Multirate Digital Signal Processing

Basic Sampling Rate Alteration Devices

- Up-sampler - Used to increase the sampling rate by an integer factor
- Down-sampler - Used to decrease the sampling rate by an integer factor

Up-Sampler

- Up-sampling operation is implemented by inserting $L-1$ equidistant zero-valued samples between two consecutive samples of $x[n]$
- Input-output relation

$$
x_{u}[n]=\left\{\begin{array}{cc}
x[n / L], & n=0, \pm L, \pm 2 L, \cdots \\
0, & \text { otherwise }
\end{array}\right.
$$

Up-Sampler

- In practice, the zero-valued samples inserted by the up-sampler are replaced with appropriate nonzero values using some type of filtering process
- Process is called interpolation and will be discussed later

Up-Sampler

Time-Domain Characterization

- An up-sampler with an up-sampling factor L, where L is a positive integer, develops an output sequence $x_{u}[n]$ with a sampling rate that is L times larger than that of the input sequence $x[n]$
- Block-diagram representation

$$
x[n] \longrightarrow \uparrow L \longrightarrow x_{u}[n]
$$

2
Copyright © 2010, S. K. Mitra

Up-Sampler

- Figure below shows the up-sampling by a factor of 3 of a sinusoidal sequence with a frequency of 0.12 Hz obtained using Program 13_1

Down-Sampler

Time-Domain Characterization

- An down-sampler with a down-sampling factor M, where M is a positive integer, develops an output sequence $y[n]$ with a sampling rate that is $(1 / M)$-th of that of the input sequence $x[n]$
- Block-diagram representation

$$
x[n] \longrightarrow \backslash M \longrightarrow y[n]
$$

6
Copyright © 2010, S. K. Mitra

Down-Sampler

- Down-sampling operation is implemented by keeping every M-th sample of $x[n]$ and removing $M-1$ in-between samples to generate $y[n]$
- Input-output relation

$$
y[n]=x[n M]
$$

Down-Sampler

- Figure below shows the down-sampling by a factor of 3 of a sinusoidal sequence of frequency 0.042 Hz obtained using Program 13_2

Basic Sampling Rate Alteration Devices

- Sampling periods have not been explicitly shown in the block-diagram representations of the up-sampler and the down-sampler
- This is for simplicity and the fact that the mathematical theory of multirate systems can be understood without bringing the sampling period T or the sampling frequency F_{T} into the picture

Up-Sampler

- Figure below shows explicitly the inputoutput sampling rates of the up-sampler

Input sampling frequency Output sampling frequency
$F_{T}=\frac{1}{T} \quad F_{T}^{\prime}=L F_{T}=\frac{1}{T^{\prime}}$

11
Copyright © 2010, S. K. Mitra

Down-Sampler

- Figure below shows explicitly the inputoutput sampling rates of the down-sampler

$$
x[n]=x_{a}(n T) \longrightarrow \backslash M \longrightarrow y[n]=x_{a}(n M T)
$$

Input sampling frequency Output sampling frequency $F_{T}^{\prime}=\frac{F_{T}}{M}=\frac{1}{T^{\prime}}$

10
Copyright © 2010, S. K. Mitra

Serial-to-Parallel Converter

- A bank of down-samplers can be used to convert a serial digital data into parallel form
- Consider the structure shown below

12

Serial-to-Parallel Converter

- The multirate structure shown on the previous slide converts an input sequence into a sequence vector of length 3
- The first 4 samples of the sequences $v_{1}[n]$, $v_{2}[n]$, and $v_{3}[n]$ are shown below:
$v_{1}[n]: \quad x[n] \quad x[n+3] \quad x[n+6] \quad x[n+9] \quad \cdots$
$v_{2}[n]: x[n+1] \quad x[n+4] \quad x[n+7] \quad x[n+10] \quad \cdots$
$v_{3}[n]: x[n+2] \quad x[n+5] \quad x[n+8] \quad x[n+11] \quad \cdots$
13

