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Recap – DP Algorithm

The optimal cost 𝐽∗(𝑥0) for state 𝑥0 can be solved by starting with

𝐽𝑁 𝑥𝑁 = 𝑔𝑁 𝑥𝑁

and iterating backwards from 𝑁 − 1 to 0, using the DP algorithm:
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𝐽𝑘 𝑥𝑘 =  min
𝑢𝑘∈𝑈(𝑥𝑘)

𝔼𝑤𝑘 𝑔𝑘 𝑥𝑘 ,𝑢𝑘,𝑤𝑘 + 𝐽𝑘+1(𝑓𝑘 𝑥𝑘 ,𝑢𝑘,𝑤𝑘 ) , 𝑘 = 0, … ,𝑁 − 1



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Discounted Finite Horizon DP Algorithm
(1/2)
We introduce a discount factor 𝛼 𝜖(0,1) to account for the time value
of money
Suppose we accumulate costs of the first 𝑁 stages and add a
terminal cost 𝛼𝑁𝐽 𝑥𝑁 , where 𝐽:𝑋 → ℝ. The total expected cost is

𝔼𝑤𝑘,𝑘=0,1,… 𝛼𝑁𝐽 𝑥𝑁 + ෍𝛼𝑘𝑔(𝑥𝑘, 𝜇𝑘(𝑥𝑘),𝑤𝑘)
𝑁−1

𝑘=0
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discount factor 0 < 𝛼 < 1
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Discounted Finite Horizon DP Algorithm
(2/2)
The minimum cost can be calculated by starting with 𝐽𝑁 𝑥 = 𝛼𝑁𝐽 𝑥
and iterating backwards with the DP algorithm

𝐽𝑁−𝑘 𝑥 = min
𝑢 ∈𝑈 𝑥

𝔼{𝛼𝑁−𝑘𝑔 𝑥,𝑢,𝑘 + 𝐽𝑁−𝑘+1(𝐹 𝑥,𝑢,𝑤 )} (1)

Denoting 𝑉𝑘 = 𝐽𝑁−𝑘(𝑥)
𝛼𝑁−𝑘

, we can rewrite (1) as

𝑉𝑘+1 𝑥 = min
𝑢∈𝑈(𝑥)

𝔼{𝑔 𝑥,𝑢,𝑤 + 𝛼𝑉𝑘 𝑓 𝑥,𝑢,𝑤 }
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Infinite Horizon Problem (1/2)

Given a discrete time dynamic system

𝑥𝑘+1 = 𝑓 𝑥𝑘,𝑢𝑘 ,𝑤𝑘 , 𝑘 = 0,1, …
where 𝑥𝑘 ∈ 𝑋,𝑢𝑘 ∈ 𝑈 and 𝑤~𝑃(ȉ |𝑥𝑘 ,𝑢𝑘), we want to find a policy 𝜋 =
{𝜇0,𝜇1, … } for all 𝑥𝑘 ∈ 𝑋, 𝑘 = 0,1, … that minimizes the cost function
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𝐽𝜋 𝑥0 = lim
𝑁→∞

𝔼𝑤𝑘,𝑘=0,1,… ෍𝛼𝑘𝑔(𝑥𝑘 , 𝜇𝑘(𝑥𝑘),𝑤𝑘)
𝑁−1

𝑘=0
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Infinite Horizon Problem (2/2)

The optimal cost function is defined by

𝐽∗ 𝑥 = min
𝜋∈Π

𝐽𝜋 𝑥 , 𝑥 ∈ 𝑋

where Π is the set of admissible policies 𝜋.
- For most problems, the optimal policy is independent of the initial

state
- Very often such a policy is stationary

𝜋 = {𝜇,𝜇, … }
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Shorthand Notation

Applying DP mapping to 𝐽:𝑋 → ℝ, we obtain

𝑇𝐽 𝑥 = min
𝑢∈𝑈(𝑥)

𝔼𝑤 𝑔 𝑥,𝑢,𝑤 + 𝛼𝐽 𝑓 𝑥,𝑢,𝑤 , 𝑥 ∈ 𝑋

⇒ 𝑇𝐽 is the optimal cost function for the one-stage problem with cost
𝑔 and terminal cost α𝐽.

For any stationary policy 𝜇, we denote
𝑇𝜇𝐽 𝑥 = 𝔼 𝑔 𝑥,𝑢,𝑤 + 𝛼𝐽 𝑓 𝑥,𝑢,𝑤 , 𝑥 ∈ 𝑋
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Monotonicity

Monotonicity Lemma.
For any functions 𝐽:𝑋 → ℝ and 𝐽′:𝑋 → ℝ, such that

𝐽 𝑥 ≤ 𝐽′ 𝑥 , ∀𝑥 ∈ 𝑋

and any stationary policy 𝜇:𝑋 → 𝑈, it holds that

(𝑇𝑘𝐽) 𝑥 ≤ 𝑇𝑘𝐽′ 𝑥 and (𝑇𝜇𝑘𝐽) 𝑥 ≤ 𝑇𝜇𝑘𝐽′ 𝑥 ,     ∀𝑥 ∈ 𝑋, 𝑘 = 1,2, …
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Preview of Infitinite Horizon Results

We are aiming for the following type of results:
1. Convergence of DP algorithm

𝐽∗ 𝑥 = lim
𝑘→∞

𝑇𝑘𝐽 𝑥 , 𝑥 ∈ 𝑋

2. Bellman’s Equation
𝐽∗ 𝑥 = min

𝑢 ∈𝑈(𝑥)
𝐸 𝑔 𝑥,𝑢,𝑤 + 𝛼𝐽∗ 𝑓 𝑥,𝑢,𝑤 , 𝑥 ∈ 𝑋

𝐽∗ = 𝑇𝐽∗

3. Characterization of optimal stationary policies
If 𝜇(𝑥) attains the minimum in the right-hand side of Bellman’s
equation, the stationary policy 𝜇 is optimal.
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Discounted Problems – Bounded Cost
Per Stage
The cost per stage 𝑔 satisfies

𝑔 𝑥,𝑢,𝑤 ≤ 𝑀,   ∀ 𝑥,𝑢,𝑤 ∈ 𝑋 × 𝑈 × 𝑊,

where 𝑀 is scalar and 𝛼 ∈ ]0,1[.

