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MultirateMultirate Structures for Structures for 
Sampling Rate ConversionSampling Rate Conversion

• From the sampling theorem it is known that 
the sampling rate of a critically sampled
discrete-time signal with a spectrum 
occupying the full Nyquist range cannot be 
reduced any further since such a reduction 
will introduce aliasing

• Hence, the bandwidth of a critically 
sampled signal must be reduced by lowpass
filtering before its sampling rate is reduced 
by a down-sampler
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MultirateMultirate Structures for Structures for 
Sampling Rate ConversionSampling Rate Conversion

• Likewise, the zero-valued samples 
introduced by an up-sampler must be 
interpolated to more appropriate values for 
an effective sampling rate increase

• We shall show shortly that this interpolation 
can be achieved simply by digital lowpass
filtering
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MultirateMultirate Structures for Structures for 
Sampling Rate ConversionSampling Rate Conversion

• Since a fractional-rate sampling rate 
converter with a rational conversion factor 
can be realized by cascading an interpolator 
with a decimator, filters are also needed in 
the design of such multirate systems
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Basic StructuresBasic Structures

• Since up-sampling by an integer factor L
causes periodic repetition of the basic 
spectrum, the basic interpolator structure for 
integer-valued sampling rate increase 
consists of an up-sampler followed by a 
low-pass filter with a cutoff at            
as indicated below:

)(zH L/π

L][nx ][ny)(zH
][nxu

Copyright © 2010, S. K. Mitra
5

Basic StructuresBasic Structures

• The lowpass filter         , called the 
interpolation filter, removes the unwanted 
images in the spectra of the up-sampled 
signal

• On the other hand, down-sampling by an 
integer factor M may result in aliasing

)(zH
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Basic StructuresBasic Structures

• Hence, the basic decimator structure for 
integer-valued sampling rate decrease 
consists of a lowpss filter          with a cutoff 
at π/M, followed by the down-sampler as 
shown below
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Basic StructuresBasic Structures

• Here, the lowpass filter         , called the 
decimation filter, bandlimits the input signal 
x[n] to prior to down-sampling, 
to ensure no aliasing

• It can be shown that the transpose of a 
factor-of-M decimator is a factor-of-M
interpolator

)(zH

M/π<ω
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Basic StructuresBasic Structures
• A fractional change in the sampling rate by 

a rational factor L/M can be achieved by 
cascading a factor-of-L interpolator with a 
factor-of-M decimator

• The interpolator must precede the decimator 
as shown below to ensure that the baseband
of w[n] is greater than or equal to that of
x[n] or y[n]

M)(zHd ][nyL][nx )(zHu
][nw
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Basic StructuresBasic Structures

• As both the interpolation filter             and 
the decimation filter             operate at the 
same sampling rate, they can be replaced 
with a single filter designed to avoid 
aliasing that may be caused by down-
sampling and eliminate images resulting 
from up-sampling 
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InputInput--Output Relation of the Output Relation of the 
DecimatorDecimator

• For the decimator structure shown below, 
let h[n] denote the impulse response of the 
decimation filter H(z)

• Then

and

M][nx )(zH ][ny][nv

∑ −=
∞

−∞=l
ll ][][][ xnhnv

][][ Mnvny =

Copyright © 2010, S. K. Mitra
11

InputInput--Output Relation of the Output Relation of the 
DecimatorDecimator

• Combining the last two equations we arrive 
at the desired input-output relation of the 
decimator given by

• In the z-domain, the input-output relation of 
the decimation filter is given by
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InputInput--Output Relation of the Output Relation of the 
DecimatorDecimator

• Now the input-output relation of the dowm-
sampler is given by

• Combining the last two equations we arrive 
at the input-output relation of the decimator 
as 
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InputInput--Output Relation of the Output Relation of the 
InterpolatorInterpolator

• For the interpolator structure shown below, 
let h[n] denote the impulse response of the 
decimation filter H(z)

