Minimum-Phase FIR Filter
Design Using MATLAB

e The minimum-phase FIR filter design
method outlined earlier involves the spectral
factorization of a Type 1 linear-phase FIR
transfer function G(z) with a non-negative
amplitude response in the form

G(z)=z " Hy(2)H, (")
where H,,(z) contains all zeros of G(z) that

are inside the unit circle and one each of the
unit circle double zeros
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Spectral Factorization

We next outline the basic idea behind a
simple spectral factorization method

Without any loss of generality we consider
the spectral factorization of a 6-th order
linear-phase FIR transfer function G(z) with
a non-negative amplitude response:

-1 -2 -3
G(z)=g3+gz +g1z “+goz
+g12_4 +g2Z_5 +g3Z_6
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Spectral Factorization

e Our objective is to express the above G(z)
in the form
G(@) =z Hy(2)Hp(z™)
where
H,(z)=ag+ alz_1 + azz_2 + a3z_3
is the minimum-phase factor of G(z)
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Spectral Factorization

Expressing G(z) in terms of the coefficients
of H,,(z) we get

G(z)=(ap + @z +ayz > + a3z )

((13 + (122_1 + (112_2 + (102_3)

Forming the product of the two polynomials
given above and comparing the coefficients
of like powers of z7! the product with that
of G(z) given on the previous slide we
arrive at 4 equations given in the next slide
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Spectral Factorization

g0:a3+a12+a%+a§

&1 =apa taay +aras
&2 =apay +aya3
&3 =dpd3
e The above set of equations is then solved

iteratively using the Newton-Raphson
method
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Spectral Factorization

First, the initial values of a; are chosen to
ensure that H,,(z) has all zeros strictly
inside the unit circle

Then, the coefficients g; are changed by
adding the corrections e; so that the
modified values a; + ¢; satisfy better the set
of 4 equalities given in the previous slide
The process is repeated until the iteration
converges
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Spectral Factorization

e Substituting a; +¢; in the 4 equations given
earlier and expanding the products, a set of
linear equations are obtained by eliminating
all quadratic terms in e; from the expansion

 In matrix form, these equations can be
written as Ae =b where

2(10 2611 2612 203
A= ap agp +a2 az +a1 a)

ay as ap ap

as 0 0 [“%)
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Spectral Factorization

and e 2 2 2 2
8o —4dy—a —a; —az
e=|| b=|81 %% %% B0
£2 82 —apay —aya;

& &2 —apas

» The matrix A can be expressed as
ap a ap 4as ad aq ay a3
Ao a a a 0 0 a a9 a

a a3 0 0 0 0 g a
az 0 0 0 0 0 0 aqa
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Spectral Factorization

e The iteration convergence is checked at
each step by evaluating the error term
o6

» The error term first decreases monotonically
and the iteration is stopped when the error
starts increasing

¢ The M-file minphase .m implements the
above spectral factorization method
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Minimum-Phase FIR Filter
Design Using MATLAB

» Example — Design a minimum-phase
lowpass FIR filter with the following
specifications: w, =0.45n, w;=0.6m,
R,=2dBand R;=26 dB

* Using Program 10_3.m we arrive at the
desired filter

* Plots of zeros of G(z), zeros of H,,(z), and
the gain response of H,,(z) are shown in
the next slide
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Minimum-Phase FIR Filter
Design Using MATLAB
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Maximum-Phase FIR Filter
Design Using MATLAB

* A maximum-phase spectral factor of a
linear-phase FIR filter with an impulse
response b of even order with a non-
negative zero-phase frequency response can
be designed by first computing its
minimum-phase spectral factor h and the
using the statement

G = fliplr(h)
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Design of Computationally
Efficient FIR Digital Filters

* As indicated earlier, the order N of a linear-
phase FIR filter is inversely proportional to
the width Aw of the transition band

* Hence, in the case of an FIR filter with a
very sharp transition, the order of the filter
is very high

« This is particularly critical in designing very
narrow-band or very wide-band FIR filters
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Design of Computationally
Efficient FIR Digital Filters

» The computational complexity of a digital
filter is basically determined by the total
number of multipliers and adders needed to
implement the filter

* The direct form implementation of a linear-
phase FIR filter of order N requires, in
general, \_N“J multipliers and N two-input
adders

14
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Design of Computationally
Efficient FIR Digital Filters

* We now outline one method of realizing
computationally efficient linear-phase FIR
filters

* The basic building block in this method is
an FIR subfilter structure with a periodic
impulse response

15
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The Periodic Filter Section

 Consider a Type 1 linear-phase FIR filter
F(z) of even degree N:

N -
F()= 2Tl

* |ts delay-complementary filter E(z) is given
by .
E(z)=zN2_F(z)=z"N2_ S fIn)z™"

n=0

—(-fINI2DYP - 5 fl

16 n¢]_\//2
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The Periodic Filter Section
 The transfer function H(z) obtained by
replacing z7Vin F(z) with 2L with L being
a positive integer, is given by

