

Influence Diagrams

Kalle Alaluusua Presentation *18.9.2020*

> MS-E2191 Graduate Seminar on Operations Research Fall 2020

The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

Motivation

Modelling of decision problems

Decision trees

- Display alternatives and outcomes explicitly
- \Rightarrow Explode in complexity as the number of variables increases

Need for a **flexible** way to describe **dependencies** and **independencies** among random variables and decisions

Mathematical Basis

Probabilistic independence: $P(A, B) = P(A) \cdot P(B)$

Chain rule: $P(A, B, C) = P(A | B, C) \cdot P(B | C) \cdot P(C)$

Bayes' theorem:
$$P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}$$

Law of total probability: $P(A) = \sum_{B} P(A | B)P(B)$

Components

Nodes

Decision nodes and chance nodes Relationships

Let A, B be random variables and C, D decisions:

 $P(A \mid B)$, probability of A depends on outcome of B

 $P(A \mid C)$, probability of A depends on decision C

 $\{C \mid B\}$, decision C is based on the outcome of B

 $\{D \mid C\}$, decision **D** is based on the decision **C**

Graphical Manipulation

Permitted operations

- 1. Adding an arrow between two chance nodes
- 2. Adding an arrow from a decision node to a chance node
- 3. Reversing an arrow between two **chance** nodes that are based on the **same state of information**

Exception Loops are prohibited

Influence Diagram with Decision Nodes

Non-Unique Results

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Solving for Optimal Strategy

Influence diagram

- Specific (nonunique) order for conditional probabilities
- Information available as the basis for each decision *S*

Joint probability distributions P(A, B, C | S)

- Initial probability assignments P(A | S)
- Conditional probability assignments $P(B \mid A, S)$, $P(C \mid A, B, S)$
- Decision rules

Expected values for each outcome

$$\mathbf{E}(A, B, C \mid S) = \sum_{A,B,C} V(A, B, C) \cdot P(A, B, C \mid S)$$

• Value function V(A, B, C)

Aalto University School of Science

Classes of Influence Diagrams

Decision tree network

Decision network

Single DM	No forgetting	Direct correspondance to a decision tree		
Total ordering among decisions	Each decision is linked to preceding decisions and their bases	A decision is linked to each node preceding it		

Converting a Decision Network to a Decision-Tree Network

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Example: The Used-Car Buyer

Converting an Influence Diagram to a Decision Tree

The buyer can:

perform test T with **result R**, choose car A with condition O and receive value V

12

Example: Toxic-Chemical Testing

Influence Diagram for Primary Decision

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Probability Assignments and Value Functions

It costs OM\$ to **permit**, 1M\$ to **restrict** and 5M\$ to **ban** the alternative.

	Cancer Cost (\$millions)										
	PERMIT ALTERNATIVE		RESTRICT ALTERNATIVE Exposure		BAN ALTERNATIVE Exposure						
	Exposure										
Activity	Low	Med	High	Low	Med	High	Low	Med	High		
Inactive Moderate Very active	0 0.5 10	0 5 100	0 50 1000	0 0.05 1	0 0.5 10	0 5 100	0 0 0	0 0 0	0 0 0		

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Expected Value of Perfect Information

Upper limit for the price of a variable's value in advance

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Expected Value of Sample Information

Upper limit for the price of imperfect information on variable's value

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Likelihood Function of Activity Test

Optimal strategy

ACTIVITY INFORMATION VALUE WITH = -1.96 VALUE OF = 0.25 DECISION RULE "INACTIVE" RESTRICT "MODERATELY RESTRICT ACTIVE" "VERY ACTIVE" BAN

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

Summary

Influence diagrams

- Flexible way to describe dependencies and independencies among random variables and decisions
- + Easy to model **complex systems**
- Require additional lists of decision alternatives and node states

You can

- Solve for optimal strategy
- Convert to a decision tree
- Manipulate to ask questions about EVPI and EVSI

Howard, R.A. & Matheson, J.E. 2005, Influence Diagrams, Decision Analysis, Vol. 2, No. 3, pp. 127-143.

MS-E2191 Graduate Seminar on Operations Research: "Influence Diagrams"

Homework

Consider the example Toxic-Chemical Testing:

Suppose that you have received information that the human exposure of the alternative is medium. Given the influence diagram for primary decision (slide 14) and the related probability assignments and value functions (slide 15), solve the optimal strategy using Excel.

Return your solution to kalle.alaluusua@aalto.fi by 25.9. 09:15.

