MS-E2191 HW 15 Model Solution

Jussi Leppinen

November 2020

Question 1

Explain what $\mathbf{q}_1^{1,3}(t+1)$ is. Calculate the $\mathbf{q}_1^{1,3}(t+1)$ when $\mathbf{q}(t) = (0.85, 0.10, 0.05, 0, 0)$.

Solution

The vector $\mathbf{q}_1^{1,3}(t+1)$ tells what the information of the state of the system is at time t+1 when we decided to use control action 1 and inspection strategy 3 at time t and the outcome of the inspection is 1 at t+1. This state information also depends on the previous information. Now $S = \{1, 2, 3, 4, 5\}$ and we can calculate the information vector based on $\mathbf{q}(t)$, $\mathbf{P}(1)$ and $\mathbf{R}(3)$ as follows:

$$\boldsymbol{q}_{1}^{1,3}(t+1) = \left(\frac{\sum_{l=1}^{5} q_{l}(t)p_{l1}(1)r_{11}(3)}{\sum_{i=1}^{5} \left[\sum_{l=1}^{5} q_{l}(t)p_{li}(1)\right]r_{i1}(3)}, \dots, \frac{\sum_{l=1}^{5} q_{l}(t)p_{l5}(1)r_{51}(3)}{\sum_{i=1}^{5} \left[\sum_{l=1}^{5} q_{l}(t)p_{li}(1)\right]r_{i1}(3)}\right)$$
$$= (0.2906, 0.6942, 0.0153, 0, 0)$$

Example of calculations with Matlab is found in hw_15_solution_leppinen.m.

Question 2

Explain what $\alpha_1^{3,2}$ is. Calculate the $\alpha_1^{3,2}$ when $\beta = 0.99$.

Solution

The vector $\boldsymbol{\alpha}_1^{3,2}$ is a vector including the costs related to the choosing control action 3 and inspection strategy 2 one time period before terminating the system. When we know the current information vector $\mathbf{q}(t)$ we can calculate the value of the decision with $\mathbf{q}(t)\boldsymbol{\alpha}_1^{3,2}$. The calculation of $\boldsymbol{\alpha}_1^{3,2}$ is based on the value function. When looking at the

The calculation of $\alpha_1^{3,2}$ is based on the value function. When looking at the presentation slide 9 and doing things like with decisions k = 1 and l = 1 we end up having

$$\boldsymbol{\alpha}_1^{3,2} = \mathbf{C}_3 + \beta \mathbf{P}(3) \mathbf{C}_2^I$$

= (28.96, 83.96, 103.96, 453.96, 2503.96)^T

The values of \mathbf{C}_3 , $\mathbf{P}(3)$ and \mathbf{C}_2^I are found from presentation or from article. Example of calculations with Matlab is found in hw_15 -solution_leppinen.m.