

Policy iteration method for solving Markov decision processes

Einari Tuukkanen Presentation 13 06.11.2020

> MS-E2191 Graduate Seminar on Operations Research Fall 2020

The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

In this presentation...

- Quick recap of Markov decision process (MDP) and value iteration (VI)
- Introducing policy iteration (PI) with an example
- Pros and cons of PI
- PI improvements
- References
- Homework

Insert presentation date

Markov decision process & value iteration

- Process in state i
- States $s \in S$
- Actions $a \in A$
- Cost (or reward) R(s, a, s')
- Transition probabilities P(s, a, s')

Value Iteration method

$$V_{i+1}(s) = \max_{a \in A} \sum_{s' \in S} P(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

Policy iteration method

Step 1: Initialization

Step 2: Policy evaluation

Step 3: Policy improvement

MDP – Example from presentation 5

- Actions have desired outcome with **P=0.7**, discount factor **y=0.5**
- All other transitions equally likely
- Actions: N(orth), E(east), S(outh), W(est), States S: 1, 2, 3, 4, 5, 6, 7, 8, 9
- Objective to maximize reward

MDP – Modified example

Rewards

0

0

- Option to stay in place with certainty •
- If not staying in place, always move to a neighbouring state
- Reward gained from transition to S=9 regardless of ٠ the action chosen

- Valid states **S**: 5, 8, 9 ٠
- Other states (and outside of map) have ٠ value 0 and policy to always stay put
- E.g. **S=5**, **A=N**: P(8)=0.7 (ignoring obstacles) ٠
- E.g. **S=8, A=S**: P(5)=0.7, P(9)=0.1 •

States

8

5

2

9

6

3

7

4

1

MS-E2191 Graduate Seminar on Operations Research: "Decision-Making under Uncertainty"

100

Policy iteration steps

Step 1: Initialization

Guess an initial stationary policy μ^0

Step 2: Policy evaluation

Step 3: Policy improvement

Step 2: Policy evaluation (BAD) EXAMPLE

Path	Prob.	Utility	Path	Prob.
Ť	0.7	0	↑	0.07
-	0.1	0	^ ←	0.07
←	0.1	0	↑ ↑	0.49
↓	0.1	0		

Naïve method:

Utility

50

0

0

...

 $V_{\mu}(5)\approx 0.07\cdot 50=3.5$

Step 2: Policy evaluation

$$V_{\mu}(s) = \sum_{s' \in S} P(s, \mu(s), s') [R(s, \mu(s), s') + \gamma V_{\mu}(s')], \forall s \in S$$

on this slide notate $v_s = V_{\mu^0}(s)$

 $\mathbf{v_5} = 0.7 * (0 + 0.5 * \mathbf{v_8}) + 0.3 * (0 + 0.5 * 0)$ $\mathbf{v_8} = 0.1 * (100 + 0.5 * \mathbf{v_9}) + 0.1 * (0 + 0.5 * \mathbf{v_5}) + 0.8 * (0 + 0.5 * 0)$ $\mathbf{v_9} = 1 * (100 + 0.5 * \mathbf{v_9})$

Solve the linear system

 $v_9 = 200$ $v_8 = 10 + 0.05 * 200 + 0.05 * 0.35 * v_8 ⇔ v_8 = 8000/393 = 20.356...$ $v_5 = 0.7 * 0.5 * 8000/393 = 2800/393 = 7.124...$

Policy Iteration steps

Step 1: Initialization

Guess an initial stationary policy μ^0

Step 2: Policy evaluation

 $V_{\mu}(s) = \sum_{s' \in S} P(s, \mu(s), s') \left[R(s, \mu(s), s') + \gamma V_{\mu}(s') \right], \forall s \in S$

Step 3: Policy improvement

Step 3: Policy improvement

- We can always find at least equally good policy
- Roll-out policy
 - For each state, choose the maximizing action and assume current policy elsewhere
- Finite number of states and actions
 - → Eventually terminates with an optimal policy

Step 3: Policy improvement EXAMPLE

$$\mu^{1}(s) = \arg \max_{a \in A} \sum_{s' \in S} P(s, a, s') [R(s, a, s') + \gamma V_{\mu^{0}}(s')], \forall s \in S$$

Remember the solution from the last step $v_9 = 200, v_8 \approx 20.35, v_5 \approx 7.12$

12

Policy iteration steps

Step 1: Initialization

Guess an initial stationary policy μ^0

Step 2: Policy evaluation

 $V_{\mu}(s) = \sum_{s' \in S} P(s, \mu(s), s') \left[R(s, \mu(s), s') + \gamma V_{\mu}(s') \right], \forall s \in S$

Step 3: Policy improvement

 $\mu^{k+1}(s) = \arg \max_{a \in A} \sum_{s' \in S} P(s, a, s') \left[R(s, a, s') + \gamma V_{\mu^k}(s') \right], \forall s \in S,$ repeat steps 2 and 3 until μ is unchanged

