Homework solution Emil Nyman Presentation 10 30.10.2020 MS-E2191 Graduate Seminar on Operations Research Fall 2020 # Homework: Dijkstra's shortest path algorithm Given the following graph, where arcs connecting nodes A to F have different costs, find the shortest path from node A to node F by using Dijkstra's algorithm. Report the labels d_i and the candidate list V in each iteration. What path is the shortest based on Dijkstra's algorithm? Dijkstra's algorithm: Node removed from V is always the one with the minimum label | V | |-------------------| | {A } | | {B, C, D } | | d_A | d_B | $d_{\it C}$ | d_D | d_E | d_F | |-------|----------|-------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | V | |-------------------| | {A } | | {B, C, D } | | {B, C , E} | | d_A | d_B | $d_{\it C}$ | d_D | d_E | d_F | |-------|----------|-------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | V | |-------------------| | {A } | | {B, C, D } | | {B, C , E} | | { B , E} | | d_A | d_B | $d_{\mathcal{C}}$ | d_D | d_E | d_F | |-------|----------|-------------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | ∞ | | V | |-------------------| | {A } | | {B, C, D } | | {B, C , E} | | { B , E} | | { E , F} | | d_A | d_B | $d_{\it C}$ | d_D | d_E | d_F | |-------|----------|-------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | 9 | | V | |-------------------| | {A } | | {B, C, D } | | {B, C , E} | | { B , E} | | { E , F} | | { F } | | d_A | d_B | $d_{\mathcal{C}}$ | d_D | d_E | d_F | |-------|----------|-------------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | 9 | | 0 | 6 | 5 | 2 | 8 | 9 | #### **Iteration end** | V | |-------------------| | {A } | | {B, C, D } | | {B, C , E} | | { B , E} | | { E , F} | | { F } | | {} | | d_A | d_B | $d_{\mathcal{C}}$ | d_D | d_E | d_F | |-------|----------|-------------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | 9 | | 0 | 6 | 5 | 2 | 8 | 9 | | 0 | 6 | 5 | 2 | 8 | 9 | ### Trace back to get shortest path | V | | | | | | |-------------------|--|--|--|--|--| | {A } | | | | | | | {B, C, D } | | | | | | | {B, C , E} | | | | | | | { B , E} | | | | | | | { E , F} | | | | | | | { F } | | | | | | | {} | | | | | | | d_A | d_B | $d_{\mathcal{C}}$ | d_D | d_E | d_F | |-------|----------|-------------------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | | 0 | 7 | 6 | 2 | ∞ | ∞ | | 0 | 7 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | ∞ | | 0 | 6 | 5 | 2 | 8 | 9 | | 0 | 6 | 5 | 2 | 8 | 9 | | 0 | 6 | 5 | 2 | 8 | 9 |