Serial-to-Parallel Converter

- The multirate structure shown on the previous slide converts an input sequence into a sequence vector of length 3
- At time instant n, the vector generated is

$$
\left[\begin{array}{c}
x[n] \\
x[n+1] \\
x[n+2]
\end{array}\right]
$$

Serial-to-Parallel Converter

- The first output vector generated at the input time index n is

$$
[x[n] \quad x[n+1] \quad x[n+2]]^{T}
$$

- The next vector generated at the input time index $n+3$ is

$$
[x[n+3] \quad x[n+4] \quad x[n+5]]^{T}
$$

and so on

Serial-to-Parallel Converter

- A realizable form of the serial-to-parallel converter of slide 12 is shown below which has a system delay of 3 sample periods

16
Copyright © 2010, S. K. Mitra

Parallel-to-Serial Converter

- A bank of up-samplers can be used to convert a vector of digital data into serial form
- Consider the structure shown below

17

Parallel-to-Serial Converter

- The first 9 samples of the sequences $u_{1}[n]$, $u_{2}[n], u_{3}[n]$, and $y[n]$ are shown below:

Parallel-to-Serial Converter
19

Parallel-to-Serial Converter	
21	

.-....... Mitra

A Simple Multirate Structure

- The operation of the above multirate structure can be analyzed by writing down the relations between various signal variables, and the input as shown in the next slide
22
Copyright © 2010, S. K. Mitra

A Simple Multirate Structure									
n :	0	1	2		4	5	6	7	8
		(11)	11		$\begin{aligned} & \begin{array}{l} {[4]} \\ \left.\begin{array}{l} \text { P } \end{array}\right] \\ \times[7] \end{array} \end{aligned}$		$x[6]$ x $x[1]$ $x[6]$ $x[5]$		
25									me

Basic Sampling Rate Alteration Devices

- The up-sampler and the down-sampler are linear but time-varying discrete-time systems
- We illustrate the time-varying property of a down-sampler
- The time-varying property of an up-sampler can be proved in a similar manner

27
Copyright © 2010, S. K. Mitra

Up-Sampler

Frequency-Domain Characterization

- Consider first a factor-of-2 up-sampler whose input-output relation in the timedomain is given by

$$
x_{u}[n]=\left\{\begin{array}{cc}
x[n / 2], & n=0, \pm 2, \pm 4, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

Up-Sampler

- In terms of the \boldsymbol{z}-transform, the input-output relation is then given by

$$
\begin{aligned}
X_{u}(z) & =\sum_{n=-\infty}^{\infty} x_{u}[n] z^{-n}=\sum_{\substack{n=-\infty \\
n \text { even }}}^{\infty} x[n / 2] z^{-n} \\
& =\sum_{m=-\infty}^{\infty} x[m] z^{-2 m}=X\left(z^{2}\right)
\end{aligned}
$$

Up-Sampler

- In a similar manner, we can show that for a factor-of- L up-sampler

$$
X_{u}(z)=X\left(z^{L}\right)
$$

- On the unit circle, for $z=e^{j \omega}$, the inputoutput relation is given by

$$
X_{u}\left(e^{j \omega}\right)=X\left(e^{j \omega L}\right)
$$

Up-Sampler

- Figure below shows the relation between $X\left(e^{j \omega}\right)$ and $X_{u}\left(e^{j \omega}\right)$ for $L=2$ in the case of a typical sequence $x[n]$

Up-Sampler

- As can be seen, a factor-of-2 sampling rate expansion leads to a compression of $X\left(e^{j \omega}\right)$ by a factor of 2 and a 2 -fold repetition in the baseband $[0,2 \pi]$
- This process is called imaging as we get an additional "image" of the input spectrum

