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In this presentation...

• Quick recap of Markov decision process (MDP) and value
iteration (VI)

• Introducing policy iteration (PI) with an example
• Pros and cons of PI
• PI improvements
• References
• Homework

Insert presentation date
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Markov decision process &
value iteration

3

- Process in state i
- States 𝑠 ∈ 𝑺 
- Actions 𝑎 ∈ 𝑨 
- Cost (or reward) R(s, a, s’)
- Transition probabilities P(s, a, s’)

𝑉𝑖+1(𝑠) = max
𝑎∈𝐴

෍ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖 𝑠′

𝑠′∈𝑆

Value Iteration method
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Policy iteration method

Step 1: Initialization

Step 2: Policy evaluation

Step 3: Policy improvement

4
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MDP – Example from presentation 5

5

2 3

4 5 6

7 8 9

0 0

0 0 0

0 0 100

1 0

States Policy μ0Rewards

• Actions have desired outcome with P=0.7, discount factor ɣ=0.5

• All other transitions equally likely

• Actions: N(orth), E(east), S(outh), W(est), States S: 1, 2, 3, 4, 5, 6, 7, 8, 9

• Objective to maximize reward
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MDP – Modified example

6

• Option to stay in place with certainty

• If not staying in place, always move to a

neighbouring state

• Reward gained from transition to S=9 regardless of

the action chosen

• Valid states S: 5, 8, 9

• Other states (and outside of map) have

value 0 and policy to always stay put

• E.g. S=5, A=N: P(8)=0.7 (ignoring obstacles)

• E.g. S=8, A=S: P(5)=0.7, P(9)=0.1

2 3

4 6

7 8 9

0 0

0 0

0 0 100

1 0

States

Policy μ0

Rewards

5 0
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Policy iteration steps

Step 1: Initialization
Guess an initial stationary policy μ0

Step 2: Policy evaluation

Step 3: Policy improvement

7

Example policy μ0
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Step 2: Policy evaluation
(BAD) EXAMPLE

8

Path Prob. Utility

0.7 0

0.1 0

0.1 0

0.1 0

Path Prob. Utility

0.07 50

0.07 0

0.49 0

... ... ...

Naïve method:

𝑉𝜇(5) ≈ 0.07 ⋅ 50 = 3.5

2 3
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7 8 9

0 0

0 0

0 0 100

1 0

States Policy μ0Rewards
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Consider values at states 5, 8 and 9
v5 = 0.7 * (0 + 0.5 * v8) + 0.3 * (0 + 0.5 * 0)
v8 = 0.1 * (100 + 0.5 * v9) + 0.1 * (0 + 0.5 * v5) + 0.8 * (0 + 0.5 * 0)
v9 = 1 * (100 + 0.5 * v9)

Solve the linear system
v9 = 200
v8 = 10 + 0.05 * 200 + 0.05 * 0.35 * v8  v8 = 8000/393 = 20.356...
v5 = 0.7 * 0.5 * 8000/393 = 2800/393 = 7.124...

9

𝑉𝜇 𝑠 = ෍ 𝑃 𝑠, 𝜇 𝑠 , 𝑠′ 𝑅 𝑠, 𝜇 𝑠 , 𝑠′ + 𝛾𝑉𝜇 𝑠′

𝑠′∈𝑆

,  ∀𝑠 ∈ 𝑆

Step 2: Policy evaluation
EXAMPLE

Policy μ0

on this slide notate 𝑣𝑠 = 𝑉𝜇0 𝑠
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Policy Iteration steps

Step 1: Initialization
Guess an initial stationary policy μ0

Step 2: Policy evaluation
𝑉𝜇 𝑠 = ∑ 𝑃 𝑠, 𝜇 𝑠 , 𝑠′ 𝑅 𝑠, 𝜇 𝑠 , 𝑠′ + 𝛾𝑉𝜇 𝑠′

𝑠′∈𝑆 ,  ∀𝑠 ∈ 𝑆

Step 3: Policy improvement

10
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Step 3: Policy improvement

• We can always find at least equally good policy
• Roll-out policy

• For each state, choose the maximizing action and assume
current policy elsewhere

• Finite number of states and actions
 Eventually terminates with an optimal policy
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Step 3: Policy improvement
EXAMPLE

Baseline policy μ0

𝜇1
5

=
ar

g 
m

ax : 7.12

:  0.1 · 0.5 · 20.35 ≈ 1.01

:  0.1 · 0.5 · 20.35 ≈ 1.01

𝜇1
8

=
ar

g 
m

ax :  20.35

:  0.7 (100 + 0.5 · 200) +  0.1 · 0.5 · 7.124 ≈ 140.35

:  0.7 · 0.5 · 7.124 + 0.1 · (100 + 0.5 · 200) ≈ 22.49

Improved policy μ1

:  0.1 · 0.5 · 20.35 ≈ 1.01
:  0.1 · 0.5 · 7.124 + 0.1 · (100 + 0.5 · 200) ≈ 20.35

𝜇1 𝑠 = arg max
𝑎∈𝐴

෍ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜇0 𝑠′

𝑠′∈𝑆

,  ∀𝑠 ∈ 𝑆

Remember the solution from the last step
v9 = 200, v8 ≈ 20.35, v5 ≈ 7.12
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Policy iteration steps

Step 1: Initialization
Guess an initial stationary policy μ0

Step 2: Policy evaluation
𝑉𝜇 𝑠 = ∑ 𝑃 𝑠, 𝜇 𝑠 , 𝑠′ 𝑅 𝑠, 𝜇 𝑠 , 𝑠′ + 𝛾𝑉𝜇 𝑠′

𝑠′∈𝑆 ,  ∀𝑠 ∈ 𝑆

Step 3: Policy improvement
𝜇𝑘+1 𝑠 = arg max

𝑎∈𝐴
∑ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜇𝑘 𝑠′

𝑠′∈𝑆 ,  ∀𝑠 ∈ 𝑆,

repeat steps 2 and 3 until 𝜇 is unchanged

13
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Consider values at states 5, 8 and 9
v5 = 0.7 * (0 + 0.5 * v8) + 0.3 * (0 + 0.5 * 0)
v8 = 0.7 * (100 + 0.5 * v9) + 0.1 * (0 + 0.5 * v5) + 0.2 * (0 + 0.5 * 0)
v9 = 1 * (100 + 0.5 * v9)

Solve the linear system
v9 = 200
v8 = 56000/393 = 142.493...
v5 = 19600/393 = 49.872...

