MS-E1602 Large Random Systems, 2020-2021/IV Exercise session: Wed 17.3. at 14-16 Solutions due: Mon 22.3. at 10

Note: In the formulation of Exercises 2 and 5, we use the Landau notation o and O for asymptotic behavior. If g is a positive function, and f is any function defined on the same set, then we write

$$\begin{aligned} f(x) &= o\Big(g(x)\Big) \quad as \; x \to x_0, & \qquad if \left|\frac{f(x)}{g(x)}\right| \to 0 \; as \; x \to x_0 \\ f(x) &= \mathcal{O}\Big(g(x)\Big), & \qquad if \; for \; some \; constant \; C > 0 \; we \; have \; \left|\frac{f(x)}{g(x)}\right| \le C. \end{aligned}$$

We also write $f_1(x) = f_2(x) + o(g(x))$ to mean $f_1(x) - f_2(x) = o(g(x))$, etc. As an example that you may use in the solution to Excercise 2 below, the Stirling approximation of n-factorial states that

$$n! = n^{n} e^{-n} \sqrt{2\pi n} \Big(1 + \mathcal{O}(n^{-1}) \Big).$$

Exercise 1. Recall that $P \sim \text{Poisson}(\lambda)$ if $\mathsf{P}[P=k] = \frac{1}{k!} e^{-\lambda} \lambda^k$ for all $k \in \mathbb{Z}_{\geq 0}$.

- (a) Let P_1 , P_2 be two independent Poisson distributed random variables, $P_1 \sim \text{Poisson}(\lambda_1)$ (a) Let $P_1, P_2 \sim \text{Poisson}(\lambda_2)$. Show that $P_1 + P_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$. (b) Let $(X_j)_{j \in \mathbb{N}}$ be independent, $X_j \sim \text{Poisson}(1)$, and $S_n = \sum_{j=1}^n X_j$. Show
- that, when a > 1, the following rate of large deviations holds

$$-\lim_{n \to \infty} \frac{1}{n} \log \mathsf{P}\Big[\frac{S_n}{n} \ge a\Big] = -a + 1 + a \log a.$$

Interpretation: For a > 1, the probability of $\{S_n \ge na\}$ is exponentially small in n, approximately given by $P[S_n \ge na] \approx e^{-nJ(a)}$, where J(a) is the limit in part (b).

Exercise 2. This exercise concerns the Cramér entropy, and a related rate of large deviations for the simple random walk.

(a) Let $x \in (-1,1)$, and suppose a sequence $(k_n)_{n \in \mathbb{N}}$ of integers k_n satisfies $k_n = \frac{n}{2}(1+x) + \mathcal{O}(1)$. Using the Stirling approximation, show that

$$\log \binom{n}{k_n} = n \Big(\log(2) - I(x) \Big) + \mathcal{O}(\log(n)).$$

where I(x) is the Cramér entropy

$$I(x) = \frac{1+x}{2}\log(1+x) + \frac{1-x}{2}\log(1-x).$$

(b) Consider the simple random walk, $X_n = \sum_{s=1}^n \xi_s$, where $(\xi_s)_{s \in \mathbb{N}}$ are i.i.d. steps with $\mathsf{P}[\xi_s = \pm 1] = \frac{1}{2}$. Show that for 0 < a < 1 we have the following rate of large deviations

$$-\lim_{m\to\infty}\frac{1}{2m}\log\mathsf{P}\Big[\frac{X_{2m}}{2m}\ge a\Big]=I(a).$$

Exercise 3. For the Curie–Weiss model, the Helmholtz free energy reads

$$g(\beta, m) = \frac{1}{\beta} \left(\frac{1+m}{2} \log(1+m) + \frac{1-m}{2} \log(1-m) - \log(2) \right) - m^2.$$

- (a) For a fixed $\beta > \frac{1}{2}$, let $\bar{m} = \bar{m}(\beta)$ be the unique positive solution of $\frac{\partial}{\partial m}g(\beta, m) = 0$. Calculate $\lim_{\beta \searrow \frac{1}{2}} \frac{\bar{m}(\beta)}{(\beta \frac{1}{2})^{1/2}}$.
- (b) For fixed B > 0 and $\beta > 0$, let $\tilde{m} = \tilde{m}(\beta, B)$ be the unique positive solution of $\frac{\partial}{\partial m} (g(\beta, m) Bm) = 0$. Calculate $\lim_{B \searrow 0} \frac{\tilde{m}(\frac{1}{2}, B)}{B^{1/3}}$.

Note: The results of (a) and (b) establish two critical exponents for the Curie-Weiss model

Exercise 4. The total variation metric ρ_{TV} on the set of probability measures on \mathbb{R} is defined by $\rho_{\text{TV}}(\mu, \nu) = \sup_{E \in \mathscr{B}} |\mu[E] - \nu[E]|$, where \mathscr{B} is the collection of Borel subsets of \mathbb{R} . Find a sequence $(\mu_n)_{n \in \mathbb{N}}$ of probability measures on \mathbb{R} which converges weakly, but which is not a Cauchy sequence with respect to ρ_{TV} .

Exercise 5. Let (\mathfrak{X}, ϱ) be a metric space. Suppose that $(x_n)_{n \in \mathbb{N}}$ is a sequence of points $x_n \in \mathfrak{X}$, which satisfies two conditions:

- 1°) any subsequence $(x_{n_k})_{k\in\mathbb{N}}$ has a further subsequence $(x_{n_{k_j}})_{j\in\mathbb{N}}$ that converges
- 2°) the limits of any two convergent subsequences of $(x_n)_{n\in\mathbb{N}}$ are the same.

Prove that the sequence (x_n) converges.

Attention: Recall arguments from the lectures, which used this logic. Pay attention to more such arguments in the rest of the course.

Exercise 6. Let (\mathfrak{X}, ϱ) be a metric space, and let ν_1, ν_2 be two Borel probability measures on \mathfrak{X} . Show that either of the following is a sufficient condition for $\nu_1 = \nu_2$:

- (i) for all closed sets $F \subset \mathfrak{X}$ we have $\nu_1[F] = \nu_2[F]$
- (ii) for all bounded continuous functions $f: \mathfrak{X} \to \mathbb{R}$ we have $\int_{\mathfrak{X}} f \, \mathrm{d}\nu_1 = \int_{\mathfrak{X}} f \, \mathrm{d}\nu_2$.

Note: In particular, by (ii), the weak limit of a sequence of probability measures is unique if it exists.