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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• The minimum-phase FIR filter design 
method outlined earlier involves the spectral 
factorization of a Type 1 linear-phase FIR
transfer function G(z) with a non-negative 
amplitude response in the form

where             contains all zeros of G(z) that 
are inside the unit circle and one each of the 
unit circle double zeros
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Spectral FactorizationSpectral Factorization

• We next outline the basic idea behind a 
simple spectral factorization method

• Without any loss of generality we consider 
the spectral factorization of a 6-th order 
linear-phase FIR transfer function G(z) with 
a non-negative amplitude response:
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Spectral FactorizationSpectral Factorization

• Our objective is to express the above G(z)
in the form

where

is the minimum-phase factor of G(z)
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Spectral FactorizationSpectral Factorization

• Expressing G(z) in terms of the coefficients 
of              we get

• Forming the product of the two polynomials 
given above and comparing the coefficients 
of like powers of        the product with that 
of G(z) given on the previous slide we 
arrive at 4 equations given in the next slide
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Spectral FactorizationSpectral Factorization

• The above set of equations is then solved 
iteratively using the Newton-Raphson
method
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Spectral FactorizationSpectral Factorization

• First, the initial values of      are chosen to 
ensure that              has all zeros strictly 
inside the unit circle

• Then, the coefficients     are changed by 
adding the corrections     so that the 
modified values           satisfy better the set 
of 4 equalities given in the previous slide

• The process is repeated until the iteration 
converges
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Spectral FactorizationSpectral Factorization
• Substituting             in the 4 equations given 

earlier and expanding the products, a set of 
linear equations are obtained by eliminating 
all quadratic terms in     from the expansion

• In matrix form, these equations can be 
written as             where
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Spectral FactorizationSpectral Factorization
and

• The matrix A can be expressed as
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Spectral FactorizationSpectral Factorization
• The iteration convergence is checked at 

each step by evaluating the error term

• The error term first decreases monotonically 
and the iteration is stopped when the error 
starts increasing

• The M-file minphase.m implements the 
above spectral factorization method
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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example – Design a minimum-phase 
lowpass FIR filter with the following 
specifications:                   ,                  ,          

dB and               dB
• Using Program 10_3.m we arrive at the 

desired filter
• Plots of zeros of G(z), zeros of            , and 

the gain response of             are shown in 
the next slide
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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB
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MaximumMaximum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• A maximum-phase spectral factor of a 
linear-phase FIR filter with an impulse 
response b of even order with a non-
negative zero-phase frequency response can 
be designed by first computing its 
minimum-phase spectral factor h and the 
using the statement

G = fliplr(h)
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• As indicated earlier, the order N of a linear-
phase FIR filter is inversely proportional to 
the width Δω of the transition band

• Hence, in the case of an FIR filter with a 
very sharp transition, the order of the filter 
is very high

• This is particularly critical in designing very 
narrow-band or very wide-band FIR filters
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• The computational complexity of a digital 
filter is basically determined by the total 
number of multipliers and adders needed to 
implement the filter

• The direct form implementation of a linear-
phase FIR filter of order N requires, in 
general,           multipliers and N two-input 
adders
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• We now outline one method of realizing 
computationally efficient linear-phase FIR 
filters

• The basic building block in this method is 
an FIR subfilter structure with a periodic 
impulse response
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The Periodic Filter SectionThe Periodic Filter Section
• Consider a Type 1 linear-phase FIR filter 
F(z) of even degree N:

• Its delay-complementary filter E(z) is given 
by
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The Periodic Filter SectionThe Periodic Filter Section
• The transfer function H(z) obtained by 

replacing        in F(z) with      , with L being 
a positive integer, is given by

• The order of H(z) is thus NL
• A direct realization of H(z) is obtained by 

simply replacing each unit delay in the 
realization of F(z) with L unit delays
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The Periodic Filter SectionThe Periodic Filter Section

• Note: The number of multiplers and adders
in the realization of H(z) is the same as 
those in the realization of F(z)

• The transfer function H(z) has a sparse 
impulse response of length           , with      

zero-valued samples inserted between 
every consecutive pair of impulse response 
samples of F(z)
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The Periodic Filter SectionThe Periodic Filter Section

• The parameter L is called the sparsity factor
• The relations between the amplitude 

responses of these two filters is given by

• It follows from the above that the amplitude 
response          is a period function of ω with 
a period 2π/L
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The Periodic Filter SectionThe Periodic Filter Section

• One period of           is obtained by 
compressing the amplitude response           
in the interval [0, 2π] to the interval          
[0, 2π/L]

• A transfer function H(z) with a frequency 
response that is a periodic function of ω
with a period 2π/L is called a periodic filter
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The Periodic Filter SectionThe Periodic Filter Section

• If F(z) is a lowpass filter with a single 
pasband and a single stopband, H(z) will be 
a multiband filter with                 pasbands
and            stopbands as shown in the next 
slide for L = 4
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The Periodic Filter SectionThe Periodic Filter Section
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The Periodic Filter SectionThe Periodic Filter Section
• Let F(z) be a lowpass filter with passband

edge at         and and stopband edge at           
, where

• Then, the passband and stopband edges of 
the first band of H(z) are at                       
and              , respectively

• The passband and stopband edges of the 
second band of H(z) are at                        
and                         , respectively, and so on 
as shown on the previous slide
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The Periodic Filter SectionThe Periodic Filter Section
• The width of the transition bands of H(z)

are                             , which is    -th of that 
of F(z)

• Likewise, the transfer function G(z) by 
replacing       in E(z) with      , is given by

