
Aalto University Exercise set 4
Department of Mathematics and Systems Analysis K Kytölä & O Abuzaid
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In Exercises 1 and 2, let (X, %) be a metric space, B the Borel sigma algebra on X,
and M1(X) the set of Borel probability measures on X. For µ, ν ∈M1(X) define

dLP(µ, ν) = inf
{
δ > 0

∣∣∣ ∀E ∈ B : µ[E] ≤ ν[Eδ] + δ and ν[E] ≤ µ[Eδ] + δ
}
,

where Eδ =
{
x ∈ X

∣∣ %(x,E) < δ
}

is the (open) δ-thickening of E.

Recall that a coupling of probability measures µ, ν ∈M1(X) is a probability measure
λ on X×X such that for all E ∈ B we have λ[E ×X] = µ[E] and λ[X×E] = ν[E].

Exercise 1.

(a) Show that dLP is a metric on M1(X).
(b) Assume that there exists a coupling λ of µ and ν in which

λ
[ {

(x1, x2) ∈ X× X
∣∣ %(x1, x2) ≥ ε

} ]
≤ ε.

Show that then dLP(µ, ν) ≤ ε.

Interpretation: If ε is very small in part (b), then in the coupling λ the two components X1 and X2 of

(X1, X2) ∼ λ are very close with very high probability. The conclusion then says that then the measures µ

and ν are very close.

Exercise 2. Assume that νn ∈M1(X), n ∈ N, are such that for some ν ∈M1(X)

we have dLP(νn, ν)→ 0 as n→∞. Show that we then have νn
w−→ ν as n→∞.

Hint: Use criterion (iii) for weak convergence. Recall that the closure of a set E ⊂ X can be expressed in

terms of the δ-thickenings Eδ.

Exercise 3. Let n ∈ N, and let C ∈ Rn×n be a symmetric and positive definite
matrix and let m ∈ Rn be a vector. Define a function p : Rn → R by

p(x) =
1

Z
exp

(
−1

2
(x−m)> C−1 (x−m)

)
,

where Z is a constant.

(a) Calculate
∫
Rn p(x) dnx, and show that p is a (correctly normalized) probability

density on Rn if Z = (2π)n/2
√

det(C).
Hint: Do first a change of variables (translation) to reduce to the case m = 0. Then do an orthogonal

change of variables to a basis in which C is diagonal.

(b) Choose Z as in part (a), and suppose that ξ = (ξ1, ξ2, . . . , ξn) is a random
vector in Rn, which has probability density p : Rn → R as above. Calculate the
characteristic function ϕ(θ) = E

[
ei θ·ξ

]
, for θ ∈ Rn where θ · ξ =

∑n
j=1 θjξj denotes

the inner product.

(c) Let ξ be the random vector as in (b), and let a1, . . . , an ∈ R. Show that the
linear combination

∑n
j=1 ajξj is a random number with Gaussian distribution.



Exercise 4. Suppose that B = (Bt)t≥0 is a standard Brownian motion and define

three other stochastic processes W (k) = (W
(k)
t )t≥0, k = 1, 2, 3, by setting

W
(1)
t = Bs+t −Bs

W
(2)
t = λ−1/2Bλt

W
(3)
t =

{
tB1/t , when t > 0

0 , when t = 0

where s ≥ 0 and λ > 0 are constants. Show that all these three stochastic processes

W (k) = (W
(k)
t )t≥0, k = 1, 2, 3, are also standard Brownian motions.

Exercise 5. Suppose that X = (Xt)t∈[0,1] is a continuous and Gaussian process, for
which E[Xt] = 0 for all t ∈ [0, 1] and Cov[Xs, Xt] = s(1−t) for all 0 ≤ s ≤ t ≤ 1. Let
Y ∼ N(0, 1) be a random variable independent of X. Define a stochastic process
W = (Wt)t∈[0,1] by setting Wt = Xt + tY .

(a) Show that W has the same finite dimensional distributions as a standard
Brownian motion on the time interval [0, 1].

The event {W1 = y} has zero probability, but it is natural to define condition-
ing on this event by the following limiting procedure. For any ε > 0, the event
{|W1 − y| < ε} has positive probability, so we can consider the conditional distri-
bution of the process W given the event {|W1 − y| < ε}, and then take the (weak)
limit of this conditional distribution as ε↘ 0.

(b) Show that the conditional distribution of the process W given {W1 = y} is
Gaussian, and calculate their mean and covariance functions.
Note: Interpret the distribution of the process as the collection of its finite dimensional distribu-

tions, and conditioning as defined by the limiting procedure above.

Exercise 6. Let B = (Bt)t∈[0,∞) be a standard Brownian motion. For t ≥ e define

λ(t) =
√
t log(log(t)).

(a) Show that almost surely lim supn→∞
|Bn|
λ(n)

=
√

2, where the lim sup is taken

along n ∈ N.
Hint: Observe that the restriction to Brownian motion to integer times, (Bn)n∈N, is a random

walk with Gaussian steps. Recall the law of iterated logarithm proven earlier.

(b) Find a function λ̃ : N → [0,∞) with the following properties: λ̃(n)
λ(n)
→ 0 as

n → ∞, and almost surely maxs∈[n,n+1) |Bs − Bn| ≤ λ̃(n) except for finitely
many values of n ∈ N.
Hint: You may use the fact that P

[
maxs∈[0,1]Bs > r

]
= 2√

2π

∫∞
r
e−

1
2
v2 dv for r ≥ 0.

(c) Show that almost surely we have (with lim sup taken along t ∈ [0,∞))

lim sup
t→∞

|Bt|
λ(t)

=
√

2.

(d) Show that almost surely

lim sup
t→0

|Bt|√
t log

(
| log(1/t)|

) =
√

2.

Hint: Use (c) and the last part of Exercise 4 above.


