Arbitrary-Rate Sampling Rate Converter

- The estimation of a discrete-time signal value at an arbitrary time instant between a consecutive pair of known samples can be solved by using some type of interpolation
- In this approach an approximating continuous-time signal is formed from a set of known consecutive samples of the given discrete-time signal

Arbitrary-Rate Sampling Rate Converter

- The value of the approximating continuoustime signal is then evaluated at the desired time instant
- This interpolation process can be directly implemented by designing a digital interpolation filter

Ideal Sampling Rate Converter

- In principle, a sampling rate conversion by an arbitrary conversion factor can be implemented as follows
- The input digital signal is passed through an ideal analog reconstruction lowpass filter whose output is resampled at the desired output rate as indicated below

Copyright © 2010, S. K. Mitra

Ideal Sampling Rate Converter

- Since the impulse response $g_{a}(t)$ of an ideal lowpass analog filter is of infinite duration and the samples $g_{a}\left(n T^{\prime}-\ell T\right)$ have to be computed at each sampling instant, implementation of the ideal bandlimited interpolation algorithm in exact form is not practical
- Thus, an approximation is employed in practice

Ideal Sampling Rate Converter

- Let the impulse response of the analog lowpass filter is denoted by $g_{a}(t)$
- Then the output of the filter is given by

$$
\hat{x}_{a}(t)=\sum_{\ell=-\infty}^{\infty} x[\ell] g_{a}(t-\ell T)
$$

- If the analog filter is chosen to bandlimit its output to the frequency range $F_{g}<F_{T}^{\prime} / 2$, its output $\hat{x}_{a}(t)$ can then be resampled at the rate F_{T}^{\prime}
4
Copyright © 2010, S. K. Mitra

Ideal Sampling Rate Converter

- Problem statement: Given $N_{2}+N_{1}+1$ input signal samples, $x[k], k=-N_{1}, \ldots, N_{2}$, obtained by sampling an analog signal $x_{a}(t)$ at $t=t_{k}$ $=t_{0}+k T_{i n}$, determine the sample value $x_{a}\left(t_{0}+k T_{\text {in }}\right)=y[\alpha]$ at time instant $t^{\prime}=t_{0}+k T_{\text {in }}$ where $-N_{1} \leq \alpha \leq N_{2}$
- Figure on the next slide illustrates the interpolation process by an arbitrary factor

Ideal Sampling Rate Converter

- We describe next a commonly employed interpolation algorithm based on a finite weighted sum of input samples

Lagrange Interpolation Algorithm

- Since

$$
P_{k}\left(t_{r}\right)=\left\{\begin{array}{ll}
1, & k=r, \\
0, & k \neq r,
\end{array} \quad-N_{1} \leq r \leq N_{2}\right.
$$

it follows from the previous 3 equations that

$$
\hat{x}_{a}\left(t_{k}\right)=x_{a}\left(t_{k}\right), \quad-N_{1} \leq k \leq N_{2}
$$

Lagrange Interpolation Algorithm

- Example - Design a fractional-rate interpolator with an interpolation factor of 3/2 using a 3rd-order polynomial approximation with $N_{1}=2$ and $N_{2}=1$
- The output $y[n]$ of the interpolator is thus computed using

$$
\begin{aligned}
y[n]= & P_{-2}(\alpha) x[n-2]+P_{-1}(\alpha) x[n-1] \\
& +P_{0}(\alpha) x[n]+P_{1}(\alpha) x[n+1]
\end{aligned}
$$

11

Lagrange Interpolation Algorithm

- Here, a polynomial approximation $\hat{x}_{a}(t)$ to $x_{a}(t)$ is defined as

$$
\hat{x}_{a}(t)=\sum_{k=-N_{1}}^{N_{2}} P_{k}(t) x[n+k]
$$

where $P_{k}(t)$ are the Lagrange polynomials given by

$$
P_{k}(t)=\prod_{\substack{\ell=-N_{1} \\ \ell \neq k}}^{N_{2}}\left(\frac{t-t_{\ell}}{t_{k}-t_{\ell}}\right), \quad-N_{1} \leq k \leq N_{2}
$$

