MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 7.4. at 14-16 Solutions due: Mon 12.4. at 10

Exercise 1. Fill in the online course feedback questionnaire. **Hint:** You should receive the link to the questionnaire by email.

Exercise 2. Consider the standard Brownian motion $B = (B_t)_{t \in [0,\infty)}$. The Brownian motion started from $x \in \mathbb{R}$ is the process defined by $B_t^{(x)} = x + B_t$. The generator G of the Brownian motion is the following operator. For a smooth and compactly supported function $f \colon \mathbb{R} \to \mathbb{R}$, set

$$Gf(x) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathsf{E}\Big[f(B_t^{(x)})\Big].$$

Show that

$$Gf(x) = \frac{1}{2}f''(x).$$

Hint: Recall the distribution of B_t for a given t > 0. Perform a Taylor expansion of f at x to the second order. Control the error terms when this Taylor approximation is used in the defining formula of Gf(x).

Exercise 3. Let $\mathcal{G} = (V, E)$ be a finite graph. Consider the Ising model on \mathcal{G} , i.e., the probability measure on $\Omega_{\mathcal{G}} = \{-1, +1\}^{V}$ given by

$$\mathsf{P}\left[\{\sigma\}\right] = \frac{e^{-\beta H(\sigma)}}{Z(\beta, B)}, \qquad \text{where } H(\sigma) = -\sum_{\{x,y\}\in \mathbf{E}} \sigma_x \sigma_y - B \sum_{x\in \mathbf{V}} \sigma_x.$$

For $\tau \in \{-1, +1\}^{V}$, $x \in V$, and $\epsilon \in \{-1, +1\}$, denote

$$c_{\epsilon}^{(x)}(\tau) := \left(1 + \exp\left(-2\epsilon\beta B - 2\epsilon\beta\sum_{y:\{x,y\}\in \mathbf{E}}\tau_y\right)\right)^{-1}.$$

(a) Let $x \in V$ and $\tau \in \{-1, +1\}^V$. Show that the conditional distribution of σ_x given that σ coincides with τ outside x is given by

$$\mathsf{P}\Big[\sigma_x = \epsilon \ \Big| \ \sigma_y = \tau_y \ \forall y \neq x\Big] = c_{\epsilon}^{(x)}(\tau).$$

(b) Let $X = (X_t)_{t \in [0,\infty)}$ be a continuous time Markov process on the state space $\{-1,+1\}^{V}$ with jump rates

$$\lambda(\sigma,\tau) = \begin{cases} c_{\tau_x}^{(x)}(\sigma) & \text{if } \exists x \in \mathbf{V} \text{ s.t. } \tau_x \neq \sigma_x \text{ and } \tau_y = \sigma_y \ \forall y \neq x \\ 0 & \text{if } \# \left\{ x \in \mathbf{V} \mid \sigma_x \neq \tau_x \right\} \neq 1 \end{cases}$$

Show that the Ising model probability measure P is the unique stationary measure of the process X.

Exercise 4. Fix parameters $L, N \in \mathbb{N}$ with $N \leq L$. Let $\mathcal{G}_L = (V_L, \vec{E}_L)$ be the directed cycle graph with the set of sites $V_L = \{1, \ldots, L\}$ and the set of directed links $\vec{\mathrm{E}}_L = \{(x,y) \mid x, y \in \mathrm{V}_L, \ y - x \equiv 1 \pmod{L}\}.$ We denote $x \curvearrowright y$, if $(x,y) \in \vec{\mathrm{E}}_L$. The totally asymmetric simple exclusion process (TASEP) on \mathcal{G}_L with N particles and activation rate v > 0 is a continuous time Markov process $X = (X_t)_{t \in [0,\infty)}$ with

state space
$$S_L^{(N)} = \left\{ Y \subset \mathcal{V}_L \mid \#Y = N \right\}$$

jump rates $\lambda(Y, Y') = \begin{cases} v & \text{if } Y' = (Y \setminus \{x\}) \cup \{y\} \text{ for some } x \frown y \\ 0 & \text{otherwise.} \end{cases}$

and j

- (a) Show that the uniform distribution $\mu_{\text{unif.}}$ on $\mathcal{S}_L^{(N)}$ is the unique stationary distribution for the process $(X_t)_{t>0}$.
- (b) Define the average speed s in the stationary distribution as

$$s = \lim_{\varepsilon \searrow 0} \frac{\mu_{\text{unif.}} \left[X_{\varepsilon} \neq X_0 \right]}{\varepsilon N}$$

Calculate s.

(c) Calculate s in the limit as $L \to \infty$, $\frac{N}{L} \to \rho \in (0, 1)$. What is the optimal value of the density ρ for maximum speed s? What is the optimal value of ρ for maximum traffic flow sN (optimality asymptotically as $L \to \infty$)?

The last two exercises concern the totally asymmetric simple exclusion process (TASEP) on the integer lattice \mathbb{Z} , a process $\xi = (\xi_t)_{t \ge 0}$, which is constructed as follows. The state space S consists of all subsets $Y \subset \mathbb{Z}$, which we identify with $S = \{0, 1\}^{\mathbb{Z}}$ in such a way that Y corresponds to

$$\xi = (\xi(x))_{x \in \mathbb{Z}} \qquad \text{with } \xi(x) = \begin{cases} 1 & \text{if } x \in Y \\ 0 & \text{if } x \notin Y \end{cases}$$

Choose an initial configuration $\xi_0 = (\xi_0(x))_{x \in \mathbb{Z}} \in S$. For each $x \in \mathbb{Z}$, take an independent Poisson process with intensity v > 0, and denote its arrival times $(T_n^x)_{n \in \mathbb{N}}$. The rules to define $\xi_t \in \mathcal{S}$ for $t \geq 0$ are the following: for any $x \in \mathbb{Z}$

- $t \mapsto \xi_t(x)$ is continuous from the right, and constant on any time interval that
- does not contain any T_n^x or T_n^{x-1} at times $t = T_n^x$, $\xi_t(x)$ and $\xi_t(x+1)$ are determined in terms of the left limits: * if $\xi_{t-}(x) = 1$ and $\xi_{t-}(x+1) = 0$, then $\xi_t(x) = 0$ and $\xi_t(x+1) = 1$ * otherwise, $\xi_t(x) = \xi_{t-1}(x)$ and $\xi_t(x+1) = \xi_{t-1}(x+1)$.

Exercise 5. Show that the process $(\xi_t)_{t\geq 0}$ (the TASEP on \mathbb{Z}) becomes (almost surely) well defined by the rules given above.

Hint: Show that (almost surely) for any $x \in \mathbb{Z}$ and $t \geq 0$ there are only finitely many Poisson process arrivals that could affect $\xi_t(x)$ according to the rules.

Exercise 6. Let $\rho \in (0,1)$. Suppose that the initial state ξ_0 of the TASEP on \mathbb{Z} is taken random and independent of the Poisson processes, so that its coordinates $\xi_0(x), x \in \mathbb{Z}$, are independent and $\mathsf{P}[\xi_0(x) = 1] = \rho$ for each x. Show that for any $t \ge 0$ also the coordinates $\xi_t(x), x \in \mathbb{Z}$, are independent and $\mathsf{P}[\xi_t(x) = 1] = \rho$. **Interpretation:** In other words, the product of Bernoulli measures $\mu = \bigotimes_{x \in \mathbb{Z}} \text{Bernoulli}(\rho)$ is a stationary measure for the TASEP on \mathbb{Z} — for any $\rho \in (0, 1)$.