim _{q \rightarrow-\infty} G(q)=0 \quad \text { and } \quad \lim _{q \rightarrow+\infty} G(q)=1
$$

(c) Let $G: \mathbb{Q} \rightarrow[0,1]$ be as before. Define $F: \mathbb{R} \rightarrow[0,1]$ by

$$
F(x):=\inf \{G(q) \mid q \in \mathbb{Q} \cap(x,+\infty)\} .
$$

Prove that F is a cumulative distribution function.
(d) Let $F: \mathbb{R} \rightarrow[0,1]$ be as in part (c). Show that we have

$$
\lim _{k \rightarrow \infty} F_{n_{k}}(x)=F(x) \quad \text { for all continuity points } x \text { of } F .
$$

[^0]
[^0]: ${ }^{1}$ The notation $\lfloor x\rfloor$ means the integer part of $x \in \mathbb{R}$, i.e., the largest $n \in \mathbb{Z}$ satisfying $n \leq x$.
 ${ }^{2}$ A function $F: \mathbb{R} \rightarrow[0,1]$ is a cumulative distribution function iff it is non-decreasing, rightcontinuous, and satisfies $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$.

