MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 31.3. at 14-16

Solutions due: Mon 5.4. at 10
In Exercise 1, the notations are as in Exercises 1-2 of problem set 4.
Exercise 1. Let (\mathfrak{X}, ϱ) be a separable metric space, and $d_{\text {LP }}$ the Lévy-Prokhorov metric on the set $\mathscr{M}_{1}(\mathfrak{X})$ of Borel probability measures on \mathfrak{X}. Assume that $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\mathscr{M}_{1}(\mathfrak{X})$ such that $\nu_{n} \xrightarrow{\mathrm{w}} \nu \in \mathscr{M}_{1}(\mathfrak{X})$ as $n \rightarrow \infty$. Let $\varepsilon>0$.
(a) Show that there exists a countable dense set $\left\{x_{i} \mid i \in \mathbb{Z}_{>0}\right\} \subset \mathfrak{X}$ and a radius $r \in\left(\frac{\varepsilon}{4}, \frac{\varepsilon}{2}\right)$ such that $\nu\left[\partial B_{r}\left(x_{i}\right)\right]=0$ for all $i \in \mathbb{Z}_{>0}$.
(b) Show that there exists some $k \in \mathbb{Z}_{>0}$ such that $\nu\left[\bigcup_{i=1}^{k} B_{r}\left(x_{i}\right)\right] \geq 1-\varepsilon$.
(c) Show that there exist finitely many disjoint sets $A_{1}, \ldots, A_{k} \subset \mathfrak{X}$ such that $\nu\left[\partial A_{i}\right]=0$ and $^{1} \operatorname{diam}\left(A_{i}\right)<\varepsilon$ for all $i=1, \ldots, k$, and $\nu\left[\mathfrak{X} \backslash \bigcup_{i=1}^{k} A_{i}\right] \leq \varepsilon$.
(d) Define the collection $\mathscr{A}=\left\{\bigcup_{i \in I} A_{i} \mid I \subset\{1, \ldots, k\}\right\}$ of subsets of \mathfrak{X}. Show that for any $A \in \mathscr{A}$ we have $\nu_{n}[A] \rightarrow \nu[A]$ as $n \rightarrow \infty$. Conclude that there exists $N>0$ such that $\left|\nu_{n}[A]-\nu[A]\right| \leq \varepsilon$ for all $A \in \mathscr{A}$ and $n \geq N$.
(e) Let $E \subset \mathfrak{X}$ be a Borel set. Choose $A \in \mathscr{A}$ as $A=\bigcup_{i \in I_{E}} A_{i}$, where $I_{E}=$ $\left\{i \mid A_{i} \cap E \neq \emptyset\right\}$. Show that $A \subset E^{\varepsilon}$, and that $E \subset A \cup E^{\prime}$, where $\nu\left[E^{\prime}\right] \leq \varepsilon$ and $\nu_{n}\left[E^{\prime}\right] \leq 2 \varepsilon$ for $n \geq N$.
(f) Show that for $n \geq N$ we have $\nu_{n}[E] \leq \nu\left[E^{\varepsilon}\right]+3 \varepsilon$ and $\nu[E] \leq \nu_{n}\left[E^{\varepsilon}\right]+2 \varepsilon$.
(g) Conclude that $d_{\mathrm{LP}}\left(\nu_{n}, \nu\right) \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 2. Let S be a finite or countably infinite set (equipped with the discrete topology). Define $\varrho: S^{\mathbb{N}} \times S^{\mathbb{N}} \rightarrow[0, \infty)$ by the formula ${ }^{2}$

$$
\varrho\left(\omega, \omega^{\prime}\right)=\sum_{\substack{i \in \mathbb{N} \\ \omega_{i} \neq \omega_{i}^{\prime}}} 2^{-i} \quad \text { for } \omega, \omega^{\prime} \in S^{\mathbb{N}}, \omega=\left(\omega_{i}\right)_{i \in \mathbb{N}}, \omega^{\prime}=\left(\omega_{i}^{\prime}\right)_{i \in \mathbb{N}} .
$$

(a) Show that ϱ is a metric on the set $S^{\mathbb{N}}$.
(b) Show that the projections $\pi_{i}: S^{\mathbb{N}} \rightarrow S$ defined by $\pi_{i}(\omega)=\omega_{i}$, are continuous.
(c) Show that $\left(S^{\mathbb{N}}, \varrho\right)$ is complete.
(d) Show that $\left(S^{\mathbb{N}}, \varrho\right)$ is separable.

