Polyphase Decomposition

The Decomposition

- Consider an arbitrary sequence $\{x[n]\}$ with a z-transform $X(z)$ given by

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- We can rewrite $X(z)$ as

$$
X(z)=\sum_{k=0}^{M-1} z^{-k} X_{k}\left(z^{M}\right)
$$

where

$$
\begin{aligned}
& X_{k}(z)=\sum_{n=-\infty}^{\infty} x_{k}[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[M n+k] z^{-n} \\
& 0 \leq k \leq M-1 \\
& \text { Copvighut ozno, }, \text { s. . Mitra }
\end{aligned}
$$

Polyphase Decomposition

- The subsequences $\left\{x_{k}[n]\right\}$ are called the polyphase components of the parent sequence $\{x[n]\}$
- The functions $X_{k}(z)$, given by the z-transforms of $\left\{x_{k}[n]\right\}$, are called the polyphase components of $X(z)$

2

Polyphase Decomposition

- The relation between the subsequences $\left\{x_{k}[n]\right\}$ and the original sequence $\{x[n]\}$ are given by

$$
x_{k}[n]=x[M n+k], \quad 0 \leq k \leq M-1
$$

- In matrix form we can write

$$
X(z)=\left[\begin{array}{llll}
1 & z^{-1} & \cdots & z^{-(M-1)}
\end{array}\right]\left[\begin{array}{c}
X_{0}\left(z^{M}\right) \\
X_{1}\left(z^{M}\right) \\
\vdots \\
X_{M-1}\left(z^{M}\right)
\end{array}\right]
$$

Polyphase Decomposition

- The polyphase decomposition of an FIR transfer function can be carried out by inspection
- For example, consider a length-9 FIR transfer function:

$$
H(z)=\sum_{n=0}^{8} h[n] z^{-n}
$$

Polyphase Decomposition

- Its 4-branch polyphase decomposition is given by

$$
H(z)=E_{0}\left(z^{4}\right)+z^{-1} E_{1}\left(z^{4}\right)+z^{-2} E_{2}\left(z^{4}\right)+z^{-3} E_{3}\left(z^{4}\right)
$$

where
$E_{0}(z)=h[0]+h[4] z^{-1}+h[8] z^{-2}$
$E_{1}(z)=h[1]+h[5] z^{-1}$
$E_{2}(z)=h[2]+h[6] z^{-1}$
$E_{3}(z)=h[3]+h[7] z^{-1}$
6

Polyphase Decomposition

- The polyphase decomposition of an IIR transfer function $H(z)=P(z) / D(z)$ is not that straight forward
- One way to arrive at an M-branch polyphase decomposition of $H(z)$ is to express it in the form $P^{\prime}(z) / D^{\prime}\left(z^{M}\right)$ by multiplying $P(z)$ and $D(z)$ with an appropriately chosen polynomial and then apply an M-branch polyphase decomposition to $P^{\prime}(z)$
7

Polyphase Decomposition

- Note: The above approach increases the overall order and complexity of $H(z)$
- However, when used in certain multirate structures, the approach may result in a more computationally efficient structure
- An alternative more attractive approach is discussed in the following example

Polyphase Decomposition

- Therefore $H(\mathrm{z})$ can be expressed as

$$
H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)
$$

where

$$
\begin{aligned}
& E_{0}(z)=\frac{1}{2}\left(\frac{0.105573+z^{-1}}{1+0.105573 z^{-1}}\right) \\
& E_{1}(z)=\frac{1}{2}\left(\frac{0.52786+z^{-1}}{1+0.52786 z^{-1}}\right)
\end{aligned}
$$

Polyphase Decomposition

- Note: In the above polyphase decomposition, branch transfer functions $E_{i}(z)$ are stable allpass functions
- Moreover, the decomposition has not increased the order of the overall transfer function $H(z)$

FIR Filter Structures Based on Polyphase Decomposition

- We shall demonstrate later that a parallel realization of an FIR transfer function $H(z)$ based on the polyphase decomposition can often result in computationally efficient multirate structures
- Consider the M-branch Type I polyphase decomposition of $H(z)$:

$$
H(z)=\sum_{k=0}^{M-1} z^{-k} E_{k}\left(z^{M}\right)
$$

FIR Filter Structures Based on Polyphase Decomposition

- The transpose of the Type I polyphase FIR filter structure is indicated below

FIR Filter Structures Based on Polyphase Decomposition

- A direct realization of $H(z)$ based on the Type II polyphase decomposition is shown below

Computationally Efficient Decimators

- Using the cascade equivalence \#1 we arrive at the computationally efficient decimator structure shown below on the right

Computationally Efficient Decimators

- It is thus necessary to compute $v[n]$ at

$$
n=\ldots,-2 M,-M, 0, M, 2 M, \ldots
$$

- Computational requirements are therefore N multiplications and ($N-1$) additions per output sample being computed
- However, as n increases, stored signals in the delay registers change

Computationally Efficient Decimators and Interpolators

- However, here the arithmetic units are operative at all instants of the output sampling period which is $1 / M$ times that of the input sampling period
- Similar savings are also obtained in the case of the interpolator structure developed using the polyphase decomposition

Computationally Efficient Decimators

- To illustrate the computational efficiency of the modified decimator structure, assume $H(z)$ to be a length $-N$ structure and the input sampling period to be $T=1$
- Now the decimator output $y[n]$ in the original structure is obtained by downsampling the filter output $v[n]$ by a factor of M