• Then

and
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InputInput--Output Relation of the Output Relation of the 
InterpolatorInterpolator

• Combining the last two equations and 
making a change of a variable, we arrive at 
the desired time-domain input-output 
relation of the interpolator as

• In the z-domain, the input-output relation of 
the interpolator is thus given by
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InputInput--Output Relation of the Output Relation of the 
FractionalFractional--Rate ConverterRate Converter

• Here, in the time-domain the input-output 
relation is given by

• In the z-domain it is given by
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Interpolation Filter Interpolation Filter 
Specifications Specifications 

• Assume x[n] has been obtained by sampling a 
continuous-time signal          at the Nyquist
rate

• If                 and              denote the Fourier 
transforms of          and x[n], respectively, 
then it can be shown

• where     is the sampling period
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Interpolation Filter Interpolation Filter 
Specifications Specifications 

• Figures below show          and x[n] obtained 
by sampling          at the Nyquist rate
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Interpolation Filter Interpolation Filter 
Specifications Specifications 

• Figures below show the Fourier transforms of      
and x[n])(txa

)( ΩjX a
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• Since the sampling is being performed at the 
Nyquist rate, there is no overlap between the 
shifted spectras of

• If we instead sample          at a much higher 
rate                 yielding y[n], its Fourier 
transform             is related to              
through
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• Figure below show the Fourier transform of
y[n]
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• On the other hand, if we pass x[n] through a 
factor-of-L up-sampler generating          , the 
relation between the Fourier transforms of  
x[n] and           are given by
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• It therefore follows that if            is passed 
through an ideal lowpass filter H(z) with a 
cutoff at π/L and a gain of L, the output of 
the filter will be precisely y[n] 
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• In practice, a transition band is provided to 
ensure the realizability and stability of the 
lowpass interpolation filter H(z)

• Hence, the desired lowpass filter should 
have a stopband edge at                 and a 
passband edge       close to      to reduce the 
distortion of the spectrum of x[n]

Ls /π=ω
sωpω
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Interpolation Filter Interpolation Filter 
SpecificationsSpecifications

• If       is the highest frequency that needs to 
be preserved in x[n], then

• Summarizing the specifications of the 
lowpass interpolation filter are thus given 
by

cω

Lcp /ω=ω
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Decimation Filter Decimation Filter 
SpecificationsSpecifications

• In a similar manner, we can develop the  
specifications for the lowpass decimation 
filter that are given by
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Filter Design MethodsFilter Design Methods

• The design of the filter H(z) is a standard 
IIR or FIR lowpass filter design problem

• Any one of the  techniques outlined in 
Chapter 7 can be applied for the design of 
these lowpass filters
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Filters for Fractional Sampling Filters for Fractional Sampling 
Rate AlterationRate Alteration

• For the fractional sampling rate structure 
shown below, the lowpass filter H(z) has a 
stopband edge frequency given by
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Computational RequirementsComputational Requirements
• The lowpass decimation or interpolation 

filter can be designed either as an FIR or an 
IIR digital filter

• In the case of single-rate digital signal 
processing, IIR digital filters are, in general, 
computationally more efficient than 
equivalent FIR digital filters, and are 
therefore preferred where computational 
cost needs to be minimized
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Computational RequirementsComputational Requirements
• This issue is not quite the same in the case 

of multirate digital signal processing
• To illustrate this point further, consider the 

factor-of-M decimator shown below

• If the decimation filter H(z) is an FIR filter 
of length N implemented in a direct form, 
then
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Computational RequirementsComputational Requirements

• Now, the down-sampler keeps only every 
M-th sample of v[n] at its output

• Hence, it is sufficient to compute v[n] only 
for values of n that are multiples of M and 
skip the computations of in-between          
samples

• This leads to a factor of M savings in the 
computational complexity
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Computational RequirementsComputational Requirements

• Now assume H(z) to be an IIR filter of order 
K with a  transfer function

where
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Computational RequirementsComputational Requirements