Exercise 3. Let $\beta>0$ and $B \in \mathbb{R}$. Consider the Ising model on a finite graph \mathscr{G}, i.e., the measure given by $\mathrm{P}_{\beta, B}[\{\sigma\}]=\frac{1}{Z(\beta, B)} e^{-\beta H_{B}(\sigma)}$ for all $\sigma \in\{-1,+1\}^{\mathscr{G}}$, where $H_{B}(\sigma)=-\sum \sigma_{x} \sigma_{y}-B \sum \sigma_{x}$ (first sum over bonds $\{x, y\}$ of the graph, second over sites x) and $Z(\beta, B)=\sum e^{-\beta H_{B}(\sigma)}$ (sum over spin configurations σ). Define the average magnetization as

$$
M=\mathrm{E}_{\beta, B}\left[\frac{1}{\# \mathscr{G}} \sum_{x \in \mathscr{G}} \sigma_{x}\right] .
$$

Show that $M=\frac{\partial}{\partial B}\left(\frac{1}{\beta \# \mathscr{G}} \log Z(\beta, B)\right)$.

[^0]Exercise 4. Let F, F_{1} and F_{2} be three cumulative distribution functions.
(a) Define $G:(0,1) \rightarrow \mathbb{R}$ by

$$
G(u)=\inf \{x \in \mathbb{R} \mid F(x) \geq u\}
$$

Let $U \sim \operatorname{Unif}([0,1])$ be a uniform random variable on the unit interval. Show that the cumulative distribution function of the random variable $G(U)$ is F.
(b) Assume that $F_{1}(x) \geq F_{2}(x)$ for all $x \in \mathbb{R}$. Show that there exists a distribution ν on the plane \mathbb{R}^{2}, such that if $\left(X_{1}, X_{2}\right) \sim \nu$, then we have $X_{1} \leq X_{2}$ almost surely, and the c.d.f.'s of the components X_{1} and X_{2} are F_{1} and F_{2}, respectively.

Exercise 5. Consider a finite graph with set of sites \mathscr{G} and set of bonds $\mathrm{E}(\mathscr{G})$. Consider percolation with parameter p on the graph \mathscr{G}, i.e., the probability measure P_{p} on $\{0,1\}^{\mathrm{E}(\mathscr{G})}$ in which the components are independent and $\operatorname{Bernoulli}(p)$ distributed. We define as usual for two sites $x, y \in \mathscr{G}$ the event $\{x \nsim>y\}$ that there exists an open path from x to y in the graph (see Lecture 2 for details). We also say that a function $f:\{0,1\}^{\mathrm{E}(\mathscr{G})} \rightarrow \mathbb{R}$ is increasing if $\omega \preceq \omega^{\prime}$ implies $f\left(\omega^{\prime}\right) \leq f(\omega)$ (see Lectures 9-10 for details).
(a) Show that the FKG inequality

$$
\mathrm{E}_{p}[f g] \geq \mathrm{E}_{p}[f] \mathrm{E}_{p}[g]
$$

holds for all increasing functions $f, g:\{0,1\}^{\mathrm{E}(\mathscr{G})} \rightarrow \mathbb{R}$.
(b) Let $x, y, z, w \in \mathscr{G}$ be sites. Show that the events $\{x \leftrightarrow y y\}$ and $\{z \nsim w\}$ are positively correlated:

$$
\mathrm{P}_{p}[x \leftrightarrow y \text { and } z \leftrightarrow w] \geq \mathrm{P}_{p}[x \leftrightarrow y] \mathrm{P}_{p}[z \leftrightarrow w] .
$$

Exercise 6. Consider the Ising model on subgraphs of the square grid \mathbb{Z}^{2} at zero external magnetic field $B=0$ and at inverse temperature $\beta>0$. Denote also $\alpha=e^{-2 \beta} \in(0,1)$. The goal of this exercise is to show that in low temperatures (large $\beta>0$, small $\alpha>0$) there is a ferromagnetic phase for the model.

