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Issues raised from the last discussion

▪ Elasticity and concrete tools we can use?

▪ Robustness, Reliability and Resilience are highly connected

▪ how can we model/capture their relations in a system?

▪ Runtime attributes are crucial

▪ how can we capture? are existing monitoring tools enough?

▪ Workflow and orchestration (another lecture)

▪ R3E as metrics:  

▪ abilities/qualities, must be considered through the DevOps cycle 
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Learning objectives

▪ Able to analyze  the role of measurement, monitoring and 

observability in real-world cases for R3E

▪ Understand and develop methods with key steps and 

important tools for benchmarking, monitoring, validation and 

experimenting

▪ Able to apply these methods for big data/ML systems
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The role of measurement, monitoring 
and observability in real-world cases
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Reactive systems 
– an architectural 
style for R3E? 

Reactive systems

For R3E abilities, big data/ML 

systems can be designed with 

”reactive systems” principles:

▪ Responsive: 

▪ capture and respond to quality 
indicators, QoA

▪ Resilient: 

▪ deal within failures

▪ Elastic: 

▪ deal with different workload and 
quality of analytics

▪ Message-driven: 

▪ allow loosely coupling, isolation, 
asynchronous
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Development vs Runtime activities

Design, test and benchmark 

R3E

• R3E for individual 

components

• model/capture complex 

dependencies

• design logs, metrics and 

traces for capturing states 

and complex dependencies

Monitoring/Observability and 

Runtime adaptation

• runtime monitoring and 

observability 

• states, performance and 

failure analytics

• runtime controls 

(constraints, rules, actions) 
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Measurement, Monitoring and 
Observability for R3E
▪ Instrumentation and sampling

▪ instrumentation: insert probes into systems so that you can 
measure system behaviors directly or produce logs

▪ sampling: use components to sample system behaviors

▪ Monitoring

▪ perform sampling or measurements; store and share 
measurements, metrics, and logs; show what happening

▪ Observability

▪ evaluate and interpret measurements for specific contexts

▪ understand  and explain the systems states, dependencies, etc.
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Why is it challenging to do 
monitoring/observability for 
today‘s big data/ML systems?
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Discussion: Monitoring/Observability 
and R3E
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Source: Linh Truong, „I & A Big Data Platform“, Industrial Work, Not published, 2018
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Discussion: Monitoring/Observability 
and R3E
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Source: Minjung Ryu, „Machine Learning-based Classification System for Building Information Models “, Aalto CS Master thesis, 2020



Methods
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What/Which, Where, When, Who and 
How
Understand W4H aspects for analytics of big data/ML systems
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Key steps – What/Which

▪ Understand and identify indicators/metrics characterizing big 

data/ML systems

▪ Common metrics but you might have some specific ones or 

have different relevance for your metrics 

▪ Most critical problems are due to complex dependencies that 

are not common

▪ For which purposes?

▪ SRE, benchmarking, Test-Driven Development (TDD)
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Key steps – Where and When

▪ Where:  as a “ space” dimension

▪ Tightly coupled or isolated/loosely coupled

▪ Identify where

▪ software/system layers, components and systems boundaries

▪ dependencies among components

▪ When: as a „time“ dimension

▪ Design, Test/Training, Runtime (DevOps)
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Key steps - How

▪ Characterize dependencies among components

▪ Select tools for capturing metrics

▪ Understand what kind of changes/designs we must do

▪ Do monitor and analysis

▪ Integrate many types of data for analytics

9/16/2020
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Apply W4H for dealing with 
benchmarking, monitoring, validation and 
experimenting
▪ Determines clearly system boundaries

▪ the system under study, the system used to judge, and the 
environment

▪ Understands dependencies

▪ among components in distributed big data/ML systems in 
distributed computing platforms

▪ single layer as well as cross-layered dependencies

▪ Determines types of metrics and failures and  break down 

problems along the dependency path (how)
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Boundaries and dependencies?
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Source: Linh Truong, „I & A Big Data Platform“, Industrial Work, Not published, 2018
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What are the most critical metrics for 
your cases?
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Quality

