MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 24.3. at $14-16$ Solutions due: Mon 29.3. at 10

In Exercises 1 and 2 , let (\mathfrak{X}, ϱ) be a metric space, \mathscr{B} the Borel sigma algebra on \mathfrak{X}, and $\mathscr{M}_{1}(\mathfrak{X})$ the set of Borel probability measures on \mathfrak{X}. For $\mu, \nu \in \mathscr{M}_{1}(\mathfrak{X})$ define

$$
d_{\mathrm{LP}}(\mu, \nu)=\inf \left\{\delta>0 \mid \forall E \in \mathscr{B}: \mu[E] \leq \nu\left[E^{\delta}\right]+\delta \text { and } \nu[E] \leq \mu\left[E^{\delta}\right]+\delta\right\},
$$

where $E^{\delta}=\{x \in \mathfrak{X} \mid \varrho(x, E)<\delta\}$ is the (open) δ-thickening of E.
Recall that a coupling of probability measures $\mu, \nu \in \mathscr{M}_{1}(\mathfrak{X})$ is a probability measure λ on $\mathfrak{X} \times \mathfrak{X}$ such that for all $E \in \mathscr{B}$ we have $\lambda[E \times \mathfrak{X}]=\mu[E]$ and $\lambda[\mathfrak{X} \times E]=\nu[E]$.

Exercise 1.

(a) Show that d_{LP} is a metric on $\mathscr{M}_{1}(\mathfrak{X})$.
(b) Assume that there exists a coupling λ of μ and ν in which

$$
\lambda\left[\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{X} \times \mathfrak{X} \mid \varrho\left(x_{1}, x_{2}\right) \geq \varepsilon\right\}\right] \leq \varepsilon .
$$

Show that then $d_{\mathrm{LP}}(\mu, \nu) \leq \varepsilon$.
Interpretation: If ε is very small in part (b), then in the coupling λ the two components X_{1} and X_{2} of $\left(X_{1}, X_{2}\right) \sim \lambda$ are very close with very high probability. The conclusion then says that then the measures μ and ν are very close.

Exercise 2. Assume that $\nu_{n} \in \mathscr{M}_{1}(\mathfrak{X}), n \in \mathbb{N}$, are such that for some $\nu \in \mathscr{M}_{1}(\mathfrak{X})$ we have $d_{\mathrm{LP}}\left(\nu_{n}, \nu\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that we then have $\nu_{n} \xrightarrow{\mathrm{w}} \nu$ as $n \rightarrow \infty$.
Hint: Use criterion (iii) for weak convergence. Recall that the closure of a set $E \subset \mathfrak{X}$ can be expressed in terms of the δ-thickenings E^{δ}.

Exercise 3. Let $n \in \mathbb{N}$, and let $C \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix and let $m \in \mathbb{R}^{n}$ be a vector. Define a function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
p(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}(x-m)^{\top} C^{-1}(x-m)\right),
$$

where Z is a constant.
(a) Calculate $\int_{\mathbb{R}^{n}} p(x) \mathrm{d}^{n} x$, and show that p is a (correctly normalized) probability density on \mathbb{R}^{n} if $Z=(2 \pi)^{n / 2} \sqrt{\operatorname{det}(C)}$.
Hint: Do first a change of variables (translation) to reduce to the case $m=0$. Then do an orthogonal change of variables to a basis in which C is diagonal.
(b) Choose Z as in part (a), and suppose that $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is a random vector in \mathbb{R}^{n}, which has probability density $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as above. Calculate the characteristic function $\varphi(\theta)=\mathrm{E}\left[e^{\mathrm{i} \theta \cdot \xi}\right]$, for $\theta \in \mathbb{R}^{n}$ where $\theta \cdot \xi=\sum_{j=1}^{n} \theta_{j} \xi_{j}$ denotes the inner product.
(c) Let ξ be the random vector as in (b), and let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Show that the linear combination $\sum_{j=1}^{n} a_{j} \xi_{j}$ is a random number with Gaussian distribution.