Iter 2, step 2: Policy evaluation

$$V_{\mu}(s) = \sum_{s' \in S} P(s, \mu(s), s') [R(s, \mu(s), s') + \gamma V_{\mu}(s')], \forall s \in S$$

on this slide notate $v_{\mu} = V_{\mu}(s)$

on this slide notate $v_s = V_{\mu^1}(s)$

Consider values at states 5, 8 and 9

 $\begin{aligned} \mathbf{v}_5 &= 0.7 * (0 + 0.5 * \mathbf{v}_8) + 0.3 * (0 + 0.5 * 0) \\ \mathbf{v}_8 &= \mathbf{0.7} * (100 + 0.5 * \mathbf{v}_9) + 0.1 * (0 + 0.5 * \mathbf{v}_5) + 0.2 * (0 + 0.5 * 0) \\ \mathbf{v}_9 &= 1 * (100 + 0.5 * \mathbf{v}_9) \end{aligned}$

Solve the linear system

v₉ = 200
v₈ = 56000/393 = 142.493...
v₅ = 19600/393 = 49.872...

Iter 2, step 3: Policy improvement

$$\mu^2(s) = \arg\max_{a \in A} \sum_{s' \in S} P(s, a, s') \left[R(s, a, s') + \gamma V_{\mu^1}(s') \right], \forall s \in S$$

Remember the solution from the last step $v_9 = 200$, $v_8 \approx 142.49$, $v_5 \approx 49.87$

The policy does not change→ We have reached the optimal policy

15

Iter 2, step 3: Policy improvement

$$\mu^2(s) = \arg \max_{a \in A} \sum_{s' \in S} P(s, a, s') [R(s, a, s') + \gamma V_{\mu^1}(s')], \forall s \in S$$

Remember the solution from the last step $v_9 = 200$, $v_8 \approx 142.49$, $v_5 \approx 49.87$

The policy does not change→ We have reached the optimal policy

Optimal policy

$$\mu^*(5) =$$
 "North", $\mu^*(8) =$ "East"

Optimal values

$$V^*(5) \approx 49.87, V^*(8) \approx 142.49, V^*(9) = 200$$

Pros and cons

Pros

- Finite-time convergence to the optimal policy
- Typically terminates (or gets close to optimal) in remarkably few iterations

Cons

- Possibly requires solving of large linear systems
- \rightarrow Poor performance when number of states is high

On each iteration of PI

- *card(S)* linear equations
- *card*(*S*) unknowns
- $O(card(S)^3)$ solution

Iteration of VI only $O(card(S) \cdot card(A))$

Complexity reference: 10 Lecture 23: Markov Decision Processes Policy Iteration

Improving PI method

- Optimistic policy iteration
 - In evaluation step, solve the equation system (approximately) using VI
- Linear programming methods

Linear programming methods in PI

- Aims directly for an optimal policy
- To find out optimal
 V*(1), ..., V*(n) solve the following problem in z₁, ..., z_n

s.t. $z_s \leq \sum_{s' \in S} P(s, a, s') [R(s, a, s') + \gamma V(s')], \forall s \in S, a \in A(s)$

References

Bertsekas, D. P. (2012). Dynamic programming and optimal control (Vol. 2, 4th ed.) Approximate Dynamic Programming. Belmont, MA: Athena scientific.

Howard, R. A. (1960). Dynamic programming and markov processes. John Wiley & Sons

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410principles-of-autonomy-and-decision-making-fall-2010/lecturenotes/MIT16_410F10_lec23.pdf, 5.11.2020

Homework

Consider the following problem

 $S = \{1, 2\}, \qquad A = \{a_1, a_2\}$

$$P(s, a_1, s') = {\binom{p_{11}(a_1), p_{12}(a_1)}{p_{21}(a_1), p_{22}(a_1)}} = {\binom{3/4, 1/4}{3/4, 1/4}}$$

$$P(s, a_2, s') = \begin{pmatrix} p_{11}(a_2), p_{12}(a_2) \\ p_{21}(a_2), p_{22}(a_2) \end{pmatrix} = \begin{pmatrix} 1/4, 3/4 \\ 1/4, 3/4 \end{pmatrix}$$

Transition costs $g(s, a)$					
States / Actions	s=1	s=2			
a=a ₁	2	1			
a=a ₂	0.5	3			

E.g. $g(2, a_1) = 1$

Discount factor $\gamma = 0.9$

Baseline policy $\mu^{0}(1) = a_{1}, \ \mu^{0}(2) = a_{2}$

21

Homework

Find the **minimizing** optimal policy and cost for the problem. Report the optimal actions $\mu^*(s)$ and values $V^*(s)$ in each state.

DL: 13.11. 9:00, einari.tuukkanen@aalto.fi

22