MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 31.3. at 14-16 Solutions due: Mon 5.4. at 10

In Exercise 1, the notations are as in Exercises 1-2 of problem set 4.

Exercise 1. Let (\mathfrak{X}, ϱ) be a separable metric space, and d_{LP} the Lévy-Prokhorov metric on the set $\mathscr{M}_1(\mathfrak{X})$ of Borel probability measures on \mathfrak{X} . Assume that $(\nu_n)_{n\in\mathbb{N}}$ is a sequence in $\mathscr{M}_1(\mathfrak{X})$ such that $\nu_n \xrightarrow{w} \nu \in \mathscr{M}_1(\mathfrak{X})$ as $n \to \infty$. Let $\varepsilon > 0$.

- (a) Show that there exists a countable dense set $\{x_i \mid i \in \mathbb{Z}_{>0}\} \subset \mathfrak{X}$ and a radius $r \in (\frac{\varepsilon}{4}, \frac{\varepsilon}{2})$ such that $\nu[\partial B_r(x_i)] = 0$ for all $i \in \mathbb{Z}_{>0}$.
- (b) Show that there exists some $k \in \mathbb{Z}_{>0}$ such that $\nu \left[\bigcup_{i=1}^{k} B_r(x_i) \right] \geq 1 \varepsilon$.
- (c) Show that there exist finitely many disjoint sets $A_1, \ldots, A_k \subset \mathfrak{X}$ such that $\nu[\partial A_i] = 0$ and $\lim_{i \to \infty} (A_i) < \varepsilon$ for all $i = 1, \dots, k$, and $\nu[\mathfrak{X} \setminus \bigcup_{i=1}^k A_i] \le \varepsilon$.
- (d) Define the collection $\mathscr{A} = \left\{ \bigcup_{i \in I} A_i \mid I \subset \{1, \dots, k\} \right\}$ of subsets of \mathfrak{X} . Show that for any $A \in \mathscr{A}$ we have $\nu_n[A] \to \nu[A]$ as $n \to \infty$. Conclude that there exists N > 0 such that $|\nu_n[A] - \nu[A]| \leq \varepsilon$ for all $A \in \mathscr{A}$ and $n \geq N$.
- (e) Let $E \subset \mathfrak{X}$ be a Borel set. Choose $A \in \mathscr{A}$ as $A = \bigcup_{i \in I_E} A_i$, where $I_E =$ $\{i \mid A_i \cap E \neq \emptyset\}$. Show that $A \subset E^{\varepsilon}$, and that $E \subset A \cup E'$, where $\nu[E'] \leq \varepsilon$ and $\nu_n[E'] \leq 2\varepsilon$ for $n \geq N$.
- (f) Show that for $n \ge N$ we have $\nu_n[E] \le \nu[E^{\varepsilon}] + 3\varepsilon$ and $\nu[E] \le \nu_n[E^{\varepsilon}] + 2\varepsilon$.
- (g) Conclude that $d_{\rm LP}(\nu_n, \nu) \to 0$ as $n \to \infty$.

Exercise 2. Let S be a finite or countably infinite set (equipped with the discrete topology). Define $\varrho: S^{\mathbb{N}} \times S^{\mathbb{N}} \to [0,\infty)$ by the formula²

$$\varrho(\omega, \omega') = \sum_{\substack{i \in \mathbb{N} \\ \omega_i \neq \omega'_i}} 2^{-i} \quad \text{for } \omega, \omega' \in S^{\mathbb{N}}, \ \omega = (\omega_i)_{i \in \mathbb{N}}, \ \omega' = (\omega'_i)_{i \in \mathbb{N}}.$$

- (a) Show that ρ is a metric on the set $S^{\mathbb{N}}$.
- (b) Show that the projections $\pi_i \colon S^{\mathbb{N}} \to S$ defined by $\pi_i(\omega) = \omega_i$, are continuous.
- (c) Show that $(S^{\mathbb{N}}, \varrho)$ is complete. (d) Show that $(S^{\mathbb{N}}, \varrho)$ is separable.

Exercise 3. Let $\beta > 0$ and $B \in \mathbb{R}$. Consider the Ising model on a finite graph \mathscr{G} , i.e., the measure given by $\mathsf{P}_{\beta,B}[\{\sigma\}] = \frac{1}{Z(\beta,B)} e^{-\beta H_B(\sigma)}$ for all $\sigma \in \{-1,+1\}^{\mathscr{G}}$, where $H_B(\sigma) = -\sum \sigma_x \sigma_y - B \sum \sigma_x$ (first sum over bonds $\{x, y\}$ of the graph, second over sites x) and $\overline{Z}(\beta, B) = \sum e^{-\beta H_B(\sigma)}$ (sum over spin configurations σ). Define the average magnetization as

$$M = \mathsf{E}_{\beta,B} \Big[\frac{1}{\#\mathscr{G}} \sum_{x \in \mathscr{G}} \sigma_x \Big].$$

<u>Show that</u> $M = \frac{\partial}{\partial B} \left(\frac{1}{\beta \# \mathscr{G}} \log Z(\beta, B) \right)$.

¹The diameter of a set $E \subset \mathfrak{X}$ is diam $(E) = \sup \{ \varrho(x, y) \mid x, y \in E \}.$

²The notation $S^{\mathbb{N}}$ means the set of all functions $\mathbb{N} \to S$, i.e., of all sequences $\omega = (\omega_i)_{i \in \mathbb{N}}$ such that $\omega_i \in S \quad \forall i \in \mathbb{N}$.