Time 
Behaviors

Response 
time

Latency Throughput

Utilization Efficiency
Quality 
of data

Accuracy Completeness

Industry view: https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/

NIST:  https://www.nist.gov/sites/default/files/documents/itl/cloud/RATAX-

CloudServiceMetricsDescription-DRAFT-20141111.pdf
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https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/


Common 
performance metrics
▪ Timing behaviors

▪ Communication

▪ Latency/Transfer time

▪ Data transfer rate, bandwidth

▪ Processing

▪ Response time

▪ Throughput

▪ Utilization

▪ Network utilization

▪ CPU utilization

▪ Service utilization

▪ Efficiency/Scalability

▪ Concurrent Executions
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Types of Failure
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Type of 
failures

Crash 
failures

Omission 
failures

Timing 
failures

Response 
failures

Arbitrary/ 
Byzantine 

failures
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Data Quality

▪ Completeness

▪ Timeliness

▪ Currency

▪ Validity

▪ Format

▪ Accuracy

▪ Data  Drift
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Metrics for ML models

▪ Concept drift 

▪ (https://en.wikipedia.org/wiki/Concept_drift)

▪ Confusion matrix

▪ Accuracy

▪ Loss

▪ True positive rate

▪ False positive rate

▪ F1 Score/F-measure

▪ Etc.
(see https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234)
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Who can (and how to) 
establish relations among 
them?
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Benchmarking

▪ Benchmark: for comparing big data/ML systems w.r.t.

selected (standard/common) workloads 

▪ Where to be benchmarked

▪ benchmark individual subsystems: message brokers and data 
ingestion, databases and ingestion/query, data processing, serving 
platform

▪ What to be benchmarked

▪ data ingestion throughput, processing throughput and time, 
component CPU and memory

▪ training and inferencing time and accuracy
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Benchmarking

What we should do for a big data system?
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https://www.sciencedirect.com/science/article/pii/S0140366419312344

https://www.benchcouncil.org/BigDataBench/

https://www.sciencedirect.com/science/article/pii/S0140366419312344
https://www.sciencedirect.com/science/article/pii/S0140366419312344


Benchmarking

If you have an end-to-end ML system, does it make sense to 

benchmark the whole system? What should we do?
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Benchmarking - ML
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Source: https://mlperf.org/training-overview

Also check: https://www.benchcouncil.org/AIBench/index.html

Examples: 



Service/Infrastructure Monitoring Tools 

There are many powerful 

tools!

But only low-level, well-

identified monitoring 

information (infrastructures): 

pre-defined metrics exposed 

through interfaces with 

push/pull mechanism
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Instrumentation for Observability

Code instrumentation and 

logs: for many metrics that 

cannot be monitored from 

the outside of the 

component

→

the developer can 

instrument the code to 

capture metrics
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Visualization

Metrics and 

Visualization

▪ Easy to visualize 

many types of 

metrics

▪ But only you can 

specify, define and 

map to your 

applications
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https://grafana.com/

https://www.elastic.co/products/kibana
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What is your approach to capture 
“application/system complex 
dependencies and states”
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Data & Model Validation/Analysis

▪ Not just performance but also „inclusion and 

fairness“

▪ By humans or by software?
▪ Which one can be done by humans and by software?

▪ Data validation tools are very diverse, 

depending on the frameworks and data
▪ E.g., Tensors Flows: https://www.tensorflow.org/tfx/guide/tfdv
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Data & Model Validation/Analysis
▪ Model Analysis:

▪ E.g.,  https://www.tensorflow.org/tfx/model_analysis/
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Figure source: Shixia Liu, Xiting Wang, Mengchen Liu, Jun 

Zhu,

Towards better analysis of machine learning models: A 

visual analytics perspective,

Visual Informatics, Volume 1, Issue 1, 2017,

https://doi.org/10.1016/j.visinf.2017.01.006.