Copyright © 2010, S. K. Mitra

Lagrange Interpolation Algorithm

- Figure below shows the locations of the samples of the input and the output for an interpolator with a conversion factor of $3 / 2$
- Locations of the output samples $y[n]$, $y[\mathrm{n}+1]$, and $y[\mathrm{n}+2]$ in the input sample domain are marked with an arrow

Lagrange Interpolation Algorithm

- The value of α for computation of $y[n+1]$, to be labeled α_{1}, is $2 / 3$
- Substituting this value of α in the expressions for the Lagrange polynomial coefficients we get
$P_{-2}\left(\alpha_{1}\right)=0.0617, P_{-1}\left(\alpha_{1}\right)=-0.2963$
$P_{0}\left(\alpha_{1}\right)=0.7407, \quad P_{1}\left(\alpha_{1}\right)=0.4938$

Lagrange Interpolation
 Algorithm

- The value of α for computation of $y[n+2]$, to be labeled α_{2}, is $4 / 3$
- Substituting this value of α in the expressions for the Lagrange polynomial coefficients we get
$P_{-2}\left(\alpha_{2}\right)=-0.1728, P_{-1}\left(\alpha_{2}\right)=0.7407$
$P_{0}\left(\alpha_{2}\right)=-1.2963, \quad P_{1}\left(\alpha_{2}\right)=1.7284$

Copyright © 2010, S. K. Mitra

Lagrange Interpolation Algorithm

- Substituting the values of the Lagrange polynomial coefficients in the interpolator output equation for $n, n+1$, and $n+2$, and combining the three equations into a matrix

17
Copyright © 2010, S. K. Mitra

Lagrange Interpolation
 Algorithm

- The input-output relation of the interpolation filter can be compactly written as

$$
\left[\begin{array}{c}
y[n] \\
y[n+1] \\
y[n+2]
\end{array}\right]=\mathbf{H}\left[\begin{array}{c}
x[n-2] \\
x[n-1] \\
x[n] \\
x[n+1]
\end{array}\right]
$$

where \mathbf{H} is the block coefficient matrix

- For the factor-of-3/2 interpolator, we have

Lagrange Interpolation Algorithm

- It should be evident from an examination of

that the filter coefficients to compute $y[n+3], y[n+4]$, and $y[n+5]$ are again given by the same block matrix \mathbf{H}

$$
\left[\begin{array}{l}
y[n+3] \\
y[n+4] \\
y[n+5]
\end{array}\right]=\mathbf{H}\left[\begin{array}{c}
x[n] \\
x[n+1] \\
x[n+2] \\
x[n+3]
\end{array}\right]
$$

Lagrange Interpolation Algorithm

- The next set of length-3 output vector is then computed using

$$
\left[\begin{array}{l}
y[n+3] \\
y[n+4] \\
y[n+5]
\end{array}\right]=\mathbf{H}\left[\begin{array}{l}
x[n+2] \\
x[n+3] \\
x[n+4] \\
x[n+5]
\end{array}\right]
$$

and so on

Lagrange Interpolation Algorithm

- Because of the factor-of-2 down-sampling, the next set of input samples appearing at the input of the block filter \mathbf{H} is $x[n+2]$, $x[n+3], x[n+4]$, and $x[n+5]$

Lagrange Interpolation Algorithm

- In practice, the overall system delay of the fractional rate interpolator will be 3 sample periods
- Hence, the input-output relation of a practical interpolator will be

$$
\left[\begin{array}{c}
y[n] \\
y[n+1] \\
y[n+2]
\end{array}\right]=\mathbf{H}\left[\begin{array}{c}
x[n] \\
x[n+1] \\
x[n+2] \\
x[n+3]
\end{array}\right]
$$

Lagrange Interpolation Algorithm

- \Longleftrightarrow The desired interpolation filter is a time-varying filter
- A realization of the interpolator is given below

Lagrange Interpolation Algorithm

- A realization of the factor-of-3 interpolator in the form of a time-varying filter is shown below

Lagrange Interpolation Algorithm

- The coefficients of the 5-th order timevarying FIR filter have a period of 3 and are assigned the values indicated below