Computationally Efficient Decimators

- Hence, all computations need to be completed in one sampling period, and for the following ($M-1$) sampling periods the arithmetic units remain idle
- The modified decimator structure also requires N multiplications and ($N-1$) additions per output sample being computed

Computationally Efficient Interpolators

- Figures below show the computationally efficient interpolator structures

Computationally Efficient Decimators and Interpolators

- More efficient interpolator and decimator structures can be realized by exploiting the symmetry of filter coefficients in the case of linear-phase filters $H(z)$
- Consider for example the realization of a factor-of-3 ($M=3$) decimator using a length-12 Type 1 linear-phase FIR lowpass filter

Computationally Efficient Decimators and Interpolators

- Note that $E_{1}(z)$ still has a symmetric impulse response, whereas $E_{0}(z)$ is the mirror image of $E_{2}(z)$
- These relations can be made use of in developing a computationally efficient realization using only 6 multipliers and 11 two-input adders as shown on the next slide

27
Copyright © 2010, S. K. Mitra

Rational Sampling Rate Converter

- The complexity of the design of the fractional sampling rate converter depends on the ratio of the sampling rates between the input and the output digital signals
- For example, in digital audio applications, the three different sampling frequencies employed are $44.1 \mathrm{kHz}, 32 \mathrm{kHz}$, and 48 kHz

Computationally Efficient Decimators and Interpolators

- The corresponding transfer function is $H(z)=h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}+h[4] z^{-4}+h[5] z^{-5}$
$+h[5] z^{-6}+h[4] z^{-7}+h[3] z^{-8}+h[2] z^{-9}+h[1] z^{-10}+h[0] z^{-11}$
- A conventional polyphase decomposition of $H(z)$ yields the following subfilters:
$E_{0}(z)=h[0]+h[3] z^{-1}+h[5] z^{-2}+h[2] z^{-3}$
$E_{1}(z)=h[1]+h[4] z^{-1}+h[4] z^{-2}+h[1] z^{-3}$
$E_{2}(z)=h[2]+h[5] z^{-1}+h[3] z^{-2}+h[0] z^{-3}$
Copyright © 2010, S. K. Mitra

Computationally Efficient Decimators and Interpolators

- Factor-of-3 decimator with a linear-phase decimation filter

28

Copyright © 2010, S. K. Mitra

Rational Sampling Rate Converter

- As a consequence there are three different values for the sampling rate conversion factor:
- 2:3 (or 3:2), 147:160 (or 160:147), and 320:441 (or 441:320)
- Likewise, in digital video applications, the sampling rates of composite video signals are 14.3181818 MHz and 17.734475 MHz

Rational Sampling Rate Converter

- The sampling rates of the digital component video signal are 13.5 MHz and 6.75 MHz for the luminance and the color-difference signals, respectively, for the NTSC and PAL systems
- Here, again there are different sampling rate conversion factors

Rational Sampling Rate Converter

- The general structure for a rational sampling rate converter shown below

can be made computationally efficient by making use of one of the structures based on the polyphase decompositions

Rational Sampling Rate Converter

with the factor-of- M down-sampler moved to all L branches as shown below

35

Rational Sampling Rate Converter

- Consider the k-th branch of the structure shown in the previous slide

$$
\rightarrow E_{k}(\varepsilon)-\mid t-E^{-\pi-z} \longrightarrow \sqrt{M}
$$

- Using the identity $\mu M-\lambda L=1$ we can write

$$
z^{-k}=z^{-k(\mu M-\lambda L)}=z^{-k \mu M}-z^{k \lambda L}
$$

- Hence, we can replace the block of k delays with a block of $k \mu M$ unit delays and a block of $k \lambda L$ unit advances as shown next

Rational Sampling Rate Converter

- This branch can be further redrawn by invoking the noble identites as shown below
- We next interchange the positions of the upsampler and the down-sampler

Rational Sampling Rate Converter

- Its equivalent realizable form is as shown below

Rational Sampling Rate Converter

- Finally by combining all k branches we arrive at a computationally efficient rational sampling rate converter

Rational Sampling Rate Converter

- Example - The basic form of a rational sampling rate converter with an interpolation factor $2 / 3$ needed in the conversion of a digital audio signal of 48kHz rate to one of $32-\mathrm{kHz}$ rate is shown below

42

Rational Sampling Rate Converter

- For this design we have $L=2$ and $M=3$
- The identity $3 \mu-2 \lambda=1$ is thus satisfied with $\mu=\lambda=1$
- Hence, the general structure of this converter is as indicated below

43

Rational Sampling Rate Converter

- By realizing the sub-filters $E_{0}(z)$ and $E_{1}(z)$ in Type I polyphase forms and then applying the cascade equivalence we arrive at the final computationally efficient structure shown in the next slide
- Here, all filters operate at the $16-\mathrm{kHz}$ rate

44

A Useful Identity

- The cascade multirate structure shown below appears in a number of applications

$$
x[n] \longrightarrow \uparrow L \longrightarrow H(z) \longrightarrow \bigsqcup^{\prime} \longrightarrow y[n]
$$

- Equivalent time-invariant digital filter obtained by expressing $H(z)$ in its L-term Type I polyphase form $\sum_{k=0}^{L-1} z^{-k} E_{k}\left(z^{L}\right)$ is shown below

$$
x[n] \longrightarrow E_{0}(z) \longrightarrow y[n]
$$

