Aalto University Department of Mathematics and Systems Analysis

MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 24.3. at 14-16 Solutions due: Mon 29.3. at 10

In Exercises 1 and 2, let (\mathfrak{X}, ϱ) be a metric space, \mathscr{B} the Borel sigma algebra on \mathfrak{X} , and $\mathscr{M}_1(\mathfrak{X})$ the set of Borel probability measures on \mathfrak{X} . For $\mu, \nu \in \mathscr{M}_1(\mathfrak{X})$ define

$$d_{\rm LP}(\mu,\nu) = \inf\left\{\delta > 0 \mid \forall E \in \mathscr{B}: \ \mu[E] \le \nu[E^{\delta}] + \delta \text{ and } \nu[E] \le \mu[E^{\delta}] + \delta\right\}$$

where $E^{\delta} = \{x \in \mathfrak{X} \mid \varrho(x, E) < \delta\}$ is the (open) δ -thickening of E.

Recall that a coupling of probability measures $\mu, \nu \in \mathcal{M}_1(\mathfrak{X})$ is a probability measure λ on $\mathfrak{X} \times \mathfrak{X}$ such that for all $E \in \mathscr{B}$ we have $\lambda[E \times \mathfrak{X}] = \mu[E]$ and $\lambda[\mathfrak{X} \times E] = \nu[E]$.

Exercise 1.

- (a) Show that d_{LP} is a metric on $\mathscr{M}_1(\mathfrak{X})$.
- (b) Assume that there exists a coupling λ of μ and ν in which

$$\lambda \Big[\{ (x_1, x_2) \in \mathfrak{X} \times \mathfrak{X} \mid \varrho(x_1, x_2) \ge \varepsilon \} \Big] \le \varepsilon.$$

Show that then $d_{\rm LP}(\mu, \nu) \leq \varepsilon$.

Interpretation: If ε is very small in part (b), then in the coupling λ the two components X_1 and X_2 of $(X_1, X_2) \sim \lambda$ are very close with very high probability. The conclusion then says that then the measures μ and ν are very close.

Exercise 2. Assume that $\nu_n \in \mathscr{M}_1(\mathfrak{X})$, $n \in \mathbb{N}$, are such that for some $\nu \in \mathscr{M}_1(\mathfrak{X})$ we have $d_{LP}(\nu_n, \nu) \to 0$ as $n \to \infty$. Show that we then have $\nu_n \xrightarrow{w} \nu$ as $n \to \infty$. **Hint:** Use criterion (iii) for weak convergence. Recall that the closure of a set $E \subset \mathfrak{X}$ can be expressed in terms of the δ -thickenings E^{δ} .

Exercise 3. Let $n \in \mathbb{N}$, and let $C \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix and let $m \in \mathbb{R}^n$ be a vector. Define a function $p : \mathbb{R}^n \to \mathbb{R}$ by

$$p(x) = \frac{1}{Z} \exp\left(-\frac{1}{2}(x-m)^{\top} C^{-1} (x-m)\right),$$

where Z is a constant.

(a) Calculate $\int_{\mathbb{R}^n} p(x) d^n x$, and show that p is a (correctly normalized) probability density on \mathbb{R}^n if $Z = (2\pi)^{n/2} \sqrt{\det(C)}$.

Hint: Do first a change of variables (translation) to reduce to the case m = 0. Then do an orthogonal change of variables to a basis in which C is diagonal.

(b) Choose Z as in part (a), and suppose that $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ is a random vector in \mathbb{R}^n , which has probability density $p : \mathbb{R}^n \to \mathbb{R}$ as above. Calculate the characteristic function $\varphi(\theta) = \mathsf{E}[e^{i\theta\cdot\xi}]$, for $\theta \in \mathbb{R}^n$ where $\theta \cdot \xi = \sum_{j=1}^n \theta_j \xi_j$ denotes the inner product.

