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Exercise session: Wed 17.3. at 14-16 Solutions due: Mon 22.3. at 10

Note: In the formulation of Exercises 2 and 5, we use the Landau notation o and O for asymptotic
behavior. If g is a positive function, and f is any function defined on the same set, then we write

f(x) = o
(
g(x)

)
as x→ x0, if

∣∣∣f(x)
g(x)

∣∣∣→ 0 as x→ x0

f(x) = O
(
g(x)

)
, if for some constant C > 0 we have

∣∣∣f(x)
g(x)

∣∣∣ ≤ C.

We also write f1(x) = f2(x) + o(g(x)) to mean f1(x)− f2(x) = o(g(x)), etc. As an example that you may
use in the solution to Excercise 2 below, the Stirling approximation of n-factorial states that

n! = nne−n
√
2πn

(
1 +O(n−1)

)
.

Exercise 1. Recall that P ∼ Poisson(λ) if P
[
P = k

]
= 1

k!
e−λλk for all k ∈ Z≥0.

(a) Let P1, P2 be two independent Poisson distributed random variables, P1 ∼ Poisson(λ1)
and P2 ∼ Poisson(λ2). Show that P1 + P2 ∼ Poisson(λ1 + λ2).

(b) Let (Xj)j∈N be independent, Xj ∼ Poisson(1), and Sn =
∑n

j=1Xj. Show
that, when a > 1, the following rate of large deviations holds

− lim
n→∞

1

n
logP

[Sn
n
≥ a
]

= −a+ 1 + a log a.

Interpretation: For a > 1, the probability of {Sn ≥ na} is exponentially small in n, approximately given

by P[Sn ≥ na] ≈ e−nJ(a), where J(a) is the limit in part (b).

Exercise 2. This exercise concerns the Cramér entropy, and a related rate of large
deviations for the simple random walk.

(a) Let x ∈ (−1, 1), and suppose a sequence (kn)n∈N of integers kn satisfies
kn = n

2
(1 + x) +O(1). Using the Stirling approximation, show that

log

(
n

kn

)
= n

(
log(2)− I(x)

)
+O(log(n)),

where I(x) is the Cramér entropy

I(x) =
1 + x

2
log(1 + x) +

1− x
2

log(1− x).

(b) Consider the simple random walk, Xn =
∑n

s=1 ξs, where (ξs)s∈N are i.i.d.
steps with P

[
ξs = ±1

]
= 1

2
. Show that for 0 < a < 1 we have the following

rate of large deviations

− lim
m→∞

1

2m
logP

[X2m

2m
≥ a
]

= I(a).



Exercise 3. For the Curie–Weiss model, the Helmholtz free energy reads

g(β,m) =
1

β

(1 +m

2
log(1 +m) +

1−m
2

log(1−m)− log(2)
)
−m2.

(a) For a fixed β > 1
2
, let m̄ = m̄(β) be the unique positive solution of ∂

∂m
g(β,m) =

0. Calculate limβ↘ 1
2

m̄(β)

(β− 1
2

)1/2
.

(b) For fixed B > 0 and β > 0, let m̃ = m̃(β,B) be the unique positive solution

of ∂
∂m

(
g(β,m)−Bm

)
= 0. Calculate limB↘0

m̃( 1
2
,B)

B1/3 .

Note: The results of (a) and (b) establish two critical exponents for the Curie–Weiss model

Exercise 4. The total variation metric %TV on the set of probability measures on R
is defined by %TV(µ, ν) = supE∈B

∣∣µ[E] − ν[E]
∣∣, where B is the collection of Borel

subsets of R. Find a sequence (µn)n∈N of probability measures on R which converges
weakly, but which is not a Cauchy sequence with respect to %TV.

Exercise 5. Let (X, %) be a metric space. Suppose that (xn)n∈N is a sequence of
points xn ∈ X, which satisfies two conditions:

1◦) any subsequence
(
xnk

)
k∈N has a further subsequence

(
xnkj

)
j∈N that converges

2◦) the limits of any two convergent subsequences of (xn)n∈N are the same.

Prove that the sequence (xn) converges.

Attention: Recall arguments from the lectures, which used this logic. Pay attention to more such argu-

ments in the rest of the course.

Exercise 6. Let (X, %) be a metric space, and let ν1, ν2 be two Borel probability
measures on X. Show that either of the following is a sufficient condition for ν1 = ν2:

(i) for all closed sets F ⊂ X we have ν1[F ] = ν2[F ]
(ii) for all bounded continuous functions f : X→ R we have

∫
X
f dν1 =

∫
X
f dν2.

Note: In particular, by (ii), the weak limit of a sequence of probability measures is unique if it exists.


