

Homework solution

Emil Nyman
Presentation 10
30.10.2020

MS-E2191 Graduate Seminar on Operations Research
Fall 2020

Homework: Dijkstra's shortest path algorithm

Given the following graph, where arcs connecting nodes A to F have different costs, find the shortest path from node A to node F by using Dijkstra's algorithm.

Report the labels d_i and the candidate list V in each iteration. What path is the shortest based on Dijkstra's algorithm?

Dijkstra's algorithm: Node removed from V is always the one with the minimum label

V
{A }
{B, C, D }

d_A	d_B	$d_{\it C}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞

V
{A }
{B, C, D }
{B, C , E}

d_A	d_B	$d_{\it C}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞

V
{A }
{B, C, D }
{B, C , E}
{ B , E}

d_A	d_B	$d_{\mathcal{C}}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞
0	6	5	2	8	∞

V
{A }
{B, C, D }
{B, C , E}
{ B , E}
{ E , F}

d_A	d_B	$d_{\it C}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞
0	6	5	2	8	∞
0	6	5	2	8	9

V
{A }
{B, C, D }
{B, C , E}
{ B , E}
{ E , F}
{ F }

d_A	d_B	$d_{\mathcal{C}}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞
0	6	5	2	8	∞
0	6	5	2	8	9
0	6	5	2	8	9

Iteration end

V
{A }
{B, C, D }
{B, C , E}
{ B , E}
{ E , F}
{ F }
{}

d_A	d_B	$d_{\mathcal{C}}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞
0	6	5	2	8	∞
0	6	5	2	8	9
0	6	5	2	8	9
0	6	5	2	8	9

Trace back to get shortest path

V					
{A }					
{B, C, D }					
{B, C , E}					
{ B , E}					
{ E , F}					
{ F }					
{}					

d_A	d_B	$d_{\mathcal{C}}$	d_D	d_E	d_F
0	∞	∞	∞	∞	∞
0	7	6	2	∞	∞
0	7	5	2	8	∞
0	6	5	2	8	∞
0	6	5	2	8	9
0	6	5	2	8	9
0	6	5	2	8	9