(c) Let ξ be the random vector as in (b), and let $a_1, \ldots, a_n \in \mathbb{R}$. Show that the linear combination $\sum_{j=1}^n a_j \xi_j$ is a random number with Gaussian distribution.

Exercise 4. Suppose that $B = (B_t)_{t\geq 0}$ is a standard Brownian motion and define three other stochastic processes $W^{(k)} = (W_t^{(k)})_{t\geq 0}$, k = 1, 2, 3, by setting

$$W_t^{(1)} = B_{s+t} - B_s$$

$$W_t^{(2)} = \lambda^{-1/2} B_{\lambda t}$$

$$W_t^{(3)} = \begin{cases} t B_{1/t} & \text{, when } t > 0 \\ 0 & \text{, when } t = 0 \end{cases}$$

where $s \ge 0$ and $\lambda > 0$ are constants. Show that all these three stochastic processes $W^{(k)} = (W_t^{(k)})_{t\ge 0}, k = 1, 2, 3$, are also standard Brownian motions.

Exercise 5. Suppose that $X = (X_t)_{t \in [0,1]}$ is a continuous and Gaussian process, for which $\mathsf{E}[X_t] = 0$ for all $t \in [0,1]$ and $\mathsf{Cov}[X_s, X_t] = s(1-t)$ for all $0 \le s \le t \le 1$. Let $Y \sim N(0,1)$ be a random variable independent of X. Define a stochastic process $W = (W_t)_{t \in [0,1]}$ by setting $W_t = X_t + tY$.

(a) Show that W has the same finite dimensional distributions as a standard Brownian motion on the time interval [0, 1].

The event $\{W_1 = y\}$ has zero probability, but it is natural to define conditioning on this event by the following limiting procedure. For any $\varepsilon > 0$, the event $\{|W_1 - y| < \varepsilon\}$ has positive probability, so we can consider the conditional distribution of the process W given the event $\{|W_1 - y| < \varepsilon\}$, and then take the (weak) limit of this conditional distribution as $\varepsilon \searrow 0$.

(b) Show that the conditional distribution of the process W given $\{W_1 = y\}$ is Gaussian, and calculate their mean and covariance functions. **Note:** Interpret the distribution of the process as the collection of its finite dimensional distributions, and conditioning as defined by the limiting procedure above.

Exercise 6. Let $B = (B_t)_{t \in [0,\infty)}$ be a standard Brownian motion. For $t \ge e$ define

$$\lambda(t) = \sqrt{t \log(\log(t))}$$

(a) Show that almost surely $\limsup_{n\to\infty} \frac{|B_n|}{\lambda(n)} = \sqrt{2}$, where the lim sup is taken along $n \in \mathbb{N}$.

Hint: Observe that the restriction to Brownian motion to integer times, $(B_n)_{n \in \mathbb{N}}$, is a random walk with Gaussian steps. Recall the law of iterated logarithm proven earlier.

(b) Find a function $\tilde{\lambda} \colon \mathbb{N} \to [0, \infty)$ with the following properties: $\frac{\tilde{\lambda}(n)}{\lambda(n)} \to 0$ as $n \to \infty$, and almost surely $\max_{s \in [n, n+1)} |B_s - B_n| \leq \tilde{\lambda}(n)$ except for finitely many values of $n \in \mathbb{N}$.

Hint: You may use the fact that $\mathsf{P}\big[\max_{s\in[0,1]} B_s > r\big] = \frac{2}{\sqrt{2\pi}} \int_r^\infty e^{-\frac{1}{2}v^2} \,\mathrm{d}v$ for $r \ge 0$.

(c) Show that almost surely we have (with $\limsup t \in [0, \infty)$)

$$\limsup_{t \to \infty} \frac{|B_t|}{\lambda(t)} = \sqrt{2}$$

(d) Show that almost surely

$$\limsup_{t \to 0} \frac{|B_t|}{\sqrt{t \log\left(|\log(1/t)|\right)}} = \sqrt{2}.$$

Hint: Use (c) and the last part of Exercise 4 above.