MS-E2191 HW 15 Model Solution

Jussi Leppinen

November 2020

Question 1

Explain what $\mathbf{q}_{1}^{1,3}(t+1)$ is. Calculate the $\mathbf{q}_{1}^{1,3}(t+1)$ when $\mathbf{q}(t)=(0.85,0.10,0.05,0,0)$.

Solution

The vector $\mathbf{q}_{1}^{1,3}(t+1)$ tells what the information of the state of the system is at time $t+1$ when we decided to use control action 1 and inspection strategy 3 at time t and the outcome of the inspection is 1 at $t+1$. This state information also depends on the previous information. Now $S=\{1,2,3,4,5\}$ and we can calculate the information vector based on $\mathbf{q}(t), \mathbf{P}(1)$ and $\mathbf{R}(3)$ as follows:

$$
\begin{aligned}
\boldsymbol{q}_{1}^{1,3}(t+1) & =\left(\frac{\sum_{l=1}^{5} q_{l}(t) p_{l 1}(1) r_{11}(3)}{\sum_{i=1}^{5}\left[\sum_{l=1}^{5} q_{l}(t) p_{l i}(1)\right] r_{i 1}(3)}, \ldots, \frac{\sum_{l=1}^{5} q_{l}(t) p_{l 5}(1) r_{51}(3)}{\sum_{i=1}^{5}\left[\sum_{l=1}^{5} q_{l}(t) p_{l i}(1)\right] r_{i 1}(3)}\right) \\
& =(0.2906,0.6942,0.0153,0,0)
\end{aligned}
$$

Example of calculations with Matlab is found in hw_15_solution_leppinen.m.

Question 2

Explain what $\boldsymbol{\alpha}_{1}^{3,2}$ is. Calculate the $\boldsymbol{\alpha}_{1}^{3,2}$ when $\beta=0.99$.

Solution

The vector $\boldsymbol{\alpha}_{1}^{3,2}$ is a vector including the costs related to the choosing control action 3 and inspection strategy 2 one time period before terminating the system. When we know the current information vector $\mathbf{q}(t)$ we can calculate the value of the decision with $\mathbf{q}(t) \boldsymbol{\alpha}_{1}^{3,2}$.

The calculation of $\boldsymbol{\alpha}_{1}^{3,2}$ is based on the value function. When looking at the presentation slide 9 and doing things like with decisions $k=1$ and $l=1$ we end up having

$$
\begin{aligned}
\boldsymbol{\alpha}_{1}^{3,2} & =\mathbf{C}_{3}+\beta \mathbf{P}(3) \mathbf{C}_{2}^{I} \\
& =(28.96,83.96,103.96,453.96,2503.96)^{T}
\end{aligned}
$$

The values of $\mathbf{C}_{3}, \mathbf{P}(3)$ and \mathbf{C}_{2}^{I} are found from presentation or from article. Example of calculations with Matlab is found in hw_15_solution_leppinen.m.