Can we validate data on-the-fly? For which 
use cases?
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Data sources

(sensors, files, 

database, queues, log 

services)

Messaging/Ingest systems

(e.g., Kafka, AMQP, MQTT, 

Pulsar)

Dynamic ML Prediction

systems

(e.g.Spark, PredictIO)

Stream processing 

systems

(e.g. Flink, Kafka,  

Google Dataflow)

Operation/Managem

ent/Business 

Services
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Observability

▪ To monitor and understand the system as whole, end-to-end

▪ Every component must be monitored

▪ Dependencies/interactions must be captured

▪ Metrics, logs, tracing, etc are needed to be integrated 

▪ Understand the states and behaviors of the whole systems

▪ Complex problems in big data/ML systems as these systems

▪ large-scale number of microservices in large-scale virtualized 
infrastructures 

▪ multi-dimensional states (code, models and data)

9/16/2020
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Do we understand the structure of big 
data/ML application

▪ Composable method

▪ divide a complex structure into basic 

common structures 

▪ each basic structure has different 

ways to analyze specific 

failures/metrics 

▪ Interpretation based on 

context/view

▪ client view or service provider view?

▪ conformity versus specific 

requirement assessment
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Dependency Structure

Client: Service is  

failed
Provider: OK

Failure

Slow
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Support an end-to-end view or not

▪ End-to-end reflects the entire system

▪ e.g., data reliability: from sensors to the final analytics/inference
results

▪ what if the developer/provider cannot support end-to-end?

▪ The user expects end-to-end R3E

▪ e.g., specified in the expected accuracy

▪ Providers/operators want to guarantee end-to-end quality

▪ need to monitor different parts, each has subsystems/components

▪ coordination-aware assurance, e.g., using elasticity
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Techniques for addressing problems in 
different system/software layers
▪ Immutable infrastructures: containers and orchestration

▪ shared nothing for isolation, redundancy elasticity, auto-recovery

▪ Services: 

▪ redundancy, data/function sharding, microservices for isolation, 
elasticity/autoscaling-based, stateless

▪ Tasks: 

▪ fault-tolerance, retries, delegation

▪ Interactions/Requests

▪ service-based, well-defined protocols for isolation, asynchrononous
modes for isolation, elasticity,  handling cascading failures

9/16/2020
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Example: 
The goal is to avoid (cascading) failures in 
serving requests which is a common problem

Resilience techniques have to be applied in 
many places (due to many types of request)

9/16/2020
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Example: resilience implementation 
strategies for request handling
▪ Component/service replication

▪ multiple instances, both data and function sharding

▪ Component/service Isolation 

▪ asynchronous communications among services, microservices 
(virtualization/containers), share nothing infrastructural design, 
failure isolation, well-defined protocols

▪ Component/service function delegation

▪ hand over the tasks to other components through task 
distribution/orchestration via workflows, queues and serverless

9/16/2020
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Example: resilience implementation 
strategies for request handling
▪ Throttling Pattern

▪ Circuit breaker pattern

▪ Queue-based Load Levelling Pattern

▪ https://docs.microsoft.com/en-
us/azure/architecture/patterns/queue-based-load-leveling

▪ Retry Pattern: exponential backoff

▪ https://cloud.google.com/iot/docs/how-tos/exponential-backoff

▪ Many implementation guides and tools, e.g.

▪ https://github.com/resilience4j/resilience4j

9/16/2020
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Circuit breaker pattern

▪ What if service operations fail due to unexpected problems or 
cascade failures (e.g. busy → timeout)

▪ Let the client retry and serve their requests may not be good 

→ Circuit breaker pattern prevents clients to retry an operation that 

would likely fail anyway and to detect when the operation failure is 

resolved.

Client Service100000 requests/s



Circuit breaker patterm

Source: http://martinfowler.com/bliki/CircuitBreaker.html

Source: https://msdn.microsoft.com/en-us/library/dn589784.aspx



Experiment management: how do we 
manage important information for ML 
model?
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Problems

▪ We need to run many experiments

▪ testability/observability purposes: figure out suitable 
configurations

▪ how does this help to understand and support R3E?

▪ Experiment management

▪ known domain and well-known books (e.g., “Design and Analysis of 
Experiments” by Douglas C. Montgomery)

▪ principles: capturing various configurations

▪ how does it work in big data and ML?

