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A Complex Adaptive Notch Filter

Phillip A. Regalia, Fellow, IEEE

Abstract—A complex adaptive notch filter is developed, for
tracking single-sided (a.k.a. analytic or complex) tones immersed
in background noise. A complex all-pass based realization is
pursued which inherits useful properties from its real counter-
part: independent tuning of the notch frequency and attenuation
bandwidth, easy realization of the complementary band-pass
filter, unbiased frequency estimation, and faster convergence and
tracking than a gradient descent algorithm.

Index Terms—Adaptive filters, chirp, frequency estimation.

I. INTRODUCTION

DAPTIVE notch filtering aims to estimate unknown fre-

quencies of periodic components buried in noise, and/or
retrieve such periodic components, finding thus wide applica-
tion in communication systems and in periodic noise suppres-
sion. Many designs have been advanced over the years [1]-[16],
exploiting constrained poles and zeros either through direct co-
efficient scaling (e.g., [1], [2], [4], [12], [13]) or through all-pass
decompositions (e.g., [3], [S]-[7], [9], [10], [15]); the latter fea-
ture independent tuning of the notch frequency and attenuation
bandwidth, and offer ease of realizing the complementary band-
pass filter to retrieve the periodic component.

While most the these designs focus on real coefficient fil-
ters, complex notch filters also find applications, as cogently
surveyed in [8], particularly in communication systems using
quadrature modulation. The intent of this note is to develop an
all-pass based complex notch filter—as contrasted to the coeffi-
cient scaling approach of [8]—for tracking single sided (or ana-
lytic) periodic components. The proposed design mimics an ear-
lier real-coefficient prototype [7] and thus inherits its attractive
features: independent tuning of the notch frequency and atten-
uation bandwidth, unbiased frequency estimation, and a wider
basin of attraction than a gradient-based algorithm.

Section II develops the complex notch filter, while Section III
develops the adaptation algorithm and its convergence proper-
ties. Simulation results confirming the design are presented in
Section IV, while comparisons with a gradient descent approach
are developed in Section V, to establish the superior basin of
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attraction of the proposed design. Concluding remarks are syn-
thesized in Section VI.

II. FILTER REALIZATION

Consider a first-order all-pass transfer function A(z):

zl—a
Alz) = 1—az 1’
where 0 < o < 1 is areal coefficient. The phase shift of A(e’“)
is zero at w = 0, reaching — radians at w = . If the output
of this filter is subtracted from its input, a zero (or notch) is ob-
tained at w = (). By applying a frequency translation, the notch
frequency at w = 0 can be moved to an arbitrary position. In
particular, consider the transformation z — ¢ 7?2 applied to
the all-pass function A(z), which generates a first-order com-
plex all-pass transfer function denoted C(z):

C(z) = A(2)|, 02
- edfr-1 _

1 — qelfz 1"

Two complementary transfer functions may then be defined
through

Ge) =41 - O]
H(z)=z[14+C(z)].

[Tl

These are readily shown (e.g., [17]) to satisfy the relations

G(e?) + H(e?*) =1

|G(7) 2 + |H(?)]? =1, for all w.

The transfer function G(z) now has a zero (or notch) at w = 4,
with a 3 dB bandwidth €2 between the frequencies w4 for which
C(e?¥+) = 43, leading to the formula

Q= g — 2tan (a).

A flow graph of the complex notch filter realization appears
in Fig. 1; the input sequence is designated u(n ), while the output
is e(n). The state-space description of the system is

z(n41) =™ ax(n) + 7M1 — a2u(n)
1—a? 1
\/Tam(n) + + au(n).

e(n) = —

The complementary band-pass filter is provided through H(z),
obtained by adding (rather than subtracting) the all-pass filter
output and input, and offering recovery of a complex tone.

1070-9908/$26.00 © 2010 IEEE
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Fig. 1.

Flow graph of complex notch filter.

III. ADAPTATION ALGORITHM

Suppose the input is a complex single-sided tone plus back-
ground noise:

w(n) = Ae? 0T L p(p),

Here A is a scale factor,! wy is the unknown frequency, ¢ is a
random phase uniformly distributed over [0, 27), and b(n) is a
white complex circular Gaussian noise process, of variance

N2+ E{(Im[b(n)])}-

Consider the following adaptation algorithm:

0% = Elb(n)* = E{(Re[b(n)

f(n+1) = 8(n) + pImle(n)x*(n))]. (D
Here 1+ > 0 is a small adaptation step size. For sufficiently slow
adaptation, the evolution of the adaptation algorithm is weakly
linked to an ordinary differential equation [18]-[20] of the form

de

= = FE{lm[e(n)z

T}
where, as notationally emphasized, the right-hand side expec-
tation is to be evaluated for a fixed #, with the expression so
obtained interpreted as a function of # which drives the differ-
ential df /dt.

