

Application of policy iteration to strategic maintenance scheduling

Kalle Alaluusua Presentation *6.11.2020*

> MS-E2191 Graduate Seminar on Operations Research Fall 2020

The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

Problem description

Consider a system that consists of multiple critical components. How to schedule components' maintenance in the long run when the maintenance decisions influence

- the state of the system
- future wear-off

Keep costs low and reliability high

Consider a system that consists of multiple critical components. How to schedule components' maintenance in the long run when the maintenance decisions influence

- the state of the system
- future wear-off

Keep costs low and reliability high

Reliability = ability to perform the required function under prevailing operational conditions for a stated time period

6.11.2020 4

Naïve approach

- Minimize expected maintenance costs of single components
- Take reliability measures into account poorly

Naïve approach

Minimize expected maintenance costs of single components
 Take reliability measures into account poorly

Improvement

Extend the naïve approach and use dynamic programming to

- Group maintenance operations of multiple components effectively
- Introduce a reliability threshold to keep reliability high enough

Problem formulation

System state

- Fixed maintenance interval $\Delta t > 0$
- For the system to operate, every component must operate
- Components fail according to some known probability distributions

A discrete time Markov decision process with state variables

- Age (a_k)_i
- Failure state $(f_k)_i \in \{0,1\}$

of component i at maintenance instance t_k

Reliability = probability that a system is operational in t_{k+1} given a_k

Costs

- Set-up
- Component specific
- Shutdown
- Downtime

Dependencies

- Economic
- Structural
- Stochastic

Costs

- Set-up
- Component specific
- Shutdown
- Downtime

Dependencies

- Economic
- Structural
- Stochastic

Figure 3.1: Example of a system of five components and corresponding costs of c_{ij}

Leppinen, J. (2020)

6.11.2020 10

Costs

- Set-up
- Component specific
- Shutdown
- Downtime

Dependencies

- Economic
- Structural
- Stochastic

6.*11.2020* 11

Costs

- Set-up
- Component specific
- Shutdown
- Downtime

Dependencies

- Economic
- Structural
- Stochastic

Assumptions

- At most single failure per maintenance period
- Components can only be replaced into new ones
- No downtime cost
- No stochastic dependencies

Portfolio

 $x \in \{0,1\}^N$ has $x_i = 1$ when component i is replaced

Feasible portfolios

- Fulfil the reliability threshold
- Replace failed components
- Satisfy structural dependencies

Find a stationary policy which

- Is feasible
- Minimizes the long run average cost per time unit

Policy iteration algorithm

- 1. Step: Initialization Choose a stationary policy U.
- 2. Step: Value-determination step For the current policy U, compute the unique solution $\{g(U), v(U)\}$ to the following system of linear equations:

$$v_{\sigma_i} = c_{\sigma_i}(U_{\sigma_i}) - g + \sum_{\sigma_j \in S} p_{\sigma_i \sigma_j}(U_{\sigma_i}) v_{\sigma_j}, \quad \sigma_i \in S$$

$$v_{\sigma_s} = 0,$$
(3.20)

where σ_s is an arbitrarily chosen state.

3. Step: Policy-improvement step For each state $\sigma_i \in S$, determine a portfolio x_k yielding the minimum in

$$\min_{x_k \in X_{\sigma_i}} \left\{ c_{\sigma_i}(x_k) - g(U) + \sum_{\sigma_j \in S} p_{\sigma_i \sigma_j}(x_k) v_{\sigma_j}(U) \right\}$$
(3.21)

The new stationary policy U' is obtained by setting $U'_{\sigma_i} = x_k$ for all $\sigma_i \in S$.

4. Step: Convergence test If the new policy U' equals U the algorithm is stopped with policy U. Otherwise, set U = U' and go to step 2.

Case study: A ground transportation equipment system

Components and dependencies

Components

- Engine 1 (E1), engine 2 (E2), chassis (C) and wheels (W)
- Deteriorate over time and have structural dependencies

Structural dependencies

- An engine must be dismantled before it can be replaced
- To replace the chassis, the chassis and both engines must be dismantled
- To replace the wheels, the chassis and the engines must be dismantled

A fixed set-up cost c0 = 388 for every operation and component specific costs:

Table 5.1: Maintenance costs of different components

		component specific costs				
component	symbols	dismantle	replacement	corrective surplus		
engine 1	1, E1	23	393	300		
engine 2	2, E2	28	403	300		
chassis	3, C	167	413	160		
wheels	4, W	0	1000	613		

Directed graph of cost structure

Figure 5.1: Cost structure of the system where the root node is on the left

Weibull distributed failure probabilites

Figure 5.2: Failure probability density as a function of distance driven from last replacement

Leppinen, J. (2020)

The results

Portfolio

 $x_{E1}x_{E2}x_Cx_W, x_i \in \{0,1\}$ has $x_i = 1$ when component i is replaced

Table 5.4: Comparing replacement portfolios when changing reliability threshold as a function of $(a_k)_{E2}$ and $(a_k)_W$, when $(a_k)_{E1} = (a_k)_C = 75$ and $f_k = 0$

$(a_k)_2,$	$(a_k)_4$, wheels									
engine 2	75	150	225	300	375	450	525	600		
	D).		$\rho =$	= 0.90						
75	0	0	0	0	0	0	0001	0001		
150	0	0	0	0	0	0	0001	0001		
225	0	0	0	0	0	0	0001	0001		
300	0	0	0	0	0	0	0	0101		
375	0	0	0	0	0	0	0	0101		
450	0	0	0	0	0	0	0	0101		
525	0	0	0	0	0	0	0	0101		
600	0100	0	0	0	0	0	0101	0101		
675	0100	0100	0100	0	0	0101	0101			
750	0100	0100	0100	0100	0101	0101				
825	0100	0100	0100	0100						
			$\rho =$	= 0.95						
75	0	0	0	0	0	0001				
150	0	0	0	0	0	0001				
225	0	0	0	0	0	0001				
300	0	0	0	0	0	0001				
375	0	0	0	0	0	0101				
450	0	0	0	0	0	0101				
525	0	0	0	0	0101	0101				
600	0	0	0	0100	0101					
675	0100	0100	0100	0100						

Leppinen, J. (2020)

Conclusions

6.11.2020 23

Summary

Maintenance scheduling problem

- A discrete time Markov decision process where the state depends on the components ages and the failure state
- Apply policy-iteration to find a stationary policy
- Optimal in terms of average cost over a very long time period

Summary

Design decisions

- Component level: distributions of failure probabilities
- System level: structure as a directed graph
- Environmental level: discretization period

Leppinen, J. (2020). A Dynamic Optimization Model for Maintenance Scheduling of a Multi-Component System (Master's thesis, Aalto University).

Homework

Consider the case example (Chapter 5) in Leppinen, J. (2020) available in course material.

Briefly explain why the policy-iteration algorithm outperforms the simple and heuristic opportunistic policy. Why, in some cases should you still consider the simple policy over the presented policy-iteration algorithm?

Return your solution to <u>kalle.alaluusua@aalto.fi</u> by 13.11. 09:15.