▪ What do we need?

▪ tools/frameworks for tracking experiments

9/16/2020
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Notions

▪ A single run/trial

▪ inputs, results, required software artefacts

▪ computing resources, logs/metrics

▪ Experiment

▪ a collection of  runs/trials/executions gathered in a specific context

▪ Steps

▪ parameterization: generate different parameters

▪ deployment: prepare suitable environments

▪ execution:  run and collect  metrics

▪ analysis and sharing: analyze experiment data

9/16/2020
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Pipeline1:

doDataCollection:

…

start(concern1)

getData(…)

stop(concern1)

…

…
Pipeline2:

doFeatureExtraction:

…

start(concern2)

extractFeature()

stop(concern2)

…

Pipeline3:

doClassification:

…

#do something;

…

Experiment tracking
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Points of 

instrumentation

Probe: instrumented 

code for logs, metrics, 

etc 

Monitoring 

Platform

Experiment Data 

(Database, Server, 

Files)
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But remember it is very large system! Which tools can we use?



Examples

▪ Experiment in Azure ML SDK

▪ https://docs.microsoft.com/en-
us/python/api/overview/azure/ml/?view=azure-ml-
py#experiment

▪ MLFlows

▪ https://mlflow.org/

▪ Kubeflows

▪ https://www.kubeflow.org/docs/pipelines/overview/concepts/

▪ DVC

▪ https://dvc.org/

9/16/2020
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Examples: MLFlow APIs

▪ Experiment

mflow.start_run()/end_run()

▪ Logs/metrics collection

mflow.set_tag()

mflow.log_*()

▪ Tracking data management

▪ Local files, Databases, HTTP server, Databrick logs

9/16/2020
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Applying W4H methods for identifying 
incidents in big data systems: an 
example
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Incidents in cloud-based big data 
system
If you monitor alarms in a station and see this
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What could be happened?
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How to deal with 200K stations?



Steps: Incident monitoring and 
analytics
▪ Classification of incidents: 

▪ to quantify incidents and identify possible data sources, 
monitoring techniques and analytics. 

▪ Measurement/Instrumentation: 

▪ to provide mechanisms for measurement and data collection for 
incidents. 

▪ Incident analytics/observability: 

▪ to find out the root cause and dependencies of incidents. 
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Analysis/

Transformation 

Task

IoT Sensor 

Data 

Storage

Resulting 

analytics

Message 

Broker/Data 

Logistics 

Service

….

Large number 

of data 

sources (e.g., 

IoT devices)

Large-scale 

brokers & data 

transfer/logistics 

services

Complex big data 

processing 

frameworks

Other 

systems in 

the pipeline

IoT 

Gateway 

Analysis/

Transformation 

Task

What, when, where and how for 
incidents
Too complex with many types of software. Can we have a 

simplified taxonomy for mapping incidents?
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Examples: classification of incidents
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Hong-Linh Truong, Manfred Halper, Characterizing Incidents in Cloud-based IoT Data Analytics,, The 42nd IEEE International 

Conference on Computers, Software & Applications Tokyo, Japan, July 23-27, 2018.
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Points of instrumentation for gathering 
data for incident analytics 
Capture monitoring data to analyze and solve incidents, especially 

incidents related to data quality, across subsystems in ensembles 

to achieve quality of results 

9/16/2020

CS-E4660 Advanced Topics in Software Systems, Fall 2020

55



Integration monitoring and 
instrumentation for observability
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What should we do in the next step: reasoning of incidents?
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What about applying this approach for an 
end-to-end ML system?
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Study log 2

Describe one big data/ML pipeline that you are familiar with and 

explain your thoughts on how would you support 

“benchmarking”, “monitoring”, “observability”, “validation”, 

“experimenting” or “design pattern” for testing/implementing 

R3E aspects

▪ Is enough to focus on 1 pipeline and 1 aspect

▪ Be concrete, e.g., with metrics and possible tools

▪ Analyze if things can be done easily or where are the challenges 

that might be interesting for further investigation
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Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io


