MS-E1602 Large Random Systems, 2020-2021/IV

Exercise session: Wed 7.4. at 14-16 Solutions due: Mon 12.4. at 10

Exercise 1. Fill in the online course feedback questionnaire.
Hint: You should receive the link to the questionnaire by email.

Exercise 2. Consider the standard Brownian motion $B=\left(B_{t}\right)_{t \in[0, \infty)}$. The Brownian motion started from $x \in \mathbb{R}$ is the process defined by $B_{t}^{(x)}=x+B_{t}$. The generator G of the Brownian motion is the following operator. For a smooth and compactly supported function $f: \mathbb{R} \rightarrow \mathbb{R}$, set

$$
G f(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \mathrm{E}\left[f\left(B_{t}^{(x)}\right)\right] .
$$

Show that

$$
G f(x)=\frac{1}{2} f^{\prime \prime}(x) .
$$

Hint: Recall the distribution of B_{t} for a given $t>0$. Perform a Taylor expansion of f at x to the second order. Control the error terms when this Taylor approximation is used in the defining formula of $G f(x)$.

Exercise 3. Let $\mathcal{G}=(\mathrm{V}, \mathrm{E})$ be a finite graph. Consider the Ising model on \mathcal{G}, i.e., the probability measure on $\Omega_{\mathcal{G}}=\{-1,+1\}^{\mathrm{V}}$ given by

$$
\mathbf{P}[\{\sigma\}]=\frac{e^{-\beta H(\sigma)}}{Z(\beta, B)}, \quad \text { where } H(\sigma)=-\sum_{\{x, y\} \in \mathrm{E}} \sigma_{x} \sigma_{y}-B \sum_{x \in \mathrm{~V}} \sigma_{x}
$$

For $\tau \in\{-1,+1\}^{\mathrm{V}}, x \in \mathrm{~V}$, and $\epsilon \in\{-1,+1\}$, denote

$$
c_{\epsilon}^{(x)}(\tau):=\left(1+\exp \left(-2 \epsilon \beta B-2 \epsilon \beta \sum_{y:\{x, y\} \in \mathrm{E}} \tau_{y}\right)\right)^{-1} .
$$

(a) Let $x \in \mathrm{~V}$ and $\tau \in\{-1,+1\}^{\mathrm{V}}$. Show that the conditional distribution of σ_{x} given that σ coincides with τ outside x is given by

$$
\mathrm{P}\left[\sigma_{x}=\epsilon \mid \sigma_{y}=\tau_{y} \forall y \neq x\right]=c_{\epsilon}^{(x)}(\tau) .
$$

(b) Let $X=\left(X_{t}\right)_{t \in[0, \infty)}$ be a continuous time Markov process on the state space $\{-1,+1\}^{\mathrm{V}}$ with jump rates

$$
\lambda(\sigma, \tau)= \begin{cases}c_{\tau_{x}}^{(x)}(\sigma) & \text { if } \exists x \in \mathrm{~V} \text { s.t. } \tau_{x} \neq \sigma_{x} \text { and } \tau_{y}=\sigma_{y} \forall y \neq x \\ 0 & \text { if } \#\left\{x \in \mathrm{~V} \mid \sigma_{x} \neq \tau_{x}\right\} \neq 1\end{cases}
$$

Show that the Ising model probability measure P is the unique stationary measure of the process X.

Exercise 4. Fix parameters $L, N \in \mathbb{N}$ with $N \leq L$. Let $\mathcal{G}_{L}=\left(\mathrm{V}_{L}, \overrightarrow{\mathrm{E}}_{L}\right)$ be the directed cycle graph with the set of sites $\mathrm{V}_{L}=\{1, \ldots, L\}$ and the set of directed links $\overrightarrow{\mathrm{E}}_{L}=\left\{(x, y) \mid x, y \in \mathrm{~V}_{L}, y-x \equiv 1(\bmod L)\right\}$. We denote $x \curvearrowright y$, if $(x, y) \in \overrightarrow{\mathrm{E}}_{L}$. The totally asymmetric simple exclusion process (TASEP) on \mathcal{G}_{L} with N particles and activation rate $v>0$ is a continuous time Markov process $X=\left(X_{t}\right)_{t \in[0, \infty)}$ with

