Minimum-Phase FIR Filter Design Using MATLAB

• The minimum-phase FIR filter design method outlined earlier involves the spectral factorization of a Type 1 linear-phase FIR transfer function G(z) with a non-negative amplitude response in the form

 $G(z) = z^{-N}H_m(z)H_m(z^{-1})$ where $H_m(z)$ contains all zeros of G(z) that are inside the unit circle and one each of the unit circle double zeros

Copyright © 2010, S. K. Mitra

Spectral Factorization

- We next outline the basic idea behind a simple spectral factorization method
- Without any loss of generality we consider the spectral factorization of a 6-th order linear-phase FIR transfer function *G*(*z*) with a non-negative amplitude response:

$$G(z) = g_3 + g_2 z^{-1} + g_1 z^{-2} + g_0 z^{-3} + g_1 z^{-4} + g_2 z^{-5} + g_3 z^{-6}$$

Copyright © 2010, S. K. Mitra

Spectral Factorization
First, the initial values of a_i are chosen to ensure that H_m(z) has all zeros strictly inside the unit circle
Then, the coefficients a_i are changed by adding the corrections e_i so that the modified values a_i + e_i satisfy better the set of 4 equalities given in the previous slide
The process is repeated until the iteration converges

1

Minimum-Phase FIR Filter Design Using MATLAB

- Example Design a minimum-phase lowpass FIR filter with the following specifications: $\omega_p = 0.45\pi$, $\omega_s = 0.6\pi$, $R_p = 2$ dB and $R_s = 26$ dB
- Using Program 10_3.m we arrive at the desired filter
- Plots of zeros of G(z), zeros of $H_m(z)$, and the gain response of $H_m(z)$ are shown in the next slide

10

Design of Computationally Efficient FIR Digital Filters

- As indicated earlier, the order N of a linearphase FIR filter is inversely proportional to the width $\Delta \omega$ of the transition band
- Hence, in the case of an FIR filter with a very sharp transition, the order of the filter is very high
- This is particularly critical in designing very narrow-band or very wide-band FIR filters

Copyright © 2010, S. K. Mitra

Design of Computationally Efficient FIR Digital Filters

- The computational complexity of a digital filter is basically determined by the total number of multipliers and adders needed to implement the filter
- The direct form implementation of a linearphase FIR filter of order *N* requires, in general, $\lfloor \frac{N+1}{2} \rfloor$ multipliers and *N* two-input adders

Copyright © 2010, S. K. Mitr

14

Design of Computationally Efficient FIR Digital Filters We now outline one method of realizing computationally efficient linear-phase FIR filters The basic building block in this method is an FIR subfilter structure with a periodic impulse response

The Periodic Filter Section

• Note: The number of multiplers and adders in the realization of *H*(*z*) is the same as

L-1 zero-valued samples inserted between

every consecutive pair of impulse response

those in the realization of F(z)
The transfer function H(z) has a sparse impulse response of length NL + 1, with

samples of F(z)

The Periodic Filter Section

• The transfer function H(z) obtained by replacing z^{-1} in F(z) with z^{-L} , with L being a positive integer, is given by

$$H(z) = F(z^{L}) = \sum_{n=0}^{N} f[n] z^{-nL}$$

- The order of H(z) is thus NL
- A direct realization of *H*(*z*) is obtained by simply replacing each unit delay in the realization of *F*(*z*) with *L* unit delays

17

13

Copyright © 2010, S. K. Mitra

18

The Periodic Filter Section

- One period of H
 [´](ω) is obtained by compressing the amplitude response F
 [´](ω) in the interval [0, 2π] to the interval [0, 2π/L]
- A transfer function *H*(*z*) with a frequency response that is a periodic function of ω with a period 2π/L is called a periodic filter

Copyright © 2010, S. K. Mit

20

The Periodic Filter Section

- Let F(z) be a lowpass filter with passband edge at $\omega_p^{(F)}$ and and stopband edge at $\omega_s^{(F)}$, where $\omega_s^{(F)} < \pi$
- Then, the passband and stopband edges of the first band of H(z) are at $\omega_p^{(F)}/L$ and $\omega_s^{(F)}/L$, respectively
- The passband and stopband edges of the second band of H(z) are at $(2\pi \pm \omega_p^{(F)})/L$ and $(2\pi \pm \omega_s^{(F)})/L$, respectively, and so on as shown on the previous slide

23

<section-header><list-item><list-item><list-item>

Frequency-Response Masking Approach

• This approach makes use of the relation between a periodic filter $H(z) = F(z^L)$ generated from a Type 1 linear-phase FIR filter of even degree *N* and its delaycomplementary filter G(z) given by

 $G(z) = z^{-N/2} - H(z) = z^{-N/2} - F(z^{L})$

• The amplitude responses of F(z), its delaycomplentary filter E(z), the periodic filter H(z) and its delay-complentary filter G(z) are shown in the next slide

Copyright © 2010, S. K. Mitra

Copyright © 2010, S. K. Mitra

Copyright © 2010, S. K. Mitra

Frequency-Response Masking Approach

- By selectively masking out the unwanted pasbands of both H(z) and G(z) by cascading each with appropriate masking filters $I_1(z)$ and $I_2(z)$, respectively, and connecting the resulting cascades in prallel, we can design a large class of FIR filters with sharper transition bands
- The overall structure is then realized as indicated in the next slide

39

37

Frequency-Response Masking Approach

• The transfer function of the overall structure is given by

$$H_{FM}(z) = H(z)I_1(z) + G(z)I_2(z)$$

= $F(z^L)I_1(z) + [z^{-NL/2} - F(z^L)]I_2(z)$

 $\breve{H}_{FM}(\omega) = \breve{F}(L\omega)\breve{I}_1(\omega) + [1 - \breve{F}(L\omega)]\breve{I}_2(\omega)$

41

Frequency-Response Masking Approach

- The overall computational complexity is given by the complexities of F(z), $I_1(z)$ and $I_2(z)$
- All these three filters have wide transition bands and, in general, require considerably fewer multipliers and adders than that required in a direct design of the desired sharp cutoff filter

42

• Case B – Transition band of $H_{FM}(z)$ is from one of the transition bands of G(z)

Frequency-Response Masking Approach

• Bandedges of $H_{FM}(z)$ are related to the bandedges of F(z) as follows:

$$\omega_p = \frac{2\ell\pi - \omega_p^{(F)}}{L}, \quad \omega_s = \frac{2\ell\pi - \omega_p^{(F)}}{L},$$

• Example – Specifications for a lowpass filter: $\omega_p = 0.4\pi$, $\omega_s = 0.402\pi$, $\delta_p = 0.01$, and $\delta_s = 0.0001$

Copyright © 2010, S. K. Mitra

47

Frequency-Response Masking Approach

- For designing $H_{FM}(z)$ the optimum value of *L* is in the range
- By calculating the total number of multipliers needed to realize F(z), $I_1(z)$, and $I_2(z)$ for all possible values of L, we arrive at the realization requiring the least number of multipliers obtained for L = 16 is 229 which is about 15% of that required in a direct single-stage realization