Let G(z) and F'(2) be the transfer functions linking the input
u(n) to the notch output e(n) and the filtered regressor z(n),
respectively; these are given as

_1+a 1—ejez’1.

G y

(2) 2 1 —qeifz1
e,jgz’l

F(z) =v1—a?

1— qeifz—1"

The expectation E{e(n) x
inner product

*(n)} may then be expressed as the

Efe(n)z*(n)} = % /W Su(w)G(eiw)F*(eiw)dw

o =T

in which 8, (w) is the input power spectral density:
Su(w) = 21 A%6(w — wo) + o
This gives for the expectation

E{e(n)x

'We may take A real without loss of generality: If A were complex, its phase
angle could be absorbed into ¢, leaving behind a real-valued scale factor.

()} = AG(l0) P ()
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a? [ y -
—|—2— GV (7)) dw
in which
y (14 0)V1 —a? i@ _q
JWY R (pd@y —
G(e?)F™ (&) = 9 1 — qeilo—0)]2°

The imaginary part thus becomes

Im(E{e(n)z*(n)})
A% (14 a)V1—a?

= TWSiH(wO —9)
(1+a \/1—042 sin{w — 6) b @
11— aeilw-9)2

:0

in which the noise-induced term vanishes since it is the integral
over one period of a function odd about w = f. The associated
differential equation thus becomes

b A*(1+a)Vi1-a®
E 2 ‘1 — (1/(73(#-’0 9)‘2 blIl(a)U - 0) (3)

Convergence of § to wy in this differential equation is shown by
choosing as a Lypunov function

L(t) = [wo — ()%,
to obtain
dL(t) _ dLdf
di df di
A1+ a)VT—0a? |
_ |1 — cedlwo—0)]2 (wo — B)sin(wp — ) < 0
fOI‘ 9 ;ﬁ wo

assuming wg — # is restricted to the principal value range —7 <
wo — 0 < 7. This shows that L(#) is monotonically decreasing,
so that #(¢) — wy, as desired. If |wo — #| > =, then § converges
to wo+27k for an appropriate integer k; since # intervenes in the
filter computations only through the factor e7%(")| a modulo-27
ambiguity in # proves innocuous.

Obtaining step size bounds for the actual update algorithm (1)
is more delicate, since it is at best a stochastic approximation to
the differential equation (3). A rough though usable bound may
be obtained, however, if we examine a simplified approxima-
tion. In particular, consider the mean evolution of (1), setting
A(n) = E[f(n)] for notational simplicity:

A(n+1) =0(n) + pE{Im[e(n)z*(n)]}
- A2 (14 a)v1 — a? -
=0(n)+p—-——"—"———sin(wg — F). (4
() + 05 2 |1 — aeilwn=0)]2 (wo ) @
Here we have replaced a right-hand side expectation with the ex-
pression from (2), obtained under the assumption that ¢(n) and
x(n) had attained stationarity. This yields a crude approxima-
tion, since time variations in #(n) will induce nonstationarity in
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Fig. 2. Simulation using a frequency hop experiment.
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Fig. 3. Simulation using a quadratic chirp.

¢(n) and z(n). For sufficiently small « however, corresponding
to slow adaptation, such an approximation may be tolerable.

Now, for 6 sufficiently close to wg, we may use the further
approximation

w0—§
T (1 -a)?

sin(wy — 0)

1 i(wo—0)[2 for small |wg - 6]
— qellwo—

to simplify (4) to
_ A2 (1 3/2 _
wy — B(n+1) = (1 — p— ( + a) (wo — 8(n)).
2 \l-«a

This recursion will induce |wg — f(n+1)| < |wg — O(n)| pro-
vided the step-size ;¢ lies in the range

0<p< (i@ v
"=z 14+« '

When instead 8 is displaced from wq, we in fact have the strict
inequality

(&)

Wo —g
(1 — «)?

sin(wqo — 6)

|1 — ()58.7'(”0 *ﬁ) |2

s g#wo

so that the upper bound from (5) still ensures monotonic conver-
gence in mean, but becomes conservative. We note finally that
in practice, this upper bound should be scaled back due to the ac-
tual algorithm (1) having filtered background noise and nonsta-
tionary components that this simplified mean analysis neglects.
Further insights into the relevant advantages and drawbacks of
“slow adaptation” analysis techniques may be found in [21].
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IV. SIMULATION RESULTS

Fig. 2 shows the frequency estimates #(n) (reduced
modulo-27) obtained from a single run of the adaptive
complex notch filter using the proposed algorithm (1) in a
frequency hop experiment, using unit signal power (A = 1)
and a signal-to-noise ratio of 0 dB. The periodic component of
the input signal abruptly changes its frequency wq every 1000
iterations, giving a piecewise stationary signal. The bandwidth
parameter was fixed to &« = 0.7, using a step size of 1 = 0.02
[roughly one-third the upper bound from (5)]. The adaptive
filter is clearly able to distinguish positive from negative fre-
quencies, as required in analytic signal processing.