• Its direct form implementation is given by

• Since v[n] is being down-sampled, it is 
sufficient to compute v[n] only for values of 
n that are integer multiples of M
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Computational RequirementsComputational Requirements
• However, the intermediate signal w[n] must 

be computed for all values of n
• For example, in the computation of

K+1 successive values of w[n] are still 
required

• As a result, the savings in the computation 
in this case is going to be less than a factor 
of M

][][][][ KMwpMwpMwpMv K −++−+= L110
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Computational RequirementsComputational Requirements

• Example - We compare the computational 
complexity of various implementations of a 
factor-of-M decimator

• Let the sampling frequency be
• Then the number of multiplications per 

second, to be denoted as       , are as follows 
for various computational schemes

TF

MR
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Computational RequirementsComputational Requirements
• FIR H(z) of length N :

• FIR H(z) of length N followed by a down-
sampler:

• IIR H(z) of order K:

• IIR H(z) of order K followed by a down-
sampler :

TFIRM FN ×=,R

MFN TDECFIRM /, ×=−R

TIIRM FK ×+= )(, 12R

MFKFK TTDECIIRM /)(, ×++×=− 1R
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Computational RequirementsComputational Requirements
• In the FIR case, savings in computations is 

by a factor of M
• In the IIR case, savings in computations is 

by a factor of M(2K+1)/[(M+1)K+1], which 
is not significant for large K

• For M = 10 and K = 9, the savings is only 
by a factor of 1.9

• There are certain cases where the IIR filter 
can be computationally more efficient
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Computational RequirementsComputational Requirements

• For the case of interpolator design, very 
similar arguments hold

• If H(z) is an FIR interpolation filter, then 
the computational savings is by a factor of L
(since v[n] has          zeros between its 
consecutive nonzero samples)

• On the other hand, computational savings is 
significantly less with IIR filters

1−L
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• The function decimate can be employed 
to reduce the sampling rate of an input 
signal vector x by an integer factor M to 
generate the output signal vector y

• The decimation of a sequence by a factor of 
M can be obtained using Program 10_5
which employs the function decimate
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• Example - The input and output plots of a 
factor-of-2 decimator designed using the 
Program 13_5 are shown below
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• The function interp can be employed to 
increase the sampling rate of an input signal 
x by an integer factor L generating the 
output vector y

• The lowpass filter designed by the M-file is 
a symmetric FIR filter
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• The filter allows the original input samples 
to appear as is in the output and finds the 
missing samples by minimizing the mean-
square errors between these samples and 
their ideal values

• The interpolation of a sequence x by a 
factor of L can be obtained using the 
Program 13_6 which employs the function 
interp
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• Example - The input and output plots of a 
factor-of-2 interpolator designed using 
Program 13_6 are shown below
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• The function resample can be employed 
to increase the sampling rate of an input 
vector x by a ratio of two positive integers, 
L/M, generating an output vector y

• The M-file employs a lowpass FIR filter 
designed using fir1 with a Kaiser 
window

• The fractional interpolation of a sequence 
can be obtained using Program 13_7 which 
employs the function resample
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Sampling Rate Alteration Sampling Rate Alteration 
Using MATLABUsing MATLAB

• Example - The input and output plots of a 
factor-of-5/3 interpolator designed using 
Program 13_7 are given below
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The interpolator and the decimator can also 
be designed in more than one stages

• For example if the interpolation factor L can 
be expressed as a product of two integers,   
and      , then the factor-of-L interpolator can 
be realized in two stages as shown below

1L
2L

][nx ][ny2L1L )(zH1 )(zH2
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Likewise if the decimator factor M can be 
expressed as a product of two integers,    
and       , then the factor-of-M interpolator 
can be realized in two stages as shown 
below

1M
2M

][nx ][ny)( zH1 )(zH21M 2M
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Of course, the design can involve more than 
two stages, depending on the number of 
factors used to express L and M, respectively

