
Benchmarking, Monitoring,
Validation and Experimenting for
Big Data and Machine Learning
Systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

mailto:Linh.truong@aalto.fi
http://rdsea.github.io/

Issues raised from the last discussion

▪ Elasticity and concrete tools we can use?

▪ Robustness, Reliability and Resilience are highly connected

▪ how can we model/capture their relations in a system?

▪ Runtime attributes are crucial

▪ how can we capture? are existing monitoring tools enough?

▪ Workflow and orchestration (another lecture)

▪ R3E as metrics:

▪ abilities/qualities, must be considered through the DevOps cycle

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

2

Learning objectives

▪ Able to analyze the role of measurement, monitoring and

observability in real-world cases for R3E

▪ Understand and develop methods with key steps and

important tools for benchmarking, monitoring, validation and

experimenting

▪ Able to apply these methods for big data/ML systems

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

3

The role of measurement, monitoring
and observability in real-world cases

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

4

Reactive systems
– an architectural
style for R3E?

Reactive systems

For R3E abilities, big data/ML

systems can be designed with

”reactive systems” principles:

▪ Responsive:

▪ capture and respond to quality
indicators, QoA

▪ Resilient:

▪ deal within failures

▪ Elastic:

▪ deal with different workload and
quality of analytics

▪ Message-driven:

▪ allow loosely coupling, isolation,
asynchronous

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

5

Source: https://www.reactivemanifesto.org/

Responsive

Resilient

Message-
Driven

Elastic

Development vs Runtime activities

Design, test and benchmark

R3E

• R3E for individual

components

• model/capture complex

dependencies

• design logs, metrics and

traces for capturing states

and complex dependencies

Monitoring/Observability and

Runtime adaptation

• runtime monitoring and

observability

• states, performance and

failure analytics

• runtime controls

(constraints, rules, actions)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

6

Measurement, Monitoring and
Observability for R3E
▪ Instrumentation and sampling

▪ instrumentation: insert probes into systems so that you can
measure system behaviors directly or produce logs

▪ sampling: use components to sample system behaviors

▪ Monitoring

▪ perform sampling or measurements; store and share
measurements, metrics, and logs; show what happening

▪ Observability

▪ evaluate and interpret measurements for specific contexts

▪ understand and explain the systems states, dependencies, etc.

CS-E4660 Advanced Topics in Software Systems, Fall 2020

7

9/16/2020

Why is it challenging to do
monitoring/observability for
today‘s big data/ML systems?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

8

Apache Nifi
Big data storage (Hadoop

FS/Google Storage)

analytics

Monitoring

data

Apache Spark
Enrichment

Service

Kibana

Visualization

analyticsanalytics/ML

ElasticSearch

result
result

result
result

resultdata

notification
analytics

results

Web

services

Client

RabbitMQ

BatchAnalytics

Manager

Analytics Web

Service

Planner

Discussion: Monitoring/Observability
and R3E

CS-E4660 Advanced Topics in Software Systems, Fall 2020

9

Source: Linh Truong, „I & A Big Data Platform“, Industrial Work, Not published, 2018

9/16/2020

Discussion: Monitoring/Observability
and R3E

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

10

Source: Minjung Ryu, „Machine Learning-based Classification System for Building Information Models “, Aalto CS Master thesis, 2020

Methods

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

11

What/Which, Where, When, Who and
How
Understand W4H aspects for analytics of big data/ML systems

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

12

Key steps – What/Which

▪ Understand and identify indicators/metrics characterizing big

data/ML systems

▪ Common metrics but you might have some specific ones or

have different relevance for your metrics

▪ Most critical problems are due to complex dependencies that

are not common

▪ For which purposes?

▪ SRE, benchmarking, Test-Driven Development (TDD)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

13

Key steps – Where and When

▪ Where: as a “ space” dimension

▪ Tightly coupled or isolated/loosely coupled

▪ Identify where

▪ software/system layers, components and systems boundaries

▪ dependencies among components

▪ When: as a „time“ dimension

▪ Design, Test/Training, Runtime (DevOps)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

14

Key steps - How

▪ Characterize dependencies among components

▪ Select tools for capturing metrics

▪ Understand what kind of changes/designs we must do

▪ Do monitor and analysis

▪ Integrate many types of data for analytics

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

15

Apply W4H for dealing with
benchmarking, monitoring, validation and
experimenting
▪ Determines clearly system boundaries

▪ the system under study, the system used to judge, and the
environment

▪ Understands dependencies

▪ among components in distributed big data/ML systems in
distributed computing platforms

▪ single layer as well as cross-layered dependencies

▪ Determines types of metrics and failures and break down

problems along the dependency path (how)

CS-E4660 Advanced Topics in Software Systems, Fall 2020

16

9/16/2020

Apache Nifi
Big data storage (Hadoop

FS/Google Storage)

analytics

Monitoring

data

Apache Spark
Enrichment

Service

Kibana

Visualization

analyticsanalytics/ML

ElasticSearch

result
result

result
result

resultdata

notification
analytics

results

Web

services

Client

RabbitMQ

BatchAnalytics

Manager

Analytics Web

Service

Planner

Boundaries and dependencies?

