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Learning objectives

» Understand and analyze the relationship between edge
computing and ML

= Explore and study basic concepts and issues when
engineering ML in edge systems

= |dentify and work on ML optimization problems across levels
of abstraction in edge systems
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» Edge computing paradigm focuses on distributed
computing at the edge and end devices

= many distributed low-end as well as a limited number of high-
end devices/machines for different purposes

= Leveraging common technologies like in the cloud
and specific ones

= e.g., virtualization, messaging systems, storage/database, Web
services

= But with different constraints
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= Computation/analytics can be done at the edge
» where data is generated, close to the data sources

= next to IoT devices and sensing equipment,
= many distributed (moving) locations, e.g., in the shopping center, in
the car
= Near real-time processing is needed in most

situations
= Very heterogeneity w.r.t system models, hardware
architectures, network connectivity, protocols
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Example: Predictive maintenance
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Example: Industrial Internet of Things
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Figures source: http://www.windpowerengineering.com/design/electrical/controls/wind-farm-
networks/talking-turbines-internet-things/
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Example: video analytics at the edge

Use Case 3: Video Analytics

I
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Figure 4: Example of video analytics

Figure source:
https://portal.etsi.org/portals/O/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

A!!

Aalto University CS-E4660 Advanced Topics in Software Systems, Fall 2020
School of Science 10/14/2020

8



Why do we have to support ML/data
analytics at the edge?

What kind of benefits?
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Machine learning/big data analytics In
the edge

= Many applications can benefit from ML/data analytics
capabilities
» Inferencing/classification in mobile devices

= Realtime ML-based steering (autonomous cars, speech
control, traffic controls)

= Realtime detection: fraud detection, anomaly detection,
accidents

» Manufacturing (Industrial Internet of Things)
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Machine learning/big data analytics In
the edge
» Closeto data sources - “data locality” benefits

» Security & privacy

= Performance

= Customization/Personalization

» Cost saving
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Science

Basic concepts/issues when engineering
ML In edge systems

Very new area! a lot of ongoing research and

development!
CS-E4660 Advanced Topics in Software Systems, Fall 2020
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What do we need to consider when
supporting ML In the edge?

= Network problems
= High latency, low-bandwidth, unreliable connectivity
Computation capabilities

= Constrained processing power, a lot of specific chips and
accelerators, and limited memory

= Storage is not enough for big data
= V*issues in data

= QOut of distribution data, unlabeled data, time series data, streaming
data

= Energy/power usage of devices/machines
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What do we need to consider when
supporting ML In the edge?
» Edge with hardware heterogeneity

= common hardware (e.g., AMD, Intel, ARM), SoC and
microcomputers, microcontrollers

= with/without common and AI-based accelerators like
FPGA, GPU, and TPU

- Requirements for certain types of ML might not be
fulfilled: computation-intensive ML (e.g., video analytics)
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Pervasive embedded edge devices

= Raspberry Pl4
= Google Coral
= Jetson Nano
= Xilinx |
= A huge number of MCUs
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Interaction models in edge ML systems

Application
Which components ML capabilities
do what and where }
h ~ ML and edge
are t ey : infrastructures & platforms

Edge hardware
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Interaction models

Standalone/in-device ML capabilities within independent devices
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Interaction models

Common client-server model without local processing
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Interaction models

Local pre-processing and offloading
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Interaction models
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Interaction models
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Software systems for ML In the edge

= What are key features for
ML runtime and
programming
frameworks?

= What are key features for
resource management for
running ML?
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Suitable ML and runtime for the edge:
key requirements

= Energy consumption
= Resource constraints
= Jess computation capabilities = precision and accuracy?

Latency and uncertainty

Interfaces with different networks capabilities

Support accelerators
= E.g., FPGA, Al Accelerators (e.g. Intel® Movidius Myriad X VPU)
Trade-offs between generic versus specific features
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Examples of ML frameworks and
Runtime for the edge

= TF-lite (https://lwww.tensorflow.org/lite)
= https://github.com/Microsoft/EdgeML
= uTensor: https://github.com/uTensor/uTensor

= Androi NN
(https://developer.android.com/ndk/guides/neuralnetworks)

= CoreML (https://developer.apple.com/machine-learning/core-ml/)
= PyTorch mobile (https://pytorch.org/mobile/home/)
= Snapdragon Neural Processing Engine SDK

= https://developer.qualcomm.com/docs/snpe/overview.html
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Changes in MLOps

= MLOps (ML DevOps)
= DevOps principles for ML

= In ML engineering processes: key artefacts are ML models, data
and runtime libs

= New areas, still a lot of ongoing research work
= Changes in ML with edge systems

= DevOps and DataOps activities in the edge

= Optimization and training activities

= Tests and benchmarks

* Monitoring
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Example of MLOps

https://cloud.qgoogle.com/solutions/machine-learning/mlops-
continuous-delivery-and-automation-pipelines-in-machine-
learning

Is it the same in the edge?

