

Aalto University School of Scienc

School of Science Some industrial and open source big data platforms for your tech radar

Hong-Linh Truong Department of Computer Science <u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Hard decision in practice!

Building a big data platform

- Complex requirements
- Complex and diverse available technologies
- If you are not familiar with existing technologies, where should you start?
- If you know some technology stacks: are they suitable for your requirements?
- → Our learning objective is to build a "tech radar" for our "big data platforms" design and development

Hard decision in practice!

- Many cloud technologies and software stacks
- But you/your organization will need to decide
 - Case 1: use free open sources and build everything
 - Case 2: use free open sources and build platforms but not infrastructures
 - Case 3: use enterprise versions and build everything
 - Case 4: use enterprise versions ...
 - Case 5: ...

There are many constraints: functionality, budget, data regulation, <u>skills</u>, etc. (for study or for real product)!

In the course, you will have to exercise your decision for your assignments!

CS-E4640 Big Data Platforms, Spring 2021, Hong-Linh Truong 1/11/2021

The first goal is to be aware of potential solutions!

Let us walk around some stacks/ecosystems

CS-E4640 Big Data Platforms, Spring 2021, Hong-Linh Truong 1/11/2021

Google for Big Data Platforms

- As a solution catalog
 - <u>https://cloud.google.com/solutions/smart-analytics</u>
- As technologies based on data lifecycle
 - <u>https://cloud.google.com/solutions/data-lifecycle-cloud-platform</u>

Azure for big data platforms

- As service catalog for analytics
 - https://azure.microsoft.com/en-us/services/#analytics
- As solution catalog
 - https://azure.microsoft.com/en-us/solutions/big-data/

Amazon Web Services

Database services

- https://aws.amazon.com/products/databases/
- Analytics services
 - https://aws.amazon.com/big-data/datalakes-andanalytics/

Apache *

- https://hadoop.apache.org/
- https://spark.apache.org/
- <u>https://cassandra.apache.org/</u>
- https://avro.apache.org/
- <u>https://hbase.apache.org/</u>
- <u>http://tinkerpop.apache.org/</u>
- https://kafka.apache.org/
- https://pulsar.apache.org/
- https://airflow.apache.org/
- Etc.

Other stacks

- ELK Stack (ELK, ElasticSearch, Kibana, Logstash)
 - https://www.elastic.co/elastic-stack
- The TICK Stack (Telegraf, Infuxdb, Chronograf, Kapacitor)
 - https://www.influxdata.com/time-series-platform/

Many more software/services

MongoDB

- https://www.mongodb.com/
- Neo4J
 - https://neo4j.com/
- SAP HANA
 - https://www.sap.com/products/hana.html
- Etc.

Notes on services for big data platforms in existing cloud providers

- Different providers but similar functionality (and built from similar software)
- Coupling with underlying cloud infrastructures
- Coupling among services
- Price, privacy, security, programming support, etc.

→ We can select a subset of services/software for practicing design and concepts in the course

15 minutes breaking sessions for group and self activities:

let us explore/discuss the technologies you know

CS-E4640 Big Data Platforms, Spring 2021, Hong-Linh Truong 1/11/2021 13

Tech Radar

Are you happy with your tech radar?

2019 CS-E4640 student survey

The discrete state of the state of the state of the discrete state of the discrete state of the state of the discrete state of the d

5

Pis, indicate the following technologies/iranieworks that you have experienced with		
Response	Average	Total
Hadoop	25%	33
Apache Spark	34%	46
Apache Nifi	• 1%	2
Apache Kafka	2 %	3
Apache Flink	4 %	6
MQTT	— 14%	19
AMQP	4 %	5
ElasticSearch	21%	28
MongoDB	49%	65
Apache Cassandra	a 3%	4
Neo4J	— 4%	6
Kubernetes	25%	34
Docker	57%	77

Personal Techradar

Techradar

- https://www.thoughtworks.com/radar
- Core principles: identify and assess relevant frameworks, services and techniques for your work!

Guide and Example

- http://nealford.com/memeagora/2013/05/28/build_your_own_technolo gy_radar.html
- https://medium.com/@ckoster22/whats-on-your-tech-radar-9ad8769c8c1
- Focus the radar for this course:
 - only the Big Data Platforms context for your big data platform story

Final remark

- Can you build your tech radar and share/discuss it?
 - Select a suitable real-world dataset (for a domain) and imagine that you need to handle such data in your big data platform
 - Scan software and services for building your big data platform
 - Google Cloud Platform
 - Microsoft Azure Cloud
 - Amazon Web Services
 - Apache *, ELK stack, TICK stack, ...
 - Why do you think that the tools in your radar are suitable for you?

Hong-Linh Truong Department of Computer Science

rdsea.github.io