14

𝑉𝜇 𝑠 = ෍ 𝑃 𝑠, 𝜇 𝑠 , 𝑠′ 𝑅 𝑠, 𝜇 𝑠 , 𝑠′ + 𝛾𝑉𝜇 𝑠′

𝑠′∈𝑆

,  ∀𝑠 ∈ 𝑆

Iter 2, step 2: Policy evaluation
EXAMPLE

on this slide notate 𝑣𝑠 = 𝑉𝜇1 𝑠

Current policy μ1
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Iter 2, step 3: Policy improvement
EXAMPLE

𝜇2
5

=
ar

g 
m

ax : 49.87

:  0.1 · 0.5 · 142.49 ≈ 7.12

:  0.1 · 0.5 · 142.49 ≈ 7.12
𝜇2

8
=

ar
g 

m
ax :  0.1 · (100 + 0.5 · 200) + 0.1 · 0.5 * 49.87 ≈ 22.49

: 142.49

:  0.7 · 0.5 · 49.87 + 0.1 · (100 + 0.5 · 200) ≈ 37.45

Current policy μ1

The policy does not change
 We have reached the optimal policy

:  0.1 · 0.5 · 142.49 ≈ 7.12
:  0.1 · 0.5 · 49.87 + 0.1 · (100 + 0.5 · 200) ≈ 22.49

𝜇2 𝑠 = arg max
𝑎∈𝐴

෍ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜇1 𝑠′

𝑠′∈𝑆

,  ∀𝑠 ∈ 𝑆

Remember the solution from the last step
v9 = 200, v8 ≈ 142.49, v5 ≈ 49.87
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Iter 2, step 3: Policy improvement
EXAMPLE

Current policy μ1

The policy does not change
 We have reached the optimal policy

𝜇2 𝑠 = arg max
𝑎∈𝐴

෍ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜇1 𝑠′

𝑠′∈𝑆

,  ∀𝑠 ∈ 𝑆

Remember the solution from the last step
v9 = 200, v8 ≈ 142.49, v5 ≈ 49.87

Optimal values

𝑉∗ 5 ≈ 49.87, 𝑉∗ 8 ≈ 142.49,
𝑉∗ 9  = 200

Optimal policy

𝜇∗ 5 = ”North”, 𝜇∗ 8 = ”East”
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Pros and cons

Pros
• Finite-time convergence to

the optimal policy
• Typically terminates (or

gets close to optimal) in
remarkably few iterations

17

Cons
• Possibly requires solving of

large linear systems
 Poor performance when
number of states is high

On each iteration of PI
• 𝑐𝑎𝑟𝑑(𝑆) linear equations
• 𝑐𝑎𝑟𝑑(𝑆) unknowns
• 𝑂(𝑐𝑎𝑟𝑑 𝑆 3) solution
Iteration of VI only 𝑂(𝑐𝑎𝑟𝑑 𝑆 ⋅ 𝑐𝑎𝑟𝑑(𝐴))

Complexity reference: 10 Lecture 23: Markov Decision Processes Policy Iteration
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Improving PI method

• Optimistic policy iteration

• In evaluation step, solve the equation system (approximately)

using VI

• Linear programming methods

18
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Linear programming methods in PI

• Aims directly for an optimal
policy

• To find out optimal
𝑉∗ 1 , … , 𝑉∗ 𝑛 solve the
following problem in 𝑧1, … , 𝑧𝑛

19

s.t. 𝑧𝑠 ≤ ∑ 𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′
𝑠′∈𝑆 , ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 𝑠

max ෍ 𝑧𝑠
𝑠∈S
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Homework
Consider the following problem

𝑆 =  {1, 2}, 𝐴 =  {𝑎1, 𝑎2}

𝑃 𝑠, 𝑎1, 𝑠′ = 𝑝11 𝑎1 , 𝑝12 𝑎1
𝑝21 𝑎1 , 𝑝22 𝑎1

= 3/4, 1/4
3/4, 1/4

𝑃 𝑠, 𝑎2, 𝑠′ = 𝑝11 𝑎2 , 𝑝12 𝑎2
𝑝21 𝑎2 , 𝑝22 𝑎2

= 1/4, 3/4
1/4, 3/4

Discount factor 𝛾 = 0.9

Baseline policy 𝜇0 1 = 𝑎1,   𝜇0(2) = 𝑎2

21

Transition costs 𝒈 𝒔, 𝒂

States /
Actions s=1 s=2

a=a1 2 1

a=a2 0.5 3

E.g. 𝑔 2, 𝑎1 = 1
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Homework
Find the minimizing optimal policy and cost for the problem. Report the optimal

actions 𝜇∗(𝑠) and values 𝑉∗(𝑠) in each state.

DL: 13.11. 9:00, einari.tuukkanen@aalto.fi
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𝝁 𝒔 = 𝒂𝟏 𝝁 𝒔 = 𝒂𝟐


