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Ambulance relocation and
dispatching problem
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Objective
Minimize response time

Relocation
Where the ambulance should wait
after service?

Dispatching
Which ambulance to dispatch?
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Contribution of the paper
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1. Construct stochastic dynamic
model and solve with ADP

2. Take time-dependant
information and variations into
account

3. Improve dispatching and
relocation strategies compared
to the current ones
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Problem breakdown
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(at hospital)
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ℎ
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ℎ
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Problem breakdown

5

Arrival of request

𝑡𝑟

Assign vehicle

𝑎𝑟

Start of service
(at patient)

𝑠𝑟
𝑝

End of service
(at patient)

𝑒𝑟
𝑝

Start of service
(at hospital)

𝑠𝑟
ℎ

End of service
(at hospital)

𝑑𝑡𝑟
Dispatching time

𝑡𝑡𝑟
𝑝

Travel time
(to patient)

𝑠𝑡𝑟
𝑝

Service time
(at patient)

𝑡𝑡𝑟
ℎ

Travel time
(to hospital)

𝑠𝑡𝑟
𝑝

Service time
(at hospital)

𝑒𝑟
ℎ (𝑎𝑟′)

𝑎𝑟′

Assign vehicle
Start of service

(at patient)

𝑠𝑟′
𝑝

𝑡𝑡𝑟′
𝑝

Travel time
(to patient)

Arrival
(at waiting location)

𝑡𝑡𝑟
𝑤

Travel time
(to waiting location)

𝑒𝑟
ℎ

End of service
(at hospital)

𝑡𝑤



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Objective function

Minimize response times
𝑟𝑟 =  𝑠𝑟

𝑝 −  𝑡𝑟

6

Arrival of request

𝑡𝑟

Assign vehicle

𝑎𝑟

Start of service
(at patient)

𝑠𝑟
𝑝

𝑑𝑡𝑟
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Decisions are made at two events

When request is received
• Dispatcher decides which vehicle to

send to a patient
• Served by first-come-first-served rule

(queue allowed)
• All requests have equal priorities
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When vehicle becomes idle
• After service, one must decide

where the vehicle should be
sent
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System variables
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• Emergency requests
• Random
• Short notice
 Distribution from real data

• Service times 𝑠𝑡𝑟
𝑝 and 𝑠𝑡𝑟

ℎ

• Random
 Distribution from real data

• Travel times 𝑡𝑡𝑟
𝑝, 𝑡𝑡𝑟

ℎ and 𝑡𝑡𝑟
𝑤

• Time dependant

• Hospitals chosen according to
historical data
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Mathematical formulation

• State 𝑆𝑡
• Status and location of all ambulances
• Request queue

• Decision 𝑥𝑡

• Contribution 𝐶(𝑆𝑡 , 𝑥𝑡)
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Myopic approach
𝑉𝑡 𝑆𝑡 = min

𝑥𝑡
𝐶(𝑆𝑡, 𝑥𝑡)

Doesn’t take future into account
 not realistic
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Mathematical formulation

• State 𝑆𝑡
• Status and location of all

ambulances
• Request queue

• Decision 𝑥𝑡

• Contribution 𝐶(𝑆𝑡 , 𝑥𝑡)

• Solved by backward stepping
• Calculate 𝑉𝑡(𝑆𝑡) from 𝑉𝑡+1(𝑆𝑡+1)
• Requires evaluating 𝑉𝑡(𝑆𝑡) for all

𝑆𝑡 ∈ 𝑺
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Bellmann’s equation in expectation form
𝑉𝑡 𝑆𝑡 = min

𝑥𝑡
𝐶(𝑆𝑡 , 𝑥𝑡 + 𝐄{𝑉𝑡+1(𝑆𝑡+1 𝑆𝑡 , 𝑥𝑡 , 𝑊𝑡+1 )}),

where 𝑊𝑡+1 denotes the random information

Dynamic evolution
𝑆𝑡+1 = 𝑆𝑀(𝑆𝑡, 𝑥𝑡 , 𝑊𝑡+1)

Decisions
min
𝜋∈Π

𝐄[∑ 𝛾𝑡𝑇
𝑡=0 𝐶𝑡 𝑆𝑡, 𝑋𝜋 𝑆𝑡 ],

where decisions are made using a policy 𝑋𝜋 𝑆𝑡 , Π
denotes the family of all decision policies and 𝛾 is the
discount factor.