Up-Sampler

- Similarly in the case of a factor-of- L sampling rate expansion, there will be $L-1$ additional images of the input spectrum in the baseband
- Lowpass filtering of $x_{u}[n]$ removes the $L-1$ images and in effect "fills in" the zerovalued samples in $x_{u}[n]$ with interpolated sample values

Down-Sampler

Frequency-Domain Characterization

- Applying the z-transform to the input-output relation of a factor-of- M down-sampler

$$
y[n]=x[M n]
$$

we get

$$
Y(z)=\sum_{n=-\infty}^{\infty} x[M n] z^{-n}
$$

- The expression on the right-hand side cannot be directly expressed in terms of

[^0]
Down-Sampler

- To get around this problem, define a new sequence $x_{\text {int }}[n]$:

$$
x_{\mathrm{int}}[n]=\left\{\begin{array}{cc}
x[n], & n=0, \pm M, \pm 2 M, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

- Then

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} x[M n] z^{-n}=\sum_{n=-\infty}^{\infty} x_{\mathrm{int}}[M n] z^{-n} \\
& =\sum_{k=-\infty}^{\infty} x_{\mathrm{int}}[k] z^{-k / M}=X_{\mathrm{int}}\left(z^{1 / M}\right)
\end{aligned}
$$

Down-Sampler

- Now, $x_{\text {int }}[n]$ can be formally related to $x[n]$ through

$$
x_{\text {int }}[n]=c[n] \cdot x[n]
$$

where

$$
c[n]=\left\{\begin{array}{lc}
1, & n=0, \pm M, \pm 2 M, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

- A convenient representation of $c[n]$ is given by $\quad c[n]=\frac{1}{M} \sum_{k=0}^{M-1} W_{M}^{k n}$
where $W_{M}=e^{-j 2 \pi / M}$

Down-Sampler

- Taking the z-transform of $x_{\text {int }}[n]=c[n] \cdot x[n]$ and making use of

$$
c[n]=\frac{1}{M} \sum_{k=0}^{M-1} W_{M}^{k n}
$$

we arrive at
$X_{\text {int }}(z)=\sum_{n=-\infty}^{\infty} c[n] x[n] z^{-n}=\frac{1}{M} \sum_{n=-\infty}^{\infty}\left(\sum_{k=0}^{M-1} W_{M}^{k n}\right) x[n] z^{-n}$
$39 \quad=\frac{1}{M} \sum_{k=0}^{M-1}\left(\sum_{n=-\infty}^{\infty} x[n] W_{M}^{k n} z^{-n}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(z W_{M}^{-k}\right)$
Copyright © 2010, S. K. Mitra

Down-Sampler

- Consider a factor-of-2 down-sampler with an input $x[n]$ whose spectrum is as shown below

- The DTFTs of the output and the input sequences of this down-sampler are then related as

$$
Y\left(e^{j \omega}\right)=\frac{1}{2}\left\{X\left(e^{j \omega / 2}\right)+X\left(-e^{j \omega / 2}\right)\right\}
$$

Down-Sampler

- Hence,

$$
\begin{aligned}
Y(z) & =X_{\mathrm{int}}\left(z^{1 / M}\right) \\
& =\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{1 / M} W_{M}^{-k}\right)
\end{aligned}
$$

- On the unit circle,

$$
Y\left(e^{j \omega}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{j(\omega-2 \pi k) / M}\right)
$$

Down-Sampler

- Now $X\left(-e^{j \omega / 2}\right)=X\left(e^{j(\omega-2 \pi) / 2}\right)$ implying that the second term $X\left(-e^{j \omega / 2}\right)$ in the previous equation is simply obtained by shifting the first term $X\left(e^{j \omega / 2}\right)$ to the right by an amount 2π as shown below

Down-Sampler

- The plots of the two terms have an overlap, and hence, in general, the original "shape" of $X\left(e^{j \omega}\right)$ is lost when $x[n]$ is downsampled as indicated below