Time	$h_{0}[n]$	$h_{1}[n]$	$h_{2}[n]$	$h_{3}[n]$	$h_{4}[n]$	$h_{5}[n]$
n	$P_{1}\left(\alpha_{0}\right)$	$P_{0}\left(\alpha_{0}\right)$	$P_{-1}\left(\alpha_{0}\right)$	$P_{-2}\left(\alpha_{0}\right)$	0	0
$n+1$	0	$P_{1}\left(\alpha_{1}\right)$	$P_{0}\left(\alpha_{1}\right)$	$P_{-1}\left(\alpha_{1}\right)$	$P_{-2}\left(\alpha_{1}\right)$	0
$n+2$	0	0	$P_{1}\left(\alpha_{2}\right)$	$P_{0}\left(\alpha_{2}\right)$	$P_{-1}\left(\alpha_{2}\right)$	$P_{-2}\left(\alpha_{2}\right)$

Lagrange Interpolation Algorithm

- A digital filter realization of the equation on the previous slide leads to the Farrow structure shown below

- In the above structure

$$
\begin{aligned}
H_{0}(z) & =-\frac{1}{6} z^{-2}+\frac{1}{2} z^{-1}-\frac{1}{2}+\frac{1}{6} z \\
H_{1}(z) & =\frac{1}{2} z^{-1}-1+\frac{1}{2} z \\
H_{2}(z) & =\frac{1}{6} z^{-2}-z^{-1}+\frac{1}{2}+\frac{1}{3} z
\end{aligned}
$$

Lagrange Interpolation Algorithm

- Substituting the expressions for the Lagrange polynomials in the output equation we arrive at

$$
\begin{aligned}
y[n]= & \alpha^{3}\left(-\frac{1}{6} x[n-2]+\frac{1}{2} x[n-1]-\frac{1}{2} x[n]+\frac{1}{6} x[n+1]\right) \\
& +\alpha^{2}\left(\frac{1}{2} x[n-1]-x[n]+\frac{1}{2} x[n+1]\right) \\
& +\alpha\left(\frac{1}{6} x[n-2]-x[n-1]+\frac{1}{2} x[n]+\frac{1}{3} x[n+1]\right) \\
& +x[n]
\end{aligned}
$$

Lagrange Interpolation Algorithm

- In the Farrow structure only the value of α is changed periodically with the remaining digital filter structure kept unchanged
- Figures on the next slide show the input and the output of the above interpolator for a sinusoidal input of frequency of 0.05 Hz sampled at a $1-\mathrm{Hz}$ rate

Spline Interpolation

- Here, a polynomial approximation $\hat{x}_{a}(t)$ to $x_{a}(t)$ is made using the B-spline functions as the basis
- The time instants $t_{k}, m \leq k \leq N+m$, at which the samples $x_{a}\left(t_{k}\right)$ of the signal $x_{a}(t)$ are known, are called knots

Spline Interpolation

- The L th order B-spline $B_{m}^{(L)}(t)$ defined in the interval $\left[t_{m}, \ldots, t_{N+m}\right]$ is given by

$$
B_{m}^{(L)}(t)=\sum_{i=m}^{N+m} a_{i} \phi_{i}(t)
$$

where $\phi_{i}(t)$, called truncated power functions, are polynomials of degree L :

$$
\phi_{i}(t)=\left(t-t_{i}\right)_{+}^{L}=\left\{\begin{array}{cl}
0, & t<t_{i} \\
\left(t-t_{i}\right)^{L}, & t \geq t_{i}
\end{array}\right.
$$

Spline Interpolation

- The polynomial approximation $\hat{x}_{a}(t)$ to $x_{a}(t)$ is given by

$$
\hat{x}_{a}(t)=\sum_{k=m}^{N+m} B_{k}^{(L)}(t) x_{a}\left(t_{k}\right)
$$

- The coefficients a_{i} in $B_{m}^{(L)}(t)=\sum_{i=m}^{N+m} a_{i} \phi_{i}(t)$ are determined by imposing specific conditions at the knots t_{m} and t_{N+m}

Spline Interpolation

- It follows from the definition of the truncated power functions that $B_{m}^{(L)}(t)=0$ for $t \leq t_{m}$
- An additional condition, $B_{m}^{(L)}(t)=0$ for $t \geq t_{N+m}$ is also imposed
- Hence, for $t \geq t_{N+m}$ we have

$$
\sum_{i=m}^{N+m} a_{i}\left(t-t_{i}\right)^{L}=0
$$

33

Spline Interpolation

- The set of equations at the bottom of the previous slide has nontrivial solutions for N $>L$
- An elegant and simple solution exists for $N=L+1$
- We develop the solution for the cubic Bspline next