Computationally
difficult to solve
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Approximate dynamic programming (ADP)

• Capable of handling high-dimensional
state spaces

• Three curses of dimensionality
• State space with space vector 𝑆𝑡

• Outcome space for the random
variable 𝑊𝑡

• Decision vector 𝑥𝑡

• Using ADP we make decisions by
stepping forward

• Approximate value function
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Optimize the sample estimate

𝑣𝑡
𝑛 = min

𝑥𝑡
𝐶 𝑆𝑡

𝑛, 𝑥𝑡 + 𝛾𝑉𝑡
𝑛−1 𝑆𝑡

𝑀,𝑥 𝑆𝑡
𝑛, 𝑥𝑡

Update the estimate of value function around
the post-decision state variable

𝑉𝑡−1
𝑛 𝑆𝑡−1

𝑥,𝑛 = 1 − 𝛼𝑛−1 𝑉𝑡−1
𝑛−1 𝑆𝑡−1

𝑥,𝑛 + 𝛼𝑛−1𝑣𝑡
𝑛

Utilizes spatial and temporal aggregation, post-
decision state and step size 𝛼.

No need to calculate EV here!



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Test scenario: Vienna

Vienna, Austria
• 1.7 million inhabitants (20% of Austria’s

population)
• Area 414.6 km2

• Approximately twice the size of Helsinki

Regulations
• Must always dispatch the closest

ambulance
• Idle ambulances cannot be relocated
• Only idle vehicles can be dispatched

12



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Test scenario: Vienna
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• Data from a single service provider (WRK)
• Request data from 42 working days (11/2009)

• ~90 calls/day
• Average time between calls ~16 min

• 14 ambulances
• 16 waiting locations (max 2 vehicles per

location)
• Real-world road network (with traffic)
• Real-world hospital and patient location

distribution
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Training parameters
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At iteration 𝑛, with probability 𝑒−𝛿𝑛 use
the myopic way

𝑉𝑡 𝑆𝑡 = min
𝑥𝑡

𝐶(𝑆𝑡, 𝑥𝑡)

𝑣𝑡
𝑛 = min

𝑥𝑡
𝐶 𝑆𝑡

𝑛, 𝑥𝑡 + 𝛾𝑉𝑡
𝑛−1 𝑆𝑡

𝑀,𝑥 𝑆𝑡
𝑛, 𝑥𝑡

and with increasing probability 1 − 𝑒−𝛿𝑛

use the ADP method

𝑉𝑡−1
𝑛 𝑆𝑡−1

𝑥,𝑛 = 1 − 𝛼𝑛−1 𝑉𝑡−1
𝑛−1 𝑆𝑡−1

𝑥,𝑛 + 𝛼𝑛−1𝑣𝑡
𝑛

Smoothing parameter 𝛼
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Results
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Waiting location Average response time
𝛍(𝐫𝐫) (min)

Home 4.60

Closest 4.61

Random 5.12

ADP optimized 4.05

ADP optimized +
allow dispatching
any idle ambulance

4.01
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Conclusion

• Solved dynamic ambulance dispatching and relocation problem using ADP
• With extensive testing and real-world data, ADP provided a 12.89% better

solution compared to the current strategy
• It can be shown that always sending the closest vehicle is not globally optimal

• Multiple possibilities for alternative applications and extensions
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Homework

1. Besides ambulance dispatching & relocating, what other applications could the
model (or slightly altered version of it) be used for?

2. How could the model be extended, for example, so that it better models real-world
ambulance dispatching & relocating (or any alternative application of your
choosing)?

Briefly justify your answers.
Some ideas can be found from the section 6. Conclusion and outlook of the article.

DL: 9 am 11.12.2020 – return to einari.tuukkanen@aalto.fi
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