H(z)=F(z}) = é Of[n]z_nL

e The order of H(z) is thus NL

e A direct realization of H(z) is obtained by
simply replacing each unit delay in the
realization of F(z) with L unit delays

17 _
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The Periodic Filter Section

» Note: The number of multiplers and adders
in the realization of H(z) is the same as
those in the realization of F(z)

* The transfer function H(z) has a sparse
impulse response of length NL +1, with
L —1zero-valued samples inserted between
every consecutive pair of impulse response
samples of F(z)

18
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The Periodic Filter Section

e The parameter L is called the sparsity factor
e The relations between the amplitude
responses of these two filters is given by
H(o)=F(Lo)
« |t follows from the above that the amplitude

response H (o) is a period function of o with
a period 2n/L
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The Periodic Filter Section

* One period of H (o) is obtained by
compressing the amplitude response ()
in the interval [0, 2] to the interval
[0, 2n/L]

« A transfer function H(z) with a frequency
response that is a periodic function of ®
with a period 2n/L is called a periodic filter
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The Periodic Filter Section

* If F(z) is a lowpass filter with a single
pasband and a single stopband, H(z) will be
a multiband filter with | /2 |+1 pasbands
and [ L/2] stopbands as shown in the next
slide for L=4
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The Periodic Filter Section

delay-complementary
filter E(z)
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The Periodic Filter Section

 Let F(z) be a lowpass filter with passband
edge at mgF )and and stopband edge at
o), where off) <

e Then, the passband and stopband edges of
the first band of H(z) are at o)g,F )L
and {F) /L, respectively

 The passband and stopband edges of the
second band of H(z) are at (2ni0)pF )L
and (2r+w{F))/ L , respectively, and so on
as shown on the previous slide
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The Periodic Filter Section
» The width of the transition bands of H(z)
are (o -{)/L , which is %-th of that
of F(z)

* Likewise, the transfer function G(z) by
replacing z™'in E(z) with zLis given by
G(z)=E(")=z"M2 _F(h)

_ ,NLI2 _ > fln]z"
» The amplitude respor{é:eoof G(z) is given by
G(0)=1-H(0)=1-F(Lo)
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Interpolated FIR Filter

* The overall filter /5 (z) is designed as a
cascade of a linear-phase FIR filter F%
and another filter /(z) that suppreses the
undesired passbands of the periodic filter
section as shown below

1)
periodic filter interpolator

e The widths of the transition band and the
passband of the cascade are ——th of those
of F(z)
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Interpolated FIR Filter

 The cascaded structure is called the
interpolated finite impulse response (IFIR)
filter, as the missing impulse response
samples of the periodic filter section

are being interpolated by the filter section
I(z), called the interpolator

As the filter F(z) determines approximately
the shape of the amplitude response of the
IFIR filter, it is called a shaping filter

26
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Interpolated FIR Filter
e Design Steps —
* IFIR specifications: passband edge w,,

stopband edge ¢, , passband ripple 8,
stopband ripple &,
« Shaping filter specifications:
passband edge cog,F) =Lo,
stopband edge co(F) =Lo,

passhand ripple B(F) =68,/2
stopband ripple S{F) =
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Interpolated FIR Filter

 The transition band of the interpolator is the
frequency range 7
o -0
 Figure below shows the amplitude
responses of Hgp(z) and I(z)
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Interpolated FIR Filter

The interpolator I(z) has to be designed to
preserve the passband OfF(zL) in the
frequency range [0, ] and mask the
amplitude response of F(z )in the
frequency range [, n] , where the periodic
subfilter has unwanted passbands and
transition bands

This latter region is defined by
LL/ZJ[an . (an ﬂ
= U |=—-w,,min T+cos,rc

© =
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Interpolated FIR Filter
e Summarinzing, the design specifications for
F(z) and I(z) are as follows:
1-84) < F(0) <1+85770r [0, L0, ]
~8(P) < F(w) <8P ;Or we[Log,m]
-8 <I(0)<1+5() " 0el0.0,]
—5) < [(w) <) ®eR,
The two linear-phase FIR filters F(z) and

1(z) can be designed using the Parks-

" McClellan method
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Interpolated FIR Filter

« Example — Filter specifications are as
follows: ¢, =0.157 + 0, =0.27: 3, =0.002 -
8, =0.001
« |t follows from the figure in Slide 22 that to
ensure no overlaps between adjacent
passbands of F(z£), we should choose L to
satisfy the condition

cogF) <2TC—(D§F)
L L

31
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Interpolated FIR Filter

For our example, this reduces to
021 <2202z
implying L <5
Hence, the largest value of L that can be

used is L = 4, yielding an IFIR structure
requiring the least number of multipliers

