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MS-E1602 Large Random Systems, 2020-2021/1V
Exercise session: Wed 17.3. at 14-16 Solutions due: Mon 22.3. at 10

Note: In the formulation of Exercises 2 and 5, we use the Landau notation o and O for asymptotic
behavior. If g is a positive function, and f is any function defined on the same set, then we write

f(x):o(g(x)) as T — o, if‘%‘%()asx%xo

f(z) = O(Q(CU)), if for some constant C' > 0 we have ‘gg; ‘ <C.

We also write f1(z) = f2(z) + o(g(x)) to mean fi(z) — fa(z) = o(g9(x)), etc. As an example that you may
use in the solution to Fxcercise 2 below, the Stirling approximation of n-factorial states that

n! = n"e_"\/ﬁ(l + (’)(n_l)).

Exercise 1. Recall that P ~ Poisson()\) if P[P = k] = Le ¥ for all k € Z,.

(a) Let Pp, P, be two independent Poisson distributed random variables, P, ~ Poisson(\;)
and P, ~ Poisson(Ay). Show that Py + P, ~ Poisson(A; + Ag).
(b) Let (Xj);en be independent, X; ~ Poisson(1), and S, = 2?21 X;. Show
that, when a > 1, the following rate of large deviations holds
1 Sy
— lim —logP[— > a} =—a+1+aloga.

n—oo N, n

Interpretation: For a > 1, the probability of {S» > na} is exponentially small in n, approxzimately given
by P[Sn > na] ~ e "7 where J(a) is the limit in part (b).

Exercise 2. This exercise concerns the Cramér entropy, and a related rate of large
deviations for the simple random walk.

(a) Let x € (—1,1), and suppose a sequence (k,)nen of integers k, satisfies
kn = 5(1 4 x) + O(1). Using the Stirling approximation, show that

log (l:;) = n(log(2) - ](:17)) + O(log(n)),

where I(z) is the Cramér entropy

14+ 11—z

I(x) = 5 log(1+ x) +

(b) Consider the simple random walk, X,, = > " &, where (&)sen are ii.d.
steps with P[fs = :l:l} = % Show that for 0 < a < 1 we have the following

rate of large deviations

log(1 — x).

1 Xom
~ lim —1 P[ > }_—1 _
im o—logP| 2" 2>a (a)
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Exercise 3. For the Curie-Weiss model, the Helmholtz free energy reads

g(B,m) = %(1 tm log(1 4+ m) + L-m log(1 —m) — log(?)) —m?.

(a) For afixed 3 > 3, let i = m(B) be the unique positive solution of 2-g(3,m) =
; m(B)
0. Calculate hmﬁ\% W
(b) For fixed B > 0 and 8 > 0, let m = m(3, B) be the unique positive solution
of %(g(ﬁ, m) — Bm) = 0. Calculate limp\ mé?/’f).

Note: The results of (a) and (b) establish two critical exponents for the Curie—Weiss model

Exercise 4. The total variation metric gy on the set of probability measures on R
is defined by orv (1, ) = supgey |u[E] — v[E]|, where 4 is the collection of Borel
subsets of R. Find a sequence (i, )nen of probability measures on R which converges
weakly, but which is not a Cauchy sequence with respect to ory.

Exercise 5. Let (X, 0) be a metric space. Suppose that (z,)nen is a sequence of
points x,, € X, which satisfies two conditions:

1°) any subsequence (:L‘nk) has a further subsequence (xnk _ )jeN that converges
Y J

keN
2°) the limits of any two convergent subsequences of (x,,),en are the same.

Prove that the sequence (z,) converges.

Attention: Recall arguments from the lectures, which used this logic. Pay attention to more such arqu-

ments in the rest of the course.

Exercise 6. Let (X, 0) be a metric space, and let vy, be two Borel probability
measures on X. Show that either of the following is a sufficient condition for vy = vs:

(1) for all closed sets F' C X we have v [F]| = vy[F]
(ii) for all bounded continuous functions f: X — R we have fx fdv = fx fdus.

Note: In particular, by (i), the weak limit of a sequence of probability measures is unique if it exists.



