MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 17.3. at $14-16$ Solutions due: Mon 22.3. at 10

Note: In the formulation of Exercises 2 and 5, we use the Landau notation o and \mathcal{O} for asymptotic behavior. If g is a positive function, and f is any function defined on the same set, then we write

$$
\begin{array}{ll}
f(x)=o(g(x)) \text { as } x \rightarrow x_{0}, & \text { if }\left|\frac{f(x)}{g(x)}\right| \rightarrow 0 \text { as } x \rightarrow x_{0} \\
f(x)=\mathcal{O}(g(x)), & \\
\text { if for some constant } C>0 \text { we have }\left|\frac{f(x)}{g(x)}\right| \leq C .
\end{array}
$$

We also write $f_{1}(x)=f_{2}(x)+o(g(x))$ to mean $f_{1}(x)-f_{2}(x)=o(g(x))$, etc. As an example that you may use in the solution to Excercise 2 below, the Stirling approximation of n-factorial states that

$$
n!=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+\mathcal{O}\left(n^{-1}\right)\right)
$$

Exercise 1. Recall that $P \sim \operatorname{Poisson}(\lambda)$ if $\mathrm{P}[P=k]=\frac{1}{k!} e^{-\lambda} \lambda^{k}$ for all $k \in \mathbb{Z}_{\geq 0}$.
(a) Let P_{1}, P_{2} be two independent Poisson distributed random variables, $P_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $P_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$. Show that $P_{1}+P_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
(b) Let $\left(X_{j}\right)_{j \in \mathbb{N}}$ be independent, $X_{j} \sim \operatorname{Poisson(1),~and~} S_{n}=\sum_{j=1}^{n} X_{j}$. Show that, when $a>1$, the following rate of large deviations holds

$$
-\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{P}\left[\frac{S_{n}}{n} \geq a\right]=-a+1+a \log a .
$$

Interpretation: For $a>1$, the probability of $\left\{S_{n} \geq n a\right\}$ is exponentially small in n, approximately given by $\mathrm{P}\left[S_{n} \geq n a\right] \approx e^{-n J(a)}$, where $J(a)$ is the limit in part (b).

Exercise 2. This exercise concerns the Cramér entropy, and a related rate of large deviations for the simple random walk.
(a) Let $x \in(-1,1)$, and suppose a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of integers k_{n} satisfies $k_{n}=\frac{n}{2}(1+x)+\mathcal{O}(1)$. Using the Stirling approximation, show that

$$
\log \binom{n}{k_{n}}=n(\log (2)-I(x))+\mathcal{O}(\log (n))
$$

where $I(x)$ is the Cramér entropy

$$
I(x)=\frac{1+x}{2} \log (1+x)+\frac{1-x}{2} \log (1-x) .
$$

(b) Consider the simple random walk, $X_{n}=\sum_{s=1}^{n} \xi_{s}$, where $\left(\xi_{s}\right)_{s \in \mathbb{N}}$ are i.i.d. steps with $\mathrm{P}\left[\xi_{s}= \pm 1\right]=\frac{1}{2}$. Show that for $0<a<1$ we have the following rate of large deviations

$$
-\lim _{m \rightarrow \infty} \frac{1}{2 m} \log \mathrm{P}\left[\frac{X_{2 m}}{2 m} \geq a\right]=I(a)
$$

Exercise 3. For the Curie-Weiss model, the Helmholtz free energy reads

$$
g(\beta, m)=\frac{1}{\beta}\left(\frac{1+m}{2} \log (1+m)+\frac{1-m}{2} \log (1-m)-\log (2)\right)-m^{2} .
$$

(a) For a fixed $\beta>\frac{1}{2}$, let $\bar{m}=\bar{m}(\beta)$ be the unique positive solution of $\frac{\partial}{\partial m} g(\beta, m)=$ 0. Calculate $\lim _{\beta \backslash \frac{1}{2} \frac{\bar{m}(\beta)}{\left(\beta-\frac{1}{2}\right)^{1 / 2}} \text {. }}$.
(b) For fixed $B>0$ and $\beta>0$, let $\tilde{m}=\tilde{m}(\beta, B)$ be the unique positive solution of $\frac{\partial}{\partial m}(g(\beta, m)-B m)=0$. Calculate $\lim _{B \backslash 0} \frac{\tilde{m}\left(\frac{1}{2}, B\right)}{B^{1 / 3}}$.

Note: The results of (a) and (b) establish two critical exponents for the Curie-Weiss model

Exercise 4. The total variation metric ϱ_{TV} on the set of probability measures on \mathbb{R} is defined by $\varrho_{\mathrm{TV}}(\mu, \nu)=\sup _{E \in \mathscr{B}}|\mu[E]-\nu[E]|$, where \mathscr{B} is the collection of Borel subsets of \mathbb{R}. Find a sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of probability measures on \mathbb{R} which converges weakly, but which is not a Cauchy sequence with respect to ϱ_{TV}.

Exercise 5. Let (\mathfrak{X}, ϱ) be a metric space. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence of points $x_{n} \in \mathfrak{X}$, which satisfies two conditions:
1°) any subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ has a further subsequence $\left(x_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ that converges
2°) the limits of any two convergent subsequences of $\left(x_{n}\right)_{n \in \mathbb{N}}$ are the same.
Prove that the sequence $\left(x_{n}\right)$ converges.
Attention: Recall arguments from the lectures, which used this logic. Pay attention to more such arguments in the rest of the course.

Exercise 6. Let (\mathfrak{X}, ϱ) be a metric space, and let ν_{1}, ν_{2} be two Borel probability measures on \mathfrak{X}. Show that either of the following is a sufficient condition for $\nu_{1}=\nu_{2}$:
(i) for all closed sets $F \subset \mathfrak{X}$ we have $\nu_{1}[F]=\nu_{2}[F]$
(ii) for all bounded continuous functions $f: \mathfrak{X} \rightarrow \mathbb{R}$ we have $\int_{\mathfrak{X}} f \mathrm{~d} \nu_{1}=\int_{\mathfrak{X}} f \mathrm{~d} \nu_{2}$.

Note: In particular, by (ii), the weak limit of a sequence of probability measures is unique if it exists.