Cubic B-Spline

- Here $L=3$ and therefore $N=4$
- For notational convenience, we choose $m=0$
- In this case, $\sum_{i=0}^{4} a_{i}\left(t-t_{i}\right)^{3}=0$ in matrix form becomes

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
t_{0} & t_{1} & t_{2} & t_{3} & t_{4} \\
t_{0}^{2} & t_{1}^{2} & t_{2}^{2} & t_{3}^{2} & t_{4}^{2} \\
t_{0}^{3} & t_{1}^{3} & t_{2}^{3} & t_{3}^{3} & t_{4}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Cubic B-Spline

- Since the matrix equation given in the previous slide is an underdetermined system and all rows are linearly independent, assuming $t_{i} \neq t_{j}$ if $i \neq j$, we can choose any one coefficient as the free parameter and solve for the other 4 coefficients in terms of the free parameter

Cubic B-Spline

- Considering a_{4} to be the free parameter, we rewrite the matrix equation in Slide 59 as

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
t_{0} & t_{1} & t_{2} & t_{3} \\
t_{0}^{2} & t_{1}^{2} & t_{2}^{2} & t_{3}^{2} \\
t_{0}^{3} & t_{1}^{3} & t_{2}^{3} & t_{3}^{3}
\end{array}\right]=-a_{4}\left[\begin{array}{c}
1 \\
t_{4} \\
t_{4}^{2} \\
t_{4}^{3}
\end{array}\right]
$$

- We can solve the above matrix equation for a_{i} using Cramer’s rule

Cubic B-Spline

- The numerator and the denominator of the previous equation are determinants of Vandermonde matrices and have nonzero values if the knots t_{i} are distinct
- It can be shown that

$$
a_{0}=-a_{4} \frac{\left(t_{4}-t_{1}\right)\left(t_{4}-t_{2}\right)\left(t_{4}-t_{3}\right)}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)\left(t_{0}-t_{3}\right)}
$$

Cubic B-Spline

- Choosing the free parameter a_{4} to be

$$
a_{4}=\frac{1}{\left(t_{4}-t_{0}\right)\left(t_{4}-t_{1}\right)\left(t_{4}-t_{2}\right)\left(t_{4}-t_{3}\right)}
$$

we arrive at

$$
a_{0}=\frac{1}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)\left(t_{0}-t_{3}\right)\left(t_{0}-t_{4}\right)}
$$

- In a similar manner the expressions for the remaining 3 coefficients can be derived and 40 are given in the next slide

$$
\begin{gathered}
\text { Culoic B-Spline } \\
a_{1}=\frac{1}{\left(t_{1}-t_{0}\right)\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)\left(t_{1}-t_{4}\right)} \\
a_{2}=\frac{1}{\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)\left(t_{2}-t_{4}\right)} \\
a_{3}=\frac{1}{\left(t_{3}-t_{0}\right)\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{3}-t_{4}\right)} \\
41 \quad \text { copyrigt © 2010, s. . . mirra }
\end{gathered}
$$

Cubic B-Spline

- For example,

B-Spline

- In the general case, the coefficients are given by

$$
a_{i}=\frac{(-1)^{L+1}}{\prod_{k=m, i \neq k}^{N+m}\left(t_{i}-t_{k}\right)}, \quad m \leq i \leq N+m
$$

and the L th order B-spline function is given by

$$
B_{m}^{(L)}(t)=(-1)^{L+1} \sum_{i=m}^{N+m} \frac{\left(t-t_{i}\right)_{+}^{L}}{\prod_{k=m, i \neq k}^{N+m}\left(t_{i}-t_{k}\right)}
$$

42
Copyright © 2010, S. K. Mitra

Normalized B-Spline

- Since the maximum value of the B-spline decreases with increasing L, it is a common practice to use instead, a normalized form given by

$$
\beta_{m}^{(L)}(t)=\left(t_{N+m}-t_{m}\right) B_{m}^{(L)}(t)
$$

for interpolation

- In digital signal processing applications, the knots are uniformly spaced at sampling instants
43
Copyright © 2010, S. K. Mitra