Down-Sampler

- This overlap causes the aliasing that takes place due to under-sampling
- There is no overlap, i.e., no aliasing, only if

$$
X\left(e^{j \omega}\right)=0 \quad \text { for }|\omega| \geq \pi / 2
$$

- Note: $Y\left(e^{j \omega}\right)$ is indeed periodic with a period 2π, even though the stretched version of $X\left(e^{j \omega}\right)$ is periodic with a period 4π

Down-Sampler

- For the general case, the relation between the DTFTs of the output and the input of a factor-of- M down-sampler is given by

$$
Y\left(e^{j \omega}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{j(\omega-2 \pi k) / M}\right)
$$

- $\quad Y\left(e^{j \omega}\right)$ is a sum of M uniformly shifted and stretched versions of $X\left(e^{j \omega}\right)$ and scaled by a factor of $1 / M$

Down-Sampler

- Program 13_4 can be used to illustrate the frequency-domain properties of the downsampler shown below for $M=2$

47
Copyright © 2010, S. K. Mitra

Down-Sampler

- Aliasing is absent if and only if

$$
X\left(e^{j \omega}\right)=0 \text { for }|\omega| \geq \pi / M
$$

as shown below for $M=2$

$$
X\left(e^{j \omega}\right)=0 \text { for }|\omega| \geq \pi / 2
$$

Down-Sampler

- The input and output spectra of a downsampler with $M=3$ obtained using Program 13_4 are shown below

- Effect of aliasing can be clearly seen

48
Copyright © 2010, S. K. Mitra

Cascade Equivalences

- A complex multirate system is formed by an interconnection of the up-sampler, the down-sampler, and the components of an LTI digital filter
- In many applications these devices appear in a cascade form
- An interchange of the positions of the branches in a cascade often can lead to a computationally efficient realization

Up-Sampler and Down-sampler Cascade

- To implement a fractional change in the sampling rate we need to employ a cascade of an up-sampler and a down-sampler
- Consider the two cascade connections shown below

$$
\begin{aligned}
& x[n] \rightarrow \uparrow L \xrightarrow{v_{1}[n]} \downarrow M \rightarrow y_{1}[n] \\
& x[n] \rightarrow \downarrow M \xrightarrow{v_{2}[n]} \uparrow L \rightarrow y_{2}[n]
\end{aligned}
$$

Up-Sampler and Down-sampler Cascade

- Consider the top cascade shown in the previous slide
- Here, we have $V_{1}(z)=X\left(z^{L}\right)$
and

$$
Y_{1}(z)=\frac{1}{M} \sum_{k=0}^{M-1} V\left(z^{1 / M} W_{M}^{-k}\right)
$$

- Combining the last two equations we get

$$
Y_{1}(z)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{L / M} W_{M}^{-k L}\right)
$$

Up-Sampler and

 Down-sampler Cascade- It follows from the above that $Y_{1}(z)=Y_{2}(z)$ if
$\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{L / M} W_{M}^{-k L}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{L / M} W_{M}^{-k}\right)$
- The above equality holds if and only if M and L are relatively prime, i.e. M and L do not have a common factor that is an integer $r>1$, as then W_{M}^{-k} and $W_{M}^{-k L}$ take the same set of values for $k=0,1, \ldots, M-1$

Copyright © 2010, S. K. Mitra

Noble Identities

- Two other cascade equivalences are shown below
Cascade equivalence \#1
$x[n] \rightarrow \downarrow M \rightarrow H(z) \rightarrow y_{1}[n]$

$$
\equiv x[n] \rightarrow H\left(z^{M}\right) \rightarrow M \rightarrow y_{1}[n]
$$

Cascade equivalence \#2
$x[n] \rightarrow \dagger L \rightarrow H\left(z^{L}\right) \rightarrow y_{2}[n]$

$$
\equiv x[n] \rightarrow H(z) \rightarrow y_{2}[n]
$$

[^0]: 36