CS-E4660 Advanced Topics in Software Systems, Fall 2020

17

Source: Linh Truong, „I & A Big Data Platform“, Industrial Work, Not published, 2018

9/16/2020

What are the most critical metrics for
your cases?

CS-E4660 Advanced Topics in Software Systems, Fall 2020

18

Quality

Time
Behaviors

Response
time

Latency Throughput

Utilization Efficiency
Quality
of data

Accuracy Completeness

Industry view: https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/

NIST: https://www.nist.gov/sites/default/files/documents/itl/cloud/RATAX-

CloudServiceMetricsDescription-DRAFT-20141111.pdf

9/16/2020

Contradiction/Tradeoffs between Efficiency versus Resiliency

https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/

Common
performance metrics
▪ Timing behaviors

▪ Communication

▪ Latency/Transfer time

▪ Data transfer rate, bandwidth

▪ Processing

▪ Response time

▪ Throughput

▪ Utilization

▪ Network utilization

▪ CPU utilization

▪ Service utilization

▪ Efficiency/Scalability

▪ Concurrent Executions

CS-E4660 Advanced Topics in Software Systems, Fall 2020

19

Client ML Model Serving

request

request

latency

Processing

time

End-to-end

response time

Sending

time

Receiving

time

Examples

9/16/2020

BUT ARE THEY ENOUGH?

Types of Failure

CS-E4660 Advanced Topics in Software Systems, Fall 2020

20

Type of
failures

Crash
failures

Omission
failures

Timing
failures

Response
failures

Arbitrary/
Byzantine

failures

9/16/2020

But unforeseen failures cannot be determined in advance →

design for handling failure

Data Quality

▪ Completeness

▪ Timeliness

▪ Currency

▪ Validity

▪ Format

▪ Accuracy

▪ Data Drift

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

21

Metrics for ML models

▪ Concept drift

▪ (https://en.wikipedia.org/wiki/Concept_drift)

▪ Confusion matrix

▪ Accuracy

▪ Loss

▪ True positive rate

▪ False positive rate

▪ F1 Score/F-measure

▪ Etc.
(see https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

22

Who can (and how to)
establish relations among
them?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

23

Benchmarking

▪ Benchmark: for comparing big data/ML systems w.r.t.

selected (standard/common) workloads

▪ Where to be benchmarked

▪ benchmark individual subsystems: message brokers and data
ingestion, databases and ingestion/query, data processing, serving
platform

▪ What to be benchmarked

▪ data ingestion throughput, processing throughput and time,
component CPU and memory

▪ training and inferencing time and accuracy

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

24

Benchmarking

What we should do for a big data system?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

25

Check:

https://www.sciencedirect.com/science/article/pii/S0140366419312344

https://www.benchcouncil.org/BigDataBench/

https://www.sciencedirect.com/science/article/pii/S0140366419312344
https://www.sciencedirect.com/science/article/pii/S0140366419312344

Benchmarking

If you have an end-to-end ML system, does it make sense to

benchmark the whole system? What should we do?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

26

Benchmarking - ML

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

27

Source: https://mlperf.org/training-overview

Also check: https://www.benchcouncil.org/AIBench/index.html

Examples:

Service/Infrastructure Monitoring Tools

There are many powerful

tools!

But only low-level, well-

identified monitoring

information (infrastructures):

pre-defined metrics exposed

through interfaces with

push/pull mechanism

CS-E4660 Advanced Topics in Software Systems, Fall 2020

28

From: https://prometheus.io/

9/16/2020

Instrumentation for Observability

Code instrumentation and

logs: for many metrics that

cannot be monitored from

the outside of the

component

→

the developer can

instrument the code to

capture metrics

CS-E4660 Advanced Topics in Software Systems, Fall 2020

29

From: https://www.fluentd.org/

9/16/2020

Visualization

Metrics and

Visualization

▪ Easy to visualize

many types of

metrics

▪ But only you can

specify, define and

map to your

applications

CS-E4660 Advanced Topics in Software Systems, Fall 2020

30

From: https://www.elastic.co/

https://grafana.com/

https://www.elastic.co/products/kibana

9/16/2020

What is your approach to capture
“application/system complex
dependencies and states”

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

31

Data & Model Validation/Analysis

▪ Not just performance but also „inclusion and

fairness“

▪ By humans or by software?
▪ Which one can be done by humans and by software?