Exercise 4. Suppose that $B=\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion and define three other stochastic processes $W^{(k)}=\left(W_{t}^{(k)}\right)_{t \geq 0}, k=1,2,3$, by setting

$$
\begin{aligned}
& W_{t}^{(1)}=B_{s+t}-B_{s} \\
& W_{t}^{(2)}=\lambda^{-1 / 2} B_{\lambda t} \\
& W_{t}^{(3)}= \begin{cases}t B_{1 / t} & , \text { when } t>0 \\
0 & \text { when } t=0\end{cases}
\end{aligned}
$$

where $s \geq 0$ and $\lambda>0$ are constants. Show that all these three stochastic processes $W^{(k)}=\left(W_{t}^{(k)}\right)_{t \geq 0}, k=1,2,3$, are also standard Brownian motions.

Exercise 5. Suppose that $X=\left(X_{t}\right)_{t \in[0,1]}$ is a continuous and Gaussian process, for which $\mathrm{E}\left[X_{t}\right]=0$ for all $t \in[0,1]$ and $\operatorname{Cov}\left[X_{s}, X_{t}\right]=s(1-t)$ for all $0 \leq s \leq t \leq 1$. Let $Y \sim N(0,1)$ be a random variable independent of X. Define a stochastic process $W=\left(W_{t}\right)_{t \in[0,1]}$ by setting $W_{t}=X_{t}+t Y$.
(a) Show that W has the same finite dimensional distributions as a standard Brownian motion on the time interval $[0,1]$.

The event $\left\{W_{1}=y\right\}$ has zero probability, but it is natural to define conditioning on this event by the following limiting procedure. For any $\varepsilon>0$, the event $\left\{\left|W_{1}-y\right|<\varepsilon\right\}$ has positive probability, so we can consider the conditional distribution of the process W given the event $\left\{\left|W_{1}-y\right|<\varepsilon\right\}$, and then take the (weak) limit of this conditional distribution as $\varepsilon \searrow 0$.
(b) Show that the conditional distribution of the process W given $\left\{W_{1}=y\right\}$ is Gaussian, and calculate their mean and covariance functions.
Note: Interpret the distribution of the process as the collection of its finite dimensional distributions, and conditioning as defined by the limiting procedure above.

Exercise 6. Let $B=\left(B_{t}\right)_{t \in[0, \infty)}$ be a standard Brownian motion. For $t \geq e$ define

$$
\lambda(t)=\sqrt{t \log (\log (t))}
$$

(a) Show that almost surely $\lim \sup _{n \rightarrow \infty} \frac{\left|B_{n}\right|}{\lambda(n)}=\sqrt{2}$, where the limsup is taken along $n \in \mathbb{N}$.
Hint: Observe that the restriction to Brownian motion to integer times, $\left(B_{n}\right)_{n \in \mathbb{N}}$, is a random walk with Gaussian steps. Recall the law of iterated logarithm proven earlier.
(b) Find a function $\tilde{\lambda}: \mathbb{N} \rightarrow[0, \infty)$ with the following properties: $\frac{\tilde{\lambda}(n)}{\lambda(n)} \rightarrow 0$ as $n \rightarrow \infty$, and almost surely $\max _{s \in[n, n+1)}\left|B_{s}-B_{n}\right| \leq \tilde{\lambda}(n)$ except for finitely many values of $n \in \mathbb{N}$.
Hint: You may use the fact that $\mathrm{P}\left[\max _{s \in[0,1]} B_{s}>r\right]=\frac{2}{\sqrt{2 \pi}} \int_{r}^{\infty} e^{-\frac{1}{2} v^{2}} \mathrm{~d} v$ for $r \geq 0$.
(c) Show that almost surely we have (with lim sup taken along $t \in[0, \infty)$)

$$
\limsup _{t \rightarrow \infty} \frac{\left|B_{t}\right|}{\lambda(t)}=\sqrt{2} .
$$

(d) Show that almost surely

$$
\limsup _{t \rightarrow 0} \frac{\left|B_{t}\right|}{\sqrt{t \log (|\log (1 / t)|)}}=\sqrt{2} .
$$

Hint: Use (c) and the last part of Exercise 4 above.

