

Large Random Systems (MS-E1602)

Kalle Kytölä

Department of Mathematics and Systems Analysis Aalto University email: kalle.kytola@aalto.fi https://ms-e1602.zulip.cs.aalto.fi

March 1, 2021

Course practicalities

- MyCourses web page: https://mycourses.aalto.fi/ course/view.php?id=29650
- Zulip forum:

https:

//ms-e1602.zulip.cs.aalto.fi

Lectures: (Kalle Kytölä)

Mon 10-12, Wed 10-12

- Exercises: (Osama Abuzaid)
 - Wed 14-16
 - weekly exercise sets
 - turn in written solutions by following Monday at 10am
- Exam dates:

- Credits: 5 cr
- Prerequisites:
 - measure theoretic probability!
 - a little bit of calculus, linear algebra, combinatorics, topology, ...
- Material:
 - lecture notes
- Grading:
 - ► exercises (≈ 100%)
 - oral exam? (±15%)
- Your feedback:
 - any time!
 - online questionnaire

Course grading

Written exam

(still an option, but...)

3 hours, 4 problems à 6 points

Exercises: up to 6 bonus points!

Turn in written solutions to weekly problem sets

via MyCourses Assignments. (Mondays at 10:00 am)

Grading based on exercises + oral exam adjustment

The solutions to weekly problem sets are graded, and course grade is based primarily on these.

Honor code:

- You may discuss problems with others (incl. TA), but everyone must write their own solutions independently.
- During the week 12.-16.4. Zoom meetings to explain selected solutions + random topic to the lecturer and/or TA. ~> ±15%

Course contents / topics

Mathematical theory

- 0-1 laws, phase transitions
- Large deviations
- Couplings and monotonicity
- Convergence in distribution (= weak convergence)
- Tightness

Models and examples

- Random walk, Brownian motion
- Percolation
- Totally asymmetric simple exclusion process
- Curie-Weiss and Ising models
- Voter model and contact process

Course contents / approximate schedule

Week 1

I Introduction

II 0-1 laws: phase transition in percolation

- Week 2
 - III 0-1 laws: law of iterated logarithm for random walk

 ${\sf IV}~{\sf W}{\sf eak}$ convergence on ${\mathbb R}$

Week 3

- V Curie-Weiss model of ferromagnetism and large deviations
- VI weak convergence on metric spaces

Week 4

- VII Weak convergence: tightness and Prokhorov's theorem
- VIII Donsker's theorem: random walk \rightarrow Brownian motion Week 5
 - IX Correlation inequalities for the Ising model
 - X Thermodynamic limit of the Ising model

Week 6

- XI Interacting particle systems: existence of dynamics
- XII Voter model (contact process, TASEP)

Objectives

Upon successful completion of the course you will...

- ... have gained familiarity with a number of prominent probabilistic models of various phenomena;
- ... be able to analyze the models mathematically rigorously, using probability theory in combination with a broad range of mathematics;
- ... be able to select methods that are appropriate for the analysis of the models;
- ... know and be able to utilize the fundamental results about weak convergence of probability measures.

Large random systems?

Large?

e.g. "size parameter" *n* limit $n \to \infty$

Random?

Probability spaces

 Ω sample space (ou

(outcomes)

 $(\Omega_n, \mathcal{F}_n, \mathsf{P}_n)$

- \mathcal{F} sigma-algebra (events)
- P probability measure (probabilities)

indexed by "size parameter" *n*.

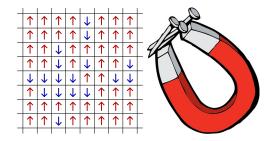
...and then...

 $\lim_{n\to\infty}\mathsf{P}_n[\cdots],\qquad \lim_{n\to\infty}\mathsf{E}_n[\cdots],\qquad \lim_{n\to\infty}\mathsf{P}_n?$

Example 1: Ising model

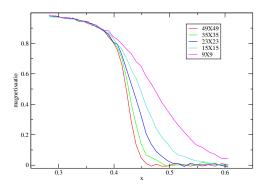
Ising model of a ferromagnet:

- ► $L \times L$ grid, each square magnetized up(\uparrow) or down(\downarrow)
- probability of configuration $\sim x^{\text{number of disagreeing neighbors}}$
- low/high $x \leftrightarrow$ low/high temperature



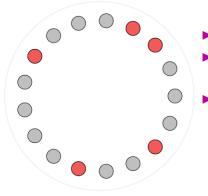
Thermodynamic limit: $L \rightarrow \infty$

Example 1: Phase transition in a ferromagnet

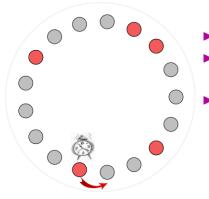


Isingin mallin magnetisaatio

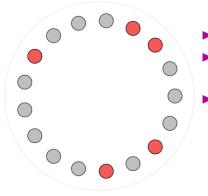
low temperature: $x < \sqrt{2} - 1$ ferromagnetic $\lim_{L\to\infty}(magn.) \neq 0$ high temperature: $x > \sqrt{2} - 1$ paramagnetic $\lim_{L\to\infty}(magn.) = 0$



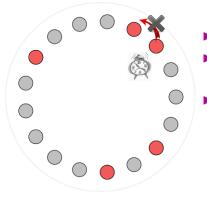
- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied



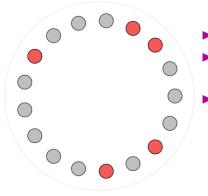
- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied



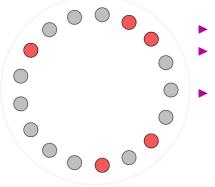
- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied



- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied



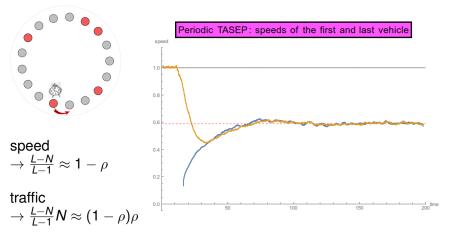
- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied

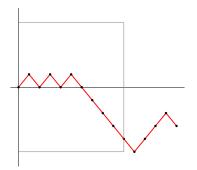


- L sites, periodic chain
- N vehicles
- at Poissonian rate λ, vehicle attempts advance to next site
 - advance if next site empty
 - do nothing if next site occupied

$$L \to \infty, N \to \infty, \frac{N}{L} \to \rho$$

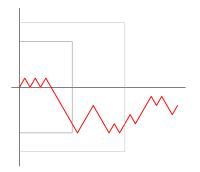
Example 2: behavior of TASEP





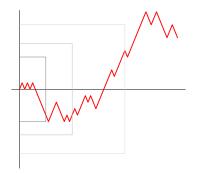
Random walk
$$S_n = \sum_{j=1}^n \xi_j$$

 $(\xi_j)_{j=1}^{\infty}$ i.i.d., $\mathsf{P}[\xi_j = \pm 1] = \frac{1}{2}$



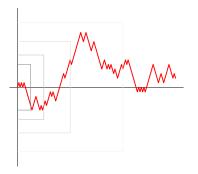
Random walk $S_n = \sum_{j=1}^n \xi_j$ $(\xi_j)_{j=1}^{\infty}$ i.i.d., $P[\xi_j = \pm 1] = \frac{1}{2}$

Large Random Systems (MS-E1602) period IV: March 1 – April 7 2021 Aalto University, Dept. Mathematics and Systems Analysis



Random walk $S_n = \sum_{j=1}^n \xi_j$ $(\xi_j)_{j=1}^\infty$ i.i.d., $\mathsf{P}[\xi_j = \pm 1] = \frac{1}{2}$

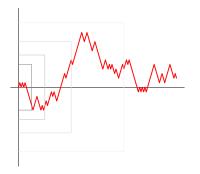
Large Random Systems (MS-E1602) period IV: March 1 – April 7 2021 Aalto University, Dept. Mathematics and Systems Analysis



Random walk
$$S_n = \sum_{j=1}^n \xi_j$$

 $(\xi_j)_{j=1}^{\infty}$ i.i.d., $\mathsf{P}[\xi_j = \pm 1] = \frac{1}{2}$

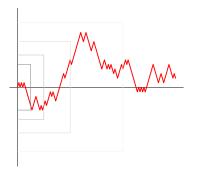
Large Random Systems (MS-E1602) period IV: March 1 – April 7 2021 Aalto University, Dept. Mathematics and Systems Analysis



Random walk
$$S_n = \sum_{j=1}^n \xi_j$$

 $(\xi_j)_{j=1}^\infty$ i.i.d., $\mathsf{P}[\xi_j = \pm 1] = \frac{1}{2}$

Scaling $X_t^{(\delta)} = \sqrt{\delta} S_{t/\delta}$

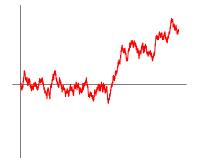


Random walk
$$S_n = \sum_{j=1}^n \xi_j$$

 $(\xi_j)_{j=1}^\infty$ i.i.d., $\mathsf{P}[\xi_j = \pm 1] = \frac{1}{2}$

Scaling
$$X_t^{(\delta)} = \sqrt{\delta} S_{t/\delta}$$

Theorem [Donsker 1951] As $\delta \to 0$, we have $(X_t^{(\delta)})_{t \in [0,1]} \xrightarrow{\mathsf{w}}$ Brownian motion $(B_t)_{t \in [0,1]}$.



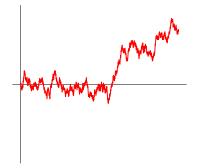
Random walk
$$S_n = \sum_{j=1}^n \xi_j$$

 $(\xi_j)_{j=1}^\infty$ i.i.d., $P[\xi_j = \pm 1] = \frac{1}{2}$

Scaling
$$X_t^{(\delta)} = \sqrt{\delta} S_{t/\delta}$$

Theorem [Donsker 1951] As $\delta \to 0$, we have $(X_t^{(\delta)})_{t \in [0,1]} \stackrel{\text{w}}{\to}$ Brownian motion $(B_t)_{t \in [0,1]}$.

Limit? Weak convergence of probability measures on $(\mathcal{C}([0,1]), \|\cdot\|_{\infty})$



Random walk $S_n = \sum_{j=1}^n \xi_j$ $(\xi_j)_{j=1}^\infty$ i.i.d., $P[\xi_j = \pm 1] = \frac{1}{2}$

Scaling $X_t^{(\delta)} = \sqrt{\delta} S_{t/\delta}$

With probability one:

$$\begin{split} t &\mapsto B_t \text{ nowhere differentiable,} \\ \dim \big\{ (t, B_t) \mid t \in [0, 1] \big\} = \frac{3}{2}, \\ \big\{ t \in [0, 1] \mid B_t = 0 \big\} \text{ Cantor set, } \dots \end{split}$$

Theorem [Donsker 1951]

As $\delta \to 0$, we have $(X_t^{(\delta)})_{t \in [0,1]} \stackrel{\text{w}}{\to} \text{Brownian motion } (B_t)_{t \in [0,1]}$.

Limit? Weak convergence of probability measures on $(\mathcal{C}([0,1]), \|\cdot\|_{\infty})$