Exercise 4. Let F, F_1 and F_2 be three cumulative distribution functions.

(a) Define $G: (0,1) \to \mathbb{R}$ by

$$G(u) = \inf \left\{ x \in \mathbb{R} \mid F(x) \ge u \right\}.$$

Let $U \sim \text{Unif}([0, 1])$ be a uniform random variable on the unit interval. Show that the cumulative distribution function of the random variable G(U) is F.

(b) Assume that $F_1(x) \ge F_2(x)$ for all $x \in \mathbb{R}$. Show that there exists a distribution ν on the plane \mathbb{R}^2 , such that if $(X_1, X_2) \sim \nu$, then we have $X_1 \le X_2$ almost surely, and the c.d.f.'s of the components X_1 and X_2 are F_1 and F_2 , respectively.

Exercise 5. Consider a finite graph with set of sites \mathscr{G} and set of bonds $E(\mathscr{G})$. Consider percolation with parameter p on the graph \mathscr{G} , i.e., the probability measure P_p on $\{0,1\}^{\mathsf{E}(\mathscr{G})}$ in which the components are independent and Bernoulli(p) distributed. We define as usual for two sites $x, y \in \mathscr{G}$ the event $\{x \leftrightarrow y\}$ that there exists an open path from x to y in the graph (see Lecture 2 for details). We also say that a function $f: \{0,1\}^{\mathsf{E}(\mathscr{G})} \to \mathbb{R}$ is increasing if $\omega \preceq \omega'$ implies $f(\omega') \leq f(\omega)$ (see Lectures 9-10 for details).

(a) Show that the FKG inequality

$$\mathsf{E}_p[f g] \geq \mathsf{E}_p[f] \mathsf{E}_p[g]$$

holds for all increasing functions $f, g: \{0, 1\}^{\mathbb{E}(\mathscr{G})} \to \mathbb{R}$.

(b) Let $x, y, z, w \in \mathscr{G}$ be sites. Show that the events $\{x \leftrightarrow y\}$ and $\{z \leftrightarrow w\}$ are positively correlated:

$$\mathsf{P}_p[x \longleftrightarrow y \text{ and } z \longleftrightarrow w] \ge \mathsf{P}_p[x \longleftrightarrow y] \mathsf{P}_p[z \longleftrightarrow w].$$

Exercise 6. Consider the Ising model on subgraphs of the square grid \mathbb{Z}^2 at zero external magnetic field B = 0 and at inverse temperature $\beta > 0$. Denote also $\alpha = e^{-2\beta} \in (0, 1)$. The goal of this exercise is to show that in low temperatures (large $\beta > 0$, small $\alpha > 0$) there is a ferromagnetic phase for the model.

Let $(\mathscr{G}_n)_{n\in\mathbb{N}}$ be a sequence of finite induced subgraphs of \mathbb{Z}^2 such that $\mathscr{G}_n \uparrow \mathbb{Z}^2$ as $n \to \infty$ (i.e. $\bigcup_{n\in\mathbb{N}} \mathscr{G}_n = \mathbb{Z}^2$) — the precise choice does not matter, you may take \mathscr{G}_n to be e.g. the box $\{-n, -n+1, \ldots, n-1, n\} \times \{-n, -n+1, \ldots, n-1, n\}$. Let P_n^+ denote the Ising probability measure on \mathscr{G}_n with plus boundary conditions.

The dual graph of \mathbb{Z}^2 is the graph with vertex set $V^* = (\mathbb{Z} + \frac{1}{2}) \times (\mathbb{Z} + \frac{1}{2})$ (interpreted as the centers of the plaquettes of the square grid) and nearest neighbor bonds E^* . Note that for each dual bond $\{p,q\} \in E^*$, there is a unique bond $\{x,y\}$ of the square grid with the same midpoint $\frac{p+q}{2} = \frac{x+y}{2}$ (the bonds "cross each other"). To a spin configuration $\sigma \in \Omega = \{-1, +1\}^{\mathbb{Z}^2}$ associate a subset $\Gamma(\sigma) \subset E^*$ of dual bonds by the rule that $\{p,q\} \in \Gamma(\sigma)$ if and only if $\sigma_x \neq \sigma_y$ for the corresponding $\{x,y\}$.

- the rule that $\{p,q\} \in \Gamma(\sigma)$ if and only if $\sigma_x \neq \sigma_y$ for the corresponding $\{x,y\}$. (a) Show that $\mathsf{P}_n^+[\{\sigma\}] = \frac{1}{z(\mathscr{G}_n)} \alpha^{\#\Gamma(\sigma)}$ for $\sigma \in \Omega_{\mathscr{G}_n} \subset \Omega$, where $z(\mathscr{G}_n) \ge 1$ is a normalization constant and $\#\Gamma$ denotes the number of dual bonds in $\Gamma \subset E^*$. (b) Prove that $\mathsf{P}_n^+[\sigma_0 \neq +1] \le \sum_{\ell=4}^{\infty} \ell (4\alpha)^{\ell}$.
 - **Hint:** Consider dual graph circuits surrounding the origin. Use (a) with careful rearrangements.
 - (c) Prove that there exists a $\beta' > 0$ such that for $\beta \ge \beta'$ there exists a $m(\beta) > 0$ such that $\mathsf{E}_n^+[\sigma_0] \ge m(\beta)$ for all $n \in \mathbb{N}$. Conclude that for $\beta \ge \beta'$ the weak limit P of the P_n^+ has positive magnetization $\mathsf{E}[\sigma_0] > 0$.