• In general, the computational efficiency is 
improved significantly by designing the 
sampling rate alteration system as a cascade 
of several stages

• We consider the use of FIR filters here
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Example - Consider the design of a 
decimator for reducing the sampling rate of 
a signal from 12 kHz to 400 Hz

• The desired down-sampling factor is 
therefore M = 30 as shown below

H(z) 30

12 kHz 12 kHz 400 Hz
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Specifications for the decimation filter H(z)
are assumed to be as follows:

,                     ,                
,

Hz180=pF Hz200=sF
0020.=pδ 0010.=sδ
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Assume H(z) to be designed as an 
equiripple linear-phase FIR filter

• Now Kaiser’s formula for estimating the 
order of H(z) to meet the specifications is 
given by

where                                is the normalized 
transition bandwidth

f
spN

Δ

−−
=
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131020
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The M-file kaiord determines the filter order 
using Kaiser’s formula

• Using kaiord we obtain N = 1808
• Therefore, the number of multiplications per 

second in the single-stage implementation 
of the factor-of-30 decimator is

600723
30
000121809 ,
,

, =×=HMR
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• We next implement H(z) using the IFIR 
approach as a cascade in the form of

• The specifications of the                        
parent filter G(z) should                            
thus be as shown on the                           
right 

)()( zFzG 15 )( 15zG )(zF 30

12 kHz 12 kHz 12 kHz 400 Hz
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• This corresponds to stretching the 
specifications of H(z) by 15

• Figure below shows the magnitude response 
of             and the desired response of F(z))( 15zG
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Note: The desired response of F(z) has a 
wider transition band as it takes into 
account the spectral gaps between the 
passbands of

• Because of the cascade connection, the 
overall ripple of the cascade in dB is given 
by the sum of the passband ripples of F(z) 
and             in dB

)( 15zG

)( 15zG
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• This can be compensated for by designing
F(z) and G(z) to have a passband ripple of    

each
• On the other hand, the cascade of F(z) and 

has a stopband at least as good as
F(z) or            , individually

• So we can choose                   for both filters

0010.=pδ

)( 15zG
)( 15zG

0010.=sδ
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• Thus, specifications for the two filters G(z) 
and F(z) are as follows:

G(z):

• The filter orders obtained using the M-file
kaiord are:     Order of G(z) =129

Order of F(z) = 92

000,12
300,001.0,001.0 =Δ=δ=δ fsp

000,12
420,001.0,001.0 =Δ=δ=δ fsp:)(zF
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The length of H(z) for a direct implementation 
is 1809

• The length of cascade implementation               
is

• The length of the cascade structure is 
higher

202811291592 =+×+)()( zFzG 15
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The computational complexity of the 
decimator implemented using the cascade 
structure can be dramatically reduced by 
making use of the cascade equivalence #1

• To this end, we first redraw the structure

in the form shown below
)( 15zG )(zF 30

)( 15zG)(zF 30
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The last structure is equivalent to the one 
shown below

• The above can be redrawn as indicated 
below by making use of the cascade 
equivalence #1

)( 15zG)(zF 15 2

)(zF 15 2)(zG
12 kHz 12 kHz 800 Hz 800 Hz 400 Hz

Factor-of-15 decimator Factor-of-2 decimator
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• From the last realization we observe that the 
implementation of G(z) followed by a
factor-of-2 down-sampler requires

mult/sec
• Likewise, the implementation of F(z) 

followed by a factor-of-15 down-sampler 
requires

mult/sec

000,52130
2

800
, =×=GMR

400,7493
15

000,12
, =×=FMR
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Multistage Design of Multistage Design of 
Decimator and InterpolatorDecimator and Interpolator

• The total complexity of the IFIR-based 
implementation of the factor-of-30
decimator is therefore

52,000 + 74,400 = 126,400 mult/sec
which is about 5.72 times smaller than that 
of a direct implementation of the
decimation filter H(z)