$$
\text { state space } \quad \mathcal{S}_{L}^{(N)}=\left\{Y \subset \mathrm{~V}_{L} \mid \# Y=N\right\}
$$

and jump rates

$$
\lambda\left(Y, Y^{\prime}\right)= \begin{cases}v & \text { if } Y^{\prime}=(Y \backslash\{x\}) \cup\{y\} \text { for some } x \curvearrowright y \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that the uniform distribution $\mu_{\text {unif. on }} \mathcal{S}_{L}^{(N)}$ is the unique stationary distribution for the process $\left(X_{t}\right)_{t \geq 0}$.
(b) Define the average speed s in the stationary distribution as

$$
s=\lim _{\varepsilon \searrow 0} \frac{\mu_{\text {unif. }}\left[X_{\varepsilon} \neq X_{0}\right]}{\varepsilon N} .
$$

Calculate s.
(c) Calculate s in the limit as $L \rightarrow \infty, \frac{N}{L} \rightarrow \rho \in(0,1)$. What is the optimal value of the density ρ for maximum speed s ? What is the optimal value of ρ for maximum traffic flow $s N$ (optimality asymptotically as $L \rightarrow \infty$)?

The last two exercises concern the totally asymmetric simple exclusion process (TASEP) on the integer lattice \mathbb{Z}, a process $\xi=\left(\xi_{t}\right)_{t \geq 0}$, which is constructed as follows. The state space \mathcal{S} consists of all subsets $Y \subset \mathbb{Z}$, which we identify with $\mathcal{S}=\{0,1\}^{\mathbb{Z}}$ in such a way that Y corresponds to

$$
\xi=(\xi(x))_{x \in \mathbb{Z}} \quad \text { with } \xi(x)= \begin{cases}1 & \text { if } x \in Y \\ 0 & \text { if } x \notin Y .\end{cases}
$$

Choose an initial configuration $\xi_{0}=\left(\xi_{0}(x)\right)_{x \in \mathbb{Z}} \in \mathcal{S}$. For each $x \in \mathbb{Z}$, take an independent Poisson process with intensity $v>0$, and denote its arrival times $\left(T_{n}^{x}\right)_{n \in \mathbb{N}}$. The rules to define $\xi_{t} \in \mathcal{S}$ for $t \geq 0$ are the following: for any $x \in \mathbb{Z}$

- $t \mapsto \xi_{t}(x)$ is continuous from the right, and constant on any time interval that does not contain any T_{n}^{x} or T_{n}^{x-1}
- at times $t=T_{n}^{x}, \xi_{t}(x)$ and $\xi_{t}(x+1)$ are determined in terms of the left limits:
* if $\xi_{t-}(x)=1$ and $\xi_{t-}(x+1)=0$, then $\xi_{t}(x)=0$ and $\xi_{t}(x+1)=1$
* otherwise, $\xi_{t}(x)=\xi_{t-}(x)$ and $\xi_{t}(x+1)=\xi_{t-}(x+1)$.

Exercise 5. Show that the process $\left(\xi_{t}\right)_{t \geq 0}$ (the TASEP on \mathbb{Z}) becomes (almost surely) well defined by the rules given above.
Hint: Show that (almost surely) for any $x \in \mathbb{Z}$ and $t \geq 0$ there are only finitely many Poisson process arrivals that could affect $\xi_{t}(x)$ according to the rules.

Exercise 6. Let $\rho \in(0,1)$. Suppose that the initial state ξ_{0} of the TASEP on \mathbb{Z} is taken random and independent of the Poisson processes, so that its coordinates $\xi_{0}(x), x \in \mathbb{Z}$, are independent and $\mathrm{P}\left[\xi_{0}(x)=1\right]=\rho$ for each x. Show that for any $t \geq 0$ also the coordinates $\xi_{t}(x), x \in \mathbb{Z}$, are independent and $\mathrm{P}\left[\xi_{t}(x)=1\right]=\rho$.
Interpretation: In other words, the product of Bernoulli measures $\mu=\bigotimes_{x \in \mathbb{Z}} \operatorname{Bernoulli}(\rho)$ is a stationary measure for the TASEP on $\mathbb{Z}-$ for any $\rho \in(0,1)$.

