Aalto University
School of Science

Markov chains and Markov decision processes

Emil af Björkesten
Presentation 5
2.10.2020

MS-E2191 Graduate Seminar on Operations Research
Fall 2020

Snakes and ladders

Will I ever win?

How long will it take?
Where will I be after 10 turns?

https://fun-play.co.uk/shop/fun-games/snakes-ladders-1-100-solid/

Stock prices

GOOG stock price development, from finance.yahoo.com
2.10.2020

Where do we end up?

Stochastic processes

A process where transitions between states are stochastic

Inventory management
Weather models
Natural languages
Queuing

Markov chain

Memoryless process
Transition probabilities and initial state known
The current state is dependent on the previous one:

$$
P\left(X_{t+1}\right) \neq P\left(X_{t+1} \mid X_{t}\right)
$$

Transition probabilities

today / tomorrow	Sunny	Cloudy	Rainy
Sunny	0	0.5	0.5
Cloudy	0.2	0.6	0.2
Rainy	0.3	0.4	0.3

$$
P\left(w_{t+1}=\operatorname{Sunny} \mid w_{t}=\operatorname{Sunny}\right)=0
$$

States and transition probabilities

Row sum = 1

$$
P=\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.2 & 0.6 & 0.2 \\
0.3 & 0.4 & 0.3
\end{array}\right]
$$

Distribution at next time step

$$
\begin{gathered}
\mu_{t+1}=\mu_{t} P \\
\mu_{t+n}=\mu_{t} P^{n}
\end{gathered}
$$

Terminology

Frequency

$$
N_{t}(y)=\sum_{s=0}^{t} 1\left(X_{s}=y\right)
$$

Periodicity

Occupancy

$$
\begin{gathered}
M_{t}(x, y)=\mathbb{E}\left(N_{y}(t) \mid X_{0}=x\right) \\
M_{t}=\sum_{s=0}^{t} P^{s}
\end{gathered}
$$

Irreducibility: no isolated states

Snakes and ladders

Will I ever win?

How long will it take?
Where will I be after 10 turns?

https://fun-play.co.uk/shop/fun-games/snakes-ladders-1-100-solid/

Invariant distribution

End state (if the system has one): $\lim _{t \rightarrow \infty} \mu_{t}$
Limiting distribution $=$ invariant distribution $\pi P=\pi$
May depend on the initial state

Simulation

Is the process really memoryless?
Is a discrete-time model motivated?

- Continuous-time process: add a random time component

Find out the probabilities for each transition

Markov chains for language processing

Empirical transition probabilities can be used to produce strings of words (fiction, chatbots, gene sequences) https://github.com/StrikingLoo/ASOIA F-Markov uses the A Song of Ice and

 Fire books to produce new sentences (and write the sixth book?)```
stochastic_chain('The bold')
```

'The bold ones have had those formalities of greeting . " Asha asked her how it was


Image: https://www.amazon.com/Thrones-
Collection-George-Martin-Dragons/dp/9369763740

## Should we stay or go?



## Markov decision processes

Some states are better than others
Actions lead to states with some probability distribution
Wanting to find the best possible policy
Associate each transition with a reward

## Using MDPs

Define reward functions
Solve using dynamic algorithm
Find the best possible decision rules and policies

$$
v(s)=\sum_{t \in S} P(s, a, t)(R(s, a, t)+f v(t))
$$

$v$ value; $S$ states; $s$ current state; $a$ chosen action; $f$ discount factor; $R$ reward; $P$ probability

## Maximizing rewards

Which costs/rewards are significant?
What to maximize?

- Discounted sum
- Average reward
- Total reward

Policy choice: What to base the policy on?
Is the state completely observed?

## Solving it

## Find the optimal action for each state

$$
v(s)=\max _{a \in A} \sum_{t \in S} P(s, a, t)(R(s, a, t)+f v(t))
$$

## Applications

## Inventory management

Road maintenance


Image: https://www.kimble.fi/

## Summary

A Markov chain consists of states and transition probabilities
Memoryless, same transition probabilities for each time step
A Markov decision process has states, actions, transition probabilities, and rewards

Optimize the reward using some criterion

## References

Leskelä, L. (2018). Stokastiset prosessit (lecture material). https://math.aalto.fi/~lleskela/papers/Leskela_2018-0807_Stokastiset_prosessit.pdf

Puterman, M. L. (1994). Markov Decision Process: Discrete Stochastic Dynamic Programming. John Wiley \& Sons

Silver, D. (2020). Markov Decision Processes (lecture material). https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

Strika, L. (2019). ASOAIF-Markov (GitHub repository.) https://github.com/StrikingLoo/ASOIAF-Markov

## Homework: Motion on a grid

Each action taken will have the desired outcome with $\mathrm{P}=0.7$ (if the desired outcome is possible). Transitions to all other neighbouring cells and not moving at all are equally likely outcomes. Diagonal motion is not possible.
At location 2, choosing action EAST $P(3)=0.7$
$P(2)=0.1$
$P(1)=0.1$
$P(5)=0.1$

| 7 | 8 | 9 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 1 | 2 | 3 |



## Homework: Motion on a grid

Each action taken will have the desired outcome with $\mathrm{P}=0.7$ (if the desired outcome is possible). Transitions to all other neighbouring cells and not moving at all are equally likely outcomes. Diagonal motion is not possible.
At location 2, choosing action SOUTH $P(1)=0.25$
$P(2)=0.25$
$P(3)=0.25$
$P(5)=0.25$

| 7 | 8 | 9 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 1 | 2 | 3 |



## Homework: Motion on a grid

We choose NORTH as our policy.

1. Starting at 1 , what is the distribution at $\mathbf{t}=10$ ?
2. Is there an invariant distribution, and does it depend on the initial state?
3. The reward for a transition to 9 is $\mathbf{1 0 0}$, all other transitions have reward 0 . Use the equation on slide 17 with discount factor 0.5 . What is the value of each state?

Send to emil.afbjorkesten@aalto.fi, DL 9.10

| 7 | 8 | 9 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 1 | 2 | 3 |