▪ Data validation tools are very diverse,

depending on the frameworks and data
▪ E.g., Tensors Flows: https://www.tensorflow.org/tfx/guide/tfdv

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

32

Data & Model Validation/Analysis
▪ Model Analysis:

▪ E.g., https://www.tensorflow.org/tfx/model_analysis/

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

33

Figure source: Shixia Liu, Xiting Wang, Mengchen Liu, Jun

Zhu,

Towards better analysis of machine learning models: A

visual analytics perspective,

Visual Informatics, Volume 1, Issue 1, 2017,

https://doi.org/10.1016/j.visinf.2017.01.006.

Can we validate data on-the-fly? For which
use cases?

CS-E4660 Advanced Topics in Software Systems, Fall 2020

34

Data sources

(sensors, files,

database, queues, log

services)

Messaging/Ingest systems

(e.g., Kafka, AMQP, MQTT,

Pulsar)

Dynamic ML Prediction

systems

(e.g.Spark, PredictIO)

Stream processing

systems

(e.g. Flink, Kafka,

Google Dataflow)

Operation/Managem

ent/Business

Services

9/16/2020

Currently, HILSA is under the development in our team for this purpose

Observability

▪ To monitor and understand the system as whole, end-to-end

▪ Every component must be monitored

▪ Dependencies/interactions must be captured

▪ Metrics, logs, tracing, etc are needed to be integrated

▪ Understand the states and behaviors of the whole systems

▪ Complex problems in big data/ML systems as these systems

▪ large-scale number of microservices in large-scale virtualized
infrastructures

▪ multi-dimensional states (code, models and data)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

35

Do we understand the structure of big
data/ML application

▪ Composable method

▪ divide a complex structure into basic

common structures

▪ each basic structure has different

ways to analyze specific

failures/metrics

▪ Interpretation based on

context/view

▪ client view or service provider view?

▪ conformity versus specific

requirement assessment

CS-E4660 Advanced Topics in Software Systems, Fall 2020

36

Dependency Structure

Client: Service is

failed
Provider: OK

Failure

Slow

9/16/2020

Support an end-to-end view or not

▪ End-to-end reflects the entire system

▪ e.g., data reliability: from sensors to the final analytics/inference
results

▪ what if the developer/provider cannot support end-to-end?

▪ The user expects end-to-end R3E

▪ e.g., specified in the expected accuracy

▪ Providers/operators want to guarantee end-to-end quality

▪ need to monitor different parts, each has subsystems/components

▪ coordination-aware assurance, e.g., using elasticity

CS-E4660 Advanced Topics in Software Systems, Fall 2020

37

9/16/2020

Techniques for addressing problems in
different system/software layers
▪ Immutable infrastructures: containers and orchestration

▪ shared nothing for isolation, redundancy elasticity, auto-recovery

▪ Services:

▪ redundancy, data/function sharding, microservices for isolation,
elasticity/autoscaling-based, stateless

▪ Tasks:

▪ fault-tolerance, retries, delegation

▪ Interactions/Requests

▪ service-based, well-defined protocols for isolation, asynchrononous
modes for isolation, elasticity, handling cascading failures

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

38

Example:
The goal is to avoid (cascading) failures in
serving requests which is a common problem

Resilience techniques have to be applied in
many places (due to many types of request)

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

39

Example: resilience implementation
strategies for request handling
▪ Component/service replication

▪ multiple instances, both data and function sharding

▪ Component/service Isolation

▪ asynchronous communications among services, microservices
(virtualization/containers), share nothing infrastructural design,
failure isolation, well-defined protocols

▪ Component/service function delegation

▪ hand over the tasks to other components through task
distribution/orchestration via workflows, queues and serverless

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

40

Example: resilience implementation
strategies for request handling
▪ Throttling Pattern

▪ Circuit breaker pattern

▪ Queue-based Load Levelling Pattern

▪ https://docs.microsoft.com/en-
us/azure/architecture/patterns/queue-based-load-leveling

▪ Retry Pattern: exponential backoff

▪ https://cloud.google.com/iot/docs/how-tos/exponential-backoff

▪ Many implementation guides and tools, e.g.

▪ https://github.com/resilience4j/resilience4j

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

41

https://cloud.google.com/iot/docs/how-tos/exponential-backoff

Circuit breaker pattern

▪ What if service operations fail due to unexpected problems or
cascade failures (e.g. busy → timeout)

▪ Let the client retry and serve their requests may not be good

→ Circuit breaker pattern prevents clients to retry an operation that

would likely fail anyway and to detect when the operation failure is

resolved.

Client Service100000 requests/s

Circuit breaker patterm

Source: http://martinfowler.com/bliki/CircuitBreaker.html

Source: https://msdn.microsoft.com/en-us/library/dn589784.aspx

Experiment management: how do we
manage important information for ML
model?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

44

Problems

▪ We need to run many experiments

▪ testability/observability purposes: figure out suitable
configurations

▪ how does this help to understand and support R3E?

