

CS-E4640 Course Management

Hong-Linh Truong Department of Computer Science <u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Lectures, tutorials and meetups

- Lectures
 - Key concepts about principles, models, methods and technologies
- Tutorials
 - Practical, concrete tools and hands-on discussions
- Meetups
 - Not mandatory contents but useful tips/experiences
- Nr. of lectures + tutorials != Nr. of slots in the course agenda
 - Backup dates (e.g., in case of sickness) & on-demand face-to-face discussions

All dates in the agenda must be booked!

Remember the schedule:

https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/blob/master/schedule.md

Wed: 16:15-18:00 (lecture) Thu: 10:15-12:00 (hands-on/meetup)

We try to reduce the online lecture time and use remaining time in Wed/Thu for discussion

Communications

- Course discussion (no moderation!)
 - Microsoft Teams (pls. register, see the link in MyCourses)
 - Online forum discussion in MyCourses
- Find the ideas/answers from the Internet no problem
 - Everyone knows stack overflow
- Everyone should help sharing the knowledge w.r.t course topics.
- We try to react as soon as possible but don't expect realtime!

The Teaching Assistant team

Hsin Yi (Amanda) Chen

SECCLO 2nd master student hsin-yi.chen@aalto.fi, linkedin.com/in/amandachen86215/

Eljon Harlicaj SECCLO 2nd master student eljon.harlicaj@aalto.fi, linkedin.com/in/eljon-harlicaj/

Minh-Tri Nguyen

PhD student tri.m.nguyen@aalto.fi, https://research.aalto.fi/en/persons/tri-nguyen

Phuong Pham

Postdoc phuong.pham@aalto.fi, https://research.aalto.fi/en/persons/thanh-pham

Rohit Raj SECCLO 2nd master student rohit.raj@aalto.fi, linkedin.com/in/rohitraj94/

Reaching them via Teams! (avoid a lot of emails)

Personal discussion

Due to COVID – only online meeting:

- Using Microsoft Teams to chat and get meeting slots for oneto-one calls
- Discuss your problems with the professor in charge
- Try to have personal discussion with our Teaching Assistants as well!

Assignments

3 assignments

- Each divided into 3 parts (design, implementation, and extension)
- Within a part: an objective is evaluated in the 0-5 scale, then multiplied by a pre-defined weighted factor (based on the part)
- No final exam!
- Assignment evaluation
 - Real world development, reporting, and demonstration
 - No automatic grading: we will check your code and do reproducible test

Assessment for each assignment

Software artefacts

- e.g., code and configuration
- Data
- Written reports in Markdown (https://en.wikipedia.org/wiki/Markdown)
 - For explaining design, evaluation and installation
- Records of running results: logs/screenshots
- Each part might have a weighted factor of 2 or 3 (e.g., 5*3 = 15 points, with weighted factor=3)
- An assignment should be managed as a git project by yourself

Assignments

- Academic honesty
 - Follow the university rule, peer discussion is OK but <u>creating your</u> <u>own solution</u>
 - Check the consequence of academic violations here <u>https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/blob/master/violations.md</u>
- All deadlines are hard
- You might be requested to have a face-to-face to discuss your assignment results, e.g., when we are not sure
 - you understand your solution or how to reproduce the results of your solutions

Final grading mapping

Highest	Lowest	Letter
100.00 %	90.00 %	Excellent (5)
89.99 %	80.00 %	Very Good (4)
79.99 %	70.00 %	Good (3)
69.99 %	60.00 %	Satisfactory (2)
59.99 %	50.00 %	Pass (1)
49.99 %	0.00 %	Fail (0)

Flexibility versus limitation

- Can use Java, Scala, JavaScript/NodeJS, Python, Golang and shell scripts only
 - We are elastic but we cannot handle all possibilities
- Use the recommended dataset and technologies
 - But you can propose your own dataset
- Deadlines are hard (don't be surprised!)
 - We cannot be flexible in order to guarantee the grading on-time
 - Special exception handling is case-by-case (e.g., sickness, family issue)

Resources

Check hints from Mycourses

- E.g., Git assignment templates/examples and references
- Computing infrastructures and data
 - Google Cloud Platform: everyone gets 50USD credit
 - Many tests can be run in your own computers with virtualization technologies enabled
 - Try to use Cloud free services
 - CSC if you can get the resource: https://rahti.csc.fi/

"I don't take computer science major!"

- Not all of you need everything
 - Just want to learn analytics atop big data platforms?
 - E.g., too much "systems" in Big Data Platforms!
- → what would be the best strategy to learn this course?

Hong-Linh Truong Department of Computer Science

rdsea.github.io