• The amplitude response of G(z) is given by
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Interpolated FIR FilterInterpolated FIR Filter
• The overall filter                is designed as a 

cascade of a linear-phase FIR filter          
and another filter I(z) that suppreses the 
undesired passbands of the periodic filter 
section as shown below

• The widths of the transition band and the 
passband of the cascade are    –th of those 
of F(z)
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Interpolated FIR FilterInterpolated FIR Filter
• The cascaded structure is called the 

interpolated finite impulse response (IFIR) 
filter, as the missing impulse response 
samples of the periodic filter section         
are being interpolated by the filter section 
I(z), called the interpolator

• As the filter F(z) determines approximately 
the shape of the amplitude response of the 
IFIR filter, it is called a shaping filter
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Interpolated FIR FilterInterpolated FIR Filter
• Design Steps –
• IFIR specifications: passband edge      , 

stopband edge      , passband ripple     , 
stopband ripple 

• Shaping filter specifications: 
passband edge             
stopband edge                                       
passband ripple       
stopband ripple 
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Interpolated FIR FilterInterpolated FIR Filter
• The interpolator I(z) has to be designed to 

preserve the passband of            in the 
frequency range              and mask the 
amplitude response of            in the 
frequency range             , where the periodic 
subfilter has unwanted passbands and 
transition bands

• This latter region is defined by
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Interpolated FIR FilterInterpolated FIR Filter
• The transition band of the interpolator is the 

frequency range

• Figure below shows the amplitude 
responses of                 and I(z)
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Interpolated FIR FilterInterpolated FIR Filter
• Summarinzing, the design specifications for 
F(z) and I(z) are as follows:

for
for
for
for

The two linear-phase FIR filters F(z) and 
I(z) can be designed using the Parks-
McClellan method
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Interpolated FIR FilterInterpolated FIR Filter
• Example – Filter specifications are as 

follows:                    ,                 ,                 ,

• It follows from the figure in Slide 22 that to 
ensure no overlaps between adjacent 
passbands of           , we should choose L to 
satisfy the condition
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Interpolated FIR FilterInterpolated FIR Filter
• For our example, this reduces to

implying  L < 5
• Hence, the largest value of L that can be 

used is L = 4, yielding an IFIR structure 
requiring the least number of multipliers

• As a result, the specifications for F(z) and 
I(z) are as given in the next slide
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Interpolated FIR FilterInterpolated FIR Filter
• F(z):

• I(z):

• The filter orders of F(z) and I(z) obtained 
using firpmord are:

Order of F(z) = 32
Order of I(z) = 43
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Interpolated FIR FilterInterpolated FIR Filter
• It can be shown that the filters F(z) and I(z)

designed using remez with the above orders 
do not lead to an IFIR design meeting the 
minimum stopband attenuation of 60 dB

• To meet the stopband specifications, the 
orders of F(z) and I(z) need to be increased 
to 33 and 46, respectively
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Interpolated FIR FilterInterpolated FIR Filter
• The pertinent gain responses of the 

redesigned IFIR filter are shown below:

• The number of multipliers needed to 
implement F(z) and hence,           is
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Interpolated FIR FilterInterpolated FIR Filter
• The number of multipliers needed to 

implement I(z) is:

• As a result, the total number of multipliers 
needed to implement                 is

• The number of multipliers needed to 
implement the direct single-stage 
implementation of the FIR filter is
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• This approach makes use of the relation 
between a periodic filter                   
generated from a Type 1 linear-phase FIR 
filter of even degree N and its delay-
complementary filter G(z) given by

• The amplitude responses of F(z), its delay-
complentary filter E(z), the periodic filter 
H(z) and its delay-complentary filter G(z)
are shown in the next slide
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• By selectively masking out the unwanted 
pasbands of both H(z) and G(z) by 
cascading each with appropriate masking 
filters          and         , respectively, and 
connecting the resulting cascades in prallel, 
we can design a large class of FIR filters 
with sharper transition bands

• The overall structure is then realized as 
indicated in the next slide
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Note: The delay block             can be 
realized by tapping the FIR structure 
implementing

• Also,          and          can share the same 
delay-chain if they are realized using the 
transposed direct form structure
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The transfer function of the overall structure 
is given by

• The corresponding amplitude response is
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The overall computational complexity is 
given by the complexities of F(z),          and

• All these three filters have wide transition 
bands and, in general, require considerably 
fewer multipliers and adders than that 
required in a direct design of the desired 
sharp cutoff filter
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Design Objective – Given the specifications 
of               , determine the specifications of 
F(z),          and           design these 3 filters

• Design method – Illustrated for lowpass
filter design

• Two different situations may arise 
depending on how the transition band of     

is created
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Case A – Transition band of                is 
from one of the transition bands of H(z)
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Bandedges of               are related to the 
bandedges of F(z) as follows:
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Case B – Transition band of                is 
from one of the transition bands of G(z)
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Bandedges of               are related to the 
bandedges of F(z) as follows:

• Example – Specifications for a lowpass
filter:                  ,                    ,                ,
and 

)(zHFM

,,
)()(

LL

F
p

s

F
p

p
ω−π

=ω
ω−π

=ω
ll 22

π=ω 40.p π=ω 4020.s 010.=δ p
00010.=δs

48
Copyright © 2010, S. K. Mitra

FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• For designing               the optimum value 
of L is in the range

• By calculating the total number of 
multipliers needed to realize F(z),         , and   

for all possible values of L, we arrive 
at the realization requiring the least number 
of multipliers obtained for L =16 is 229
which is about 15% of that required in a 
direct single-stage realization
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The gain response of the designed filter is 
shown below:
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