Let $\left(\mathscr{G}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite induced subgraphs of \mathbb{Z}^{2} such that $\mathscr{G}_{n} \uparrow \mathbb{Z}^{2}$ as $n \rightarrow \infty$ (i.e. $\bigcup_{n \in \mathbb{N}} \mathscr{G}_{n}=\mathbb{Z}^{2}$) - the precise choice does not matter, you may take \mathscr{G}_{n} to be e.g. the box $\{-n,-n+1, \ldots, n-1, n\} \times\{-n,-n+1, \ldots, n-1, n\}$. Let P_{n}^{+} denote the Ising probability measure on \mathscr{G}_{n} with plus boundary conditions.
The dual graph of \mathbb{Z}^{2} is the graph with vertex set $\mathrm{V}^{*}=\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right)$ (interpreted as the centers of the plaquettes of the square grid) and nearest neighbor bonds E^{*}. Note that for each dual bond $\{p, q\} \in \mathrm{E}^{*}$, there is a unique bond $\{x, y\}$ of the square grid with the same midpoint $\frac{p+q}{2}=\frac{x+y}{2}$ (the bonds "cross each other"). To a spin configuration $\sigma \in \Omega=\{-1,+1\}^{\mathbb{Z}^{2}}$ associate a subset $\Gamma(\sigma) \subset \mathrm{E}^{*}$ of dual bonds by the rule that $\{p, q\} \in \Gamma(\sigma)$ if and only if $\sigma_{x} \neq \sigma_{y}$ for the corresponding $\{x, y\}$.
(a) Show that $\mathrm{P}_{n}^{+}[\{\sigma\}]=\frac{1}{z\left(\mathscr{G}_{n}\right)} \alpha^{\# \Gamma(\sigma)}$ for $\sigma \in \Omega_{\mathscr{G}_{n}} \subset \Omega$, where $z\left(\mathscr{G}_{n}\right) \geq 1$ is a normalization constant and $\# \Gamma$ denotes the number of dual bonds in $\Gamma \subset \mathrm{E}^{*}$.
(b) Prove that $\mathrm{P}_{n}^{+}\left[\sigma_{0} \neq+1\right] \leq \sum_{\ell=4}^{\infty} \ell(4 \alpha)^{\ell}$.

Hint: Consider dual graph circuits surrounding the origin. Use (a) with careful rearrangements.
(c) Prove that there exists a $\beta^{\prime}>0$ such that for $\beta \geq \beta^{\prime}$ there exists a $m(\beta)>0$ such that $\mathrm{E}_{n}^{+}\left[\sigma_{0}\right] \geq m(\beta)$ for all $n \in \mathbb{N}$. Conclude that for $\beta \geq \beta^{\prime}$ the weak limit P of the P_{n}^{+}has positive magnetization $\mathrm{E}\left[\sigma_{0}\right]>0$.

[^0]: ${ }^{1}$ The diameter of a set $E \subset \mathfrak{X}$ is $\operatorname{diam}(E)=\sup \{\varrho(x, y) \mid x, y \in E\}$.
 ${ }^{2}$ The notation $S^{\mathbb{N}}$ means the set of all functions $\mathbb{N} \rightarrow S$, i.e., of all sequences $\omega=\left(\omega_{i}\right)_{i \in \mathbb{N}}$ such that $\omega_{i} \in S \forall i \in \mathbb{N}$.