Fig. 3 shows the result of tracking a quadratically varying
frequency, in which u(n) = 7#(™) + b(n) using

p(n) = gan® + pgn’

with ¢p» = —0.004 and ¢3 = 1.2 x 107%. The signal to noise
ratio is again 0 dB, using a step size 1 = 0.008 and now a band-
width parameter @ = 0.9, to demonstrate the tracking abilities
of the proposed design. We remark that the input signal is non-
stationary in this case, which significantly complicates attempts
to bound the range of usable step size values. For this example,
nonetheless, respectable tracking performance is observed using
a step size value which here is about two-thirds the upper bound
from (5) that was obtained under stationarity assumptions.

V. COMPARISON WITH GRADIENT DESCENT

The proposed adaptation algorithm is not a gradient descent
procedure applied to the output power E|e(n)|?. Such an ap-
proach is pursued in [8], albeit using a different parametrization
which results in biased frequency estimates [8, eq. (17)] since,
as with the real-coefficient case (e.g., [9, Ch.10]), the noise gain
varies with the center frequency. The realization proposed in
this note does not suffer this limitation, although we show that,
for the same filter bandwidth, the proposed algorithm (1) has a
superior basin of attraction.

To this end, we note that the bandwidth of the notch filter
(G(z) does not change with the notch frequency (as controlled by
#). As such, the presence of white background noise contributes
a constant (dependent on «) to the cost function E|e(n)|?; the
minimum of this cost function thus occurs when the notch fre-
quency f aligns with the signal frequency wy.

The mean update term of a gradient descent algorithm is pro-
portional to —9FE|e(n)|?/94, as given by

_0E|e(n)|2
o6

i) ] pileo0)
=FIm (|1 — i 00|21 — aej(wué)))

é fgrad (UJO - 9)

where the scale factor 5 may be absorbed into the step size
of a gradient descent algorithm. The mean driving term
E{Im[e(n) 2*(n)]} from (2) is also a function of (wy — #);
denoting this by fprep(wo — ), a calculation will show that,
subject to the normalization constraint f;. 4(0) = f},,,(0),

fgrad(wo — 9) . (1 — (Jé)[l + o -2« COS(wO _ 9)]
fprop(wo - 9) - |1 — (]{@.7(‘“0*9)|2

<1 (6)
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Fig. 4. Comparing the mean driving terms of the proposed algorithm and a
gradient descent algorithm, when normalized for the same local convergence
properties.
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Fig. 5. Frequency hop experiment using a gradient descent algorithm instead
of the proposed algorithm.

for all discrepancies wqg — @, and for any 0 < « < 1. Thus the
gradient descent algorithm will always have a weaker driving
term, when normalized for the same local convergence proper-
ties [fg’}.md(()) =, }’)mp(O)} . Fig. 4 illustrates this inferiority, by
plotting the mean update terms versus the frequency discrep-
ancy wy — 6 for the two schemes, for a particular value of .
The two curves are normalized for the same slope at the zero
crossing, to ensure the same local convergence properties. Thus
the proposed scheme exhibits faster tracking and convergence
than a gradient descent procedure.

As an example, Fig. 5 plots the frequency estimates using a
gradient descent algorithm, for the same bandwidth parameter
a = 0.7 and the same input signal used in Fig. 2, along with
the same initialization §(0) = 0. Only the final frequency in
the hop sequence is identified in Fig. 5, as it happens to fall
within a basin of attraction of the initialization point.2 The re-
maining frequencies simply lie outside the basin of attraction of
the gradient algorithm, thus illustrating a clear performance de-
fect compared to the proposed algorithm (1). Similar behavior
is observed with the gradient descent algorithm of [8], with the
further drawback of bias in the frequency estimate.

ZIncreasing the step size can increase the basin of attraction, at the expense
of increasing the estimation variance at a convergent point; the step size has
adjusted to offer comparable variance to Fig. 2 for the identified frequency.
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VI. CONCLUDING REMARKS

The proposed design is a complex-valued counterpart to an
earlier real-coefficient scheme [7], and successfully inherits its
advantages. Although we have focused on the single tone case
for brevity, extensions to multiple tones may be pursued in man-
ners analogous to those developed in the real case [4], [9], [10],
[15].
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