▪ Experiment management

▪ known domain and well-known books (e.g., “Design and Analysis of
Experiments” by Douglas C. Montgomery)

▪ principles: capturing various configurations

▪ how does it work in big data and ML?

▪ What do we need?

▪ tools/frameworks for tracking experiments

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

45

Notions

▪ A single run/trial

▪ inputs, results, required software artefacts

▪ computing resources, logs/metrics

▪ Experiment

▪ a collection of runs/trials/executions gathered in a specific context

▪ Steps

▪ parameterization: generate different parameters

▪ deployment: prepare suitable environments

▪ execution: run and collect metrics

▪ analysis and sharing: analyze experiment data

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

46

Pipeline1:

doDataCollection:

…

start(concern1)

getData(…)

stop(concern1)

…

…
Pipeline2:

doFeatureExtraction:

…

start(concern2)

extractFeature()

stop(concern2)

…

Pipeline3:

doClassification:

…

#do something;

…

Experiment tracking

CS-E4660 Advanced Topics in Software Systems, Fall 2020

47

Points of

instrumentation

Probe: instrumented

code for logs, metrics,

etc

Monitoring

Platform

Experiment Data

(Database, Server,

Files)

9/16/2020

But remember it is very large system! Which tools can we use?

Examples

▪ Experiment in Azure ML SDK

▪ https://docs.microsoft.com/en-
us/python/api/overview/azure/ml/?view=azure-ml-
py#experiment

▪ MLFlows

▪ https://mlflow.org/

▪ Kubeflows

▪ https://www.kubeflow.org/docs/pipelines/overview/concepts/

▪ DVC

▪ https://dvc.org/

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

48

https://www.kubeflow.org/docs/pipelines/overview/concepts/

Examples: MLFlow APIs

▪ Experiment

mflow.start_run()/end_run()

▪ Logs/metrics collection

mflow.set_tag()

mflow.log_*()

▪ Tracking data management

▪ Local files, Databases, HTTP server, Databrick logs

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

49

(follow our hands-on tutorial)

Applying W4H methods for identifying
incidents in big data systems: an
example

CS-E4660 Advanced Topics in Software Systems, Fall 2020

50

9/16/2020

Incidents in cloud-based big data
system
If you monitor alarms in a station and see this

CS-E4660 Advanced Topics in Software Systems, Fall 2020

51

What could be happened?

9/16/2020

How to deal with 200K stations?

Steps: Incident monitoring and
analytics
▪ Classification of incidents:

▪ to quantify incidents and identify possible data sources,
monitoring techniques and analytics.

▪ Measurement/Instrumentation:

▪ to provide mechanisms for measurement and data collection for
incidents.

▪ Incident analytics/observability:

▪ to find out the root cause and dependencies of incidents.

CS-E4660 Advanced Topics in Software Systems, Fall 2020

52

9/16/2020

Analysis/

Transformation

Task

IoT Sensor

Data

Storage

Resulting

analytics

Message

Broker/Data

Logistics

Service

….

Large number

of data

sources (e.g.,

IoT devices)

Large-scale

brokers & data

transfer/logistics

services

Complex big data

processing

frameworks

Other

systems in

the pipeline

IoT

Gateway

Analysis/

Transformation

Task

What, when, where and how for
incidents
Too complex with many types of software. Can we have a

simplified taxonomy for mapping incidents?

CS-E4660 Advanced Topics in Software Systems, Fall 2020

53

9/16/2020

Examples: classification of incidents

CS-E4660 Advanced Topics in Software Systems, Fall 2020

54

Hong-Linh Truong, Manfred Halper, Characterizing Incidents in Cloud-based IoT Data Analytics,, The 42nd IEEE International

Conference on Computers, Software & Applications Tokyo, Japan, July 23-27, 2018.

9/16/2020

Points of instrumentation for gathering
data for incident analytics
Capture monitoring data to analyze and solve incidents, especially

incidents related to data quality, across subsystems in ensembles

to achieve quality of results

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

55

Integration monitoring and
instrumentation for observability

CS-E4660 Advanced Topics in Software Systems, Fall 2020

56

What should we do in the next step: reasoning of incidents?

9/16/2020

First outcome: https://github.com/rdsea/bigdataincidentanalytics

What about applying this approach for an
end-to-end ML system?

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

57

Study log 2

Describe one big data/ML pipeline that you are familiar with and

explain your thoughts on how would you support

“benchmarking”, “monitoring”, “observability”, “validation”,

“experimenting” or “design pattern” for testing/implementing

R3E aspects

▪ Is enough to focus on 1 pipeline and 1 aspect

▪ Be concrete, e.g., with metrics and possible tools

▪ Analyze if things can be done easily or where are the challenges

that might be interesting for further investigation

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

58

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