School of Science 10/14/2020
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What would be MLOps for ML In the
edge?
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MLOps Iin edge systems
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Train In clouds/on-premise but edge
deployment

* Training in cloud and/or on-premise, and inferences
In the edge

= Issues of optimization, loss in transferring/conversion
= Accuracy loss due to the conversion
= Training and inferences in the edge
= Difficult with tools
= Accuracy loss due to the training (limited)
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Training in cloud and inference in the
edge

https://blogs.qgartner.com/paul-debeasi/files/2019/01/Train-
versus-Inference.png

Can you guess some issues that we need to deal in this case?
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https://blogs.gartner.com/paul-debeasi/files/2019/01/Train-versus-Inference.png

Examples

https://developer.qualcomm.com/docs/snpe/overview.html

School of Science 10/14/2020

A,, Aalto University CS-E4660 Advanced Topics in Software Systems, Fall 2020
31



A”

Aalto University
School of Science

Some optimization problems

CS-E4660 Advanced Topics in Software Systems, Fall 2020
10/14/2020
32



Multiple levels of optimization

Scopel/level of abstraction

Edge ML Service

Cross edge machines

ML platforms/infrastructures

In-device/-machine ML
platform

Research issues

ML serving, ML elasticity

ML function partitioning,
orchestration, deployment,
observability ..

Device-machine specific
optimization

A!!
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School of Science

Our focus: to understand and
practice engineering analytics during
ML development



= Transfer learning
* Repurpose a model trained for a task for another task
= Basically it is an optimization of an existing model for a new task
* Need model selection, reuse and model retraining

= Transfer learning for the edge

= Conversion/Translation: transforming typical models in common
environments to edge models

= Symbiotic engineering: learning with simulations and inference with
real data

= Application domains adaptation: adapt models among application
domains

A,, Aalto University



Selected problems: model selection
and conversion

* Model management and selection
= Precision and time tradeoffs with

S Selection » Model
computational requirements :., -
= Work with microcontrollers and —

F

accelerators
= Transforming __
= A model can be supported by "'x (spegific)
different frameworks Framewo
= How will these issues affect | comrans |

Robustness and Reliability?
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Conversion
= just a simple form of “transforming”

A model fits into a single device/machine or into a set
of machines?

Single device/machine: no distributed computing
= focus on ML service and in-device optimization levels
A set of machines:

= which are distributed computing models for ML across
machines
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Selected problems: model optimization

= Pruning

» Prune graphs for training, remove features in ML models which are
not significant

= Quantization

= Reduce precision representation, storage, bandwidth
= Conditional computation/Regularization

= Activate certain units of the model

How will these issues affect Robustness, Reliability and
Elasticity?
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ONNX (Open Neural Network Exchange) format

= (Can be used as an intermediate representation compiled by tools to
specific targets

Nvidia TensorRT

= JetPack SDK

OpenVINO (https://docs.openvinotoolkit.org/latest/index.html)
Apache TVM (https://tvm.apache.org/)

= VTA (Versatile Tensor Accelerator)

A,, Aalto University



Example of
Quantificatio
n by
reducing
floating point

32 bit floating point
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Conversion: the case of distributed
models

= Goal:
= if you have a model, now how to split it into edge/cloud?
= Possible approaches
= partitioned model: split a model into different sub models

= distributed ML networks: distribute the model graph across
edge/cloud systems

= federated learning: distributed training parts
= chain of distributed ML models

= Not asimple task — need to combine many techniques
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A kind of “function partitioning” problems
* Training many partition/sub models, each for a partition data
= e.g., network operations in a city versus in country sides

= a partitioned model consists of multiple sub models
=  Work as a single model

= Slice input data into partitions, data in a suitable partition will
be mapped into partition models (e.g., data partition)

= We can have a partitioned model running in multiple edges
(each edge, e.g., host a partition model)
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Partitioned models

= How to manage sub models
for a partitioned model

How to slice data for
training and for inferences

How to encapsulate

complex runtime aspects to

enable “virtualized”
partitioned model serving

4 .. )
Partitioned Model
, Data |
\ : .
' Slicing data
. ) T )
Partition Partition Pat‘\‘tltlon Pak‘tltlon
Modev'l 1 Moéi'el 2 Model 3 | Mogel 4
data data data data
\_ \_ \_
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Distributed ML graph

Assume that you can partition a complex ML graph, what could be
possible issues?

device tem

[ Edge %_, Edge | ¢ump [ Cloud J

How to partition? What would be the exchanges among subsystems

,, Aalto University CS-E4660 Advanced Topics in Software Systems, Fall 2020
School of Science 10/14/2020
44



Selected problems: federated training
with edges

Machine learning is | L/J‘ o &
decentralized with a

distributed set of devices | || ||= : & %]
holding data and carrying out
(sub) training/inferencing

= What about Reliability and Resilience?

= Consensus in updates, secured aggregation protocols,
dynamicity and elasticity
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Selected problems: ML Serving

ML Serving (and R3E)

= Which types of -

ML model

dynamic service [~ - yd
models we could have? -

« How to distribute taskg™ === | i

A ML Runtime

In model serving? osConaner

= How to partition ML
tasks in both edge and
cloud?

Resource Management
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= No study log but read papers and do the hands-on tutorial

= You can pickup some points mentioned as the topic for your
Individual project
= Orincorporate some ideas into your individual project

= We expect ML with edge systems will increasingly been
developed for many advanced software systems!

= Good areas for master theses/research projects.
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Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io
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