Convergence of the DP Algorithm. For any bounded function 𝐽:𝑋 →
ℝ, we have

𝐽∗ 𝑥 = lim
𝑁→∞

(𝑇𝑁𝐽)(𝑥) , ∀𝑥 ∈ 𝑋

Insert presentation date
11



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Markov Chain Notation

Transition probabilities are given by

𝑝𝑖𝑗 𝑢 = 𝑃 𝑥𝑘+1 = 𝑗 𝑥𝑘 = 𝑖,𝑢𝑘 = 𝑢 , 𝑖, 𝑗 ∈ 𝑋,𝑢 ∈ 𝑈(𝑖)

The mapping 𝑇 in terms of the transition probabilities

𝑇𝐽 𝑖 = min
𝑢∈𝑈(𝑖)

෍𝑝𝑖𝑗(𝑢)(𝑔 𝑖,𝑢, 𝑗 + 𝛼𝐽 𝑗 )
𝑗∈𝑋

, 𝑖 ∈ 𝑋

Bellman’s equation takes the form

𝐽∗ 𝑖 = min
𝑢∈𝑈(𝑖)

෍𝑝𝑖𝑗(𝑢)(𝑔 𝑖,𝑢, 𝑗 + 𝛼𝐽∗ 𝑗 )
𝑗∈𝑋

, 𝑖 ∈ 𝑋
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Application: Machine Replacement

A machine can be in any of 𝑛 states (1 = perfect condition, …, 𝑛 = not
working). The transition probabilities 𝑝𝑖𝑗 are given. For operating in
state 𝑖, there is a cost g(𝑖). In each period, we can either
1) operate the machine one more period in its current state
2) replace the machine with a new machine (state 1 at cost 𝑅)
The machine is guaranteed to stay one period in state 1 when
repaired, after which it deteriorates to states 𝑗 with probabilities 𝑝1𝑗 .
We assume infinite horizon and discount factor 𝛼 ∈ ]0,1[.
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Scheduling and Multiarmed Bandit
Problem
Suppose we have 𝑛 projects, of which one can be worked at a time.
The state of all other projects remains fixed. If project 𝑙 is worked on
at time 𝑘, we receive an expected reward 𝛼𝑘𝑅𝑙(𝑥𝑘𝑙 ), where 𝛼 ∈ 0,1 .

The state 𝑥𝑘 is worked on at time 𝑘, its state evolves according to

𝑥𝑘+1𝑙 = 𝑓𝑙(𝑥𝑘𝑙 ,𝑤𝑘𝑙 )

Further, we assume that there is a possibility to retire permanently
from all projects at any time 𝑘, of which we receive a final reward
𝛼𝑘𝑀.
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Index Rule

For each project 𝑙, there is a function 𝑚𝑙(𝑥𝑙), such that the optimal
policy at time 𝑘 is to

• Retire, if 𝑀 > max{𝑚𝑙̅𝑥𝑙̅}

• Work on project 𝑙, if 𝑚𝑙 𝑥𝑘𝑙 = max
𝑙̅

𝑚𝑙̅𝑥𝑙̅ ≥ 𝑀.

The index rule is an optimal stationary policy.

Insert presentation date
15



MS-E2191 Graduate Seminar on Operations Research: “Decision-Making under Uncertainty”

Index Function

The function
𝑚𝑙 𝑥𝑙 = min 𝑀 𝐽𝑙 𝑥𝑙,𝑀 = 𝑀}

Is called the index function.
• Provides indifference threshold at each state
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Project-by-Project Retirement Policies

Retirement set:
𝑋𝑙 = 𝑥𝑙 𝑚𝑙 𝑥𝑙 < 𝑀

There exists an optimal project-by project retirement policy that
permanently retires projects in the same way as if they were the only
projects available.

• Retire project 𝑙, if 𝑥𝑙 ∈ 𝑋𝑙

• Work on some project, if 𝑥𝑗∉ 𝑋𝑗 for some 𝑗.
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Deteriorating and Improving Cases

Improving cases:
𝑚𝑙(𝑥𝑙) ≤ 𝑚𝑙(𝑓𝑙 𝑥𝑙 ,𝑤𝑙 )

 Retire at first period or select project with maximal index at first
period and continue working on that project.
Deteriorating cases:

𝑚𝑙(𝑥𝑙) ≥ 𝑚𝑙(𝑓𝑙 𝑥𝑙 ,𝑤𝑙 )

 Retire if 𝑀 > max
𝑙

𝑅𝑙(𝑥𝑙)
1−𝛼

, else work on project 𝑙 with maximal one-
step reward 𝑅𝑙(𝑥𝑙).
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Homework

Recall the proposition from slide 11:
Convergence of the DP Algorithm. For any bounded function 𝐽:𝑋 →
ℝ, we have

𝐽∗ 𝑥 = lim
𝑁→∞

(𝑇𝑁𝐽)(𝑥) , ∀𝑥 ∈ 𝑋

The main parts of the proof is given in the Word template. Your task
is to fill in the missing parts of the proof.
DL: 6.11.2020
Submission: jessica.norrback@aalto.fi
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