As a result, the specifications for F(z) and
1(z) are as given in the next slide
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Interpolated FIR Filter
. Fz): ol =0.6m, o) =0.87
8 =0.001, 8¢ =0.001
. I(z): o) =0.157, 0{) =0.3n
80 =0.001, 5{") =0.001

¢ The filter orders of F(z) and I(z) obtained
using firpmord are:

Order of F(z) = 32
Order of I(z) = 43

33
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Interpolated FIR Filter

It can be shown that the filters F(z) and 1(z)
designed using remez with the above orders
do not lead to an IFIR design meeting the
minimum stopband attenuation of 60 dB

To meet the stopband specifications, the
orders of F(z) and I(z) need to be increased
to 33 and 46, respectively
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Interpolated FIR Filter

e The pertinent gain responses of the
redesigned IFIR filter are shown below:

o—m‘uz) ﬁﬂz:Lﬂ\ | uW\H R
| | e | o
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e The number of multipliers needed to
implement F(z) and hence, F(z*) is
Rp=[(33+1)/2]=17

35
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Interpolated FIR Filter

The number of multipliers needed to
implement I(z) is:

R, =[(46+1)/2]=24
As a result, the total number of multipliers
needed to implement H jzpp(2) is

RIFIR = 17+ 24 = 41

The number of multipliers needed to
implement the direct single-stage

implementation of the FIR filter is
|(122+1)/2]=62
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Frequency-Response Masking
Approach

 This approach makes use of the relation
between a periodic filter f7(z) = F(z '):
generated from a Type 1 linear-phase FIR
filter of even degree N and its delay-
complementary filter G(z) given by

G(z)=zN?_H(z)=zV"?-F(")

e The amplitude responses of F(z), its delay-
complentary filter E(z), the periodic filter
H(z) and its delay-complentary filter G(z)
are shown in the next slide

37
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Frequency-Response Masking
Approach

delay-complementary
filter E(z)

Ao) Hoy=1-Fo)

delay-complementary
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Frequency-Response Masking
Approach

» By selectively masking out the unwanted
pasbands of both H(z) and G(z) by
cascading each with appropriate masking
filters 7;(z) and 1, (z), respectively, and
connecting the resulting cascades in prallel,
we can design a large class of FIR filters
with sharper transition bands

* The overall structure is then realized as
indicated in the next slide

39
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Frequency-Response Masking
Approach
F(z¥)

» Note: The delay block 2712 can be
realized by tapping the FIR structure
implementing F(zL)

* Also, I;(z) and I, (z) can share the same
delay-chain if they are realized using the

transposed direct form structure
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Frequency-Response Masking
Approach

 The transfer function of the overall structure
is given by
Hpy (2) = H(2)11(2) + G(2) 15 (2)
= F(")L(2) +[7 M2 - FMh(2)
e The corresponding amplitude response is
Hpy (0) = F(Lo)T (@) +[1- F(Lo)l ()

41 _
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Frequency-Response Masking
Approach

 The overall computational complexity is
given by the complexities of F(z), 1;(z) and
15(2)

o All these three filters have wide transition
bands and, in general, require considerably
fewer multipliers and adders than that
required in a direct design of the desired
sharp cutoff filter
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Frequency-Response Masking
Approach

 Design Objective — Given the specifications
of Hpyr(2), determine the specifications of
F(z), I;(z) and I,(z) design these 3 filters

 Design method — Illustrated for lowpass
filter design

e Two different situations may arise
depending on how the transition band of
H gy (z)is created

43
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Frequency-Response Masking
Approach

» Bandedges of H g, (z) are related to the
bandedges of F(z) as follows:
2n+ i) 2n+ o)
Op=—— Og=
L L
0</<L-1

45
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Frequency-Response Masking
Approach

 Case A —Transition band of Hp,(z) is
from one of the transition bands of H(z)
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Frequency-Response Masking
Approach

* Case B — Transition band of Hg,(z) is
from one of the transition bands of G(z)

= ~

46 -
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Frequency-Response Masking
Approach

 Bandedges of Hpy,(z)are related to the
bandedges of F(z) as follows:
_ 20— o) o 20n- o)

2 L L

» Example — Specifications for a lowpass
filter: 0, =04n1, 0, =0.402x, 6, =001,
and &, =0.0001

(O]
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Frequency-Response Masking
Approach

* For designing H g, (z) the optimum value
of L is in the range

By calculating the total number of

multipliers needed to realize F(z), 7;(z), and
1, (z) for all possible values of L, we arrive
at the realization requiring the least number
of multipliers obtained for L =16 is 229
which is about 15% of that required in a
direct single-stage realization

48
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Frequency-Response Masking
Approach

 The gain response of the designed filter is
shown below:
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