Second-Order Normalized B-Spline

- Here $L=2$ and hence, $N=3$
- The knots are at $t_{i}=i, m \leq i \leq m+3$
- As a result

$$
\begin{aligned}
& a_{m}=-\frac{1}{(m-m-1)(m-m-2)(m-m-3)}=\frac{1}{6} \\
& a_{m+1}=-\frac{1}{(m+1-m-1)(m+1-m-2)(m+1-m-3)}=-\frac{1}{2} \\
& a_{m+2}=-\frac{1}{(m+2-m-1)(m+2-m-2)(m+2-m-3)}=\frac{1}{2} \\
& a_{m+3}=-\frac{1}{(m+3-m-1)(m+3-m-2)(m+3-m-3)}=-\frac{1}{6} \\
& \text { Copyright ©210, s. к. Mitra }
\end{aligned}
$$

Second-Order Normalized B-Spline

- The expression for the second-order Bspline is given below:

$$
B_{m}^{(2)}(t)=\left\{\begin{array}{cc}
0, & t<m \\
a_{m}(t-m)^{2}, & m \leq t<m+1 \\
a_{m}(t-m)^{2}+a_{m+1}(t-m-1)^{2}, & m+1 \leq t<m+2 \\
a_{m}(t-m)^{2}+a_{m+1}(t-m-1)^{2}+a_{m+1}(t-m-1)^{2}, & m+2 \leq t<m+3 \\
0, & t \geq m+3
\end{array}\right.
$$

Spline Interpolation

- The interpolation formula is obtained by forming a linear combination of the normalized B-splines weighted by the known values of the function $x_{a}(t)$ at the knots $t_{k}=n+k$
- The interpolated value at the time instant $t^{\prime}=t_{0}+\alpha T_{\text {in }}$ is given by

$$
\begin{aligned}
\hat{x}_{a}\left(t^{\prime}\right) & =\hat{x}_{a}\left(t_{0}+\alpha T_{i n}\right) \\
& =y[n]=\sum_{k=m}^{L+m+1} \beta_{k}^{(L)}\left(t_{0}+\alpha T_{i n}\right) x[n+k]
\end{aligned}
$$

Spline Interpolation

- It should be noted that, unlike the Lagrange interpolation algorithm, in the case of spline interpolation, $\hat{x}_{a}\left(t_{k}\right) \neq x_{a}\left(t_{k}\right)$
- We illustrate next the development of the interpolation formula using the normalized second-order B-spline

$$
\begin{aligned}
& \text { Interpolation Using } \\
& \text { Second-Order B-Spline } \\
& \text { - As can be seen from the above figure, the } \\
& \text { position } t^{\prime}=1+\alpha \text { of the desired value } y[n] \\
& \text { of } x_{a}(t) \text { is between the knots } t=1 \text { and } t=2 \\
& \text { - Here we thus have } \\
& y[n]=\sum_{k=-1}^{2} \beta_{k}^{(2)}(\alpha) x[n+k] \\
& 51
\end{aligned}
$$

Interpolation Using Second-Order B- Spline

- The interpolation formula is then given by

$$
\begin{aligned}
y[n]=\sum_{k=-1}^{1} \beta_{k}^{(2)}(\alpha) x[n+k] & \\
=\left(\frac{\alpha^{2}}{2}-\alpha+\frac{1}{2}\right) x[n-1] & +\left(-\alpha^{2}+\alpha+\frac{1}{2}\right) x[n] \\
& +\frac{\alpha^{2}}{2} x[n+1]
\end{aligned}
$$

Interpolation Using SecondOrder B- Spline

- The interpolation process is illustrated below

Interpolation Using Second-Order B- Spline

 where$$
\begin{aligned}
& \beta_{-1}^{(2)}(\alpha)=\frac{\alpha^{2}}{2}-\alpha+\frac{1}{2} \\
& \beta_{0}^{(2)}(\alpha)=-\alpha^{2}+\alpha+\frac{1}{2} \\
& \beta_{1}^{(2)}(\alpha)=\frac{\alpha^{2}}{2} \\
& \beta_{2}^{(2)}(\alpha)=0
\end{aligned}
$$

Interpolation Using
 Second-Order B- Spline

- The equation in the previous slide can be rewritten as

$$
\begin{aligned}
y[n]= & \left(\frac{1}{2} x[n-1]+\frac{1}{2} x[n]\right)+\alpha(-x[n-1]+x[n]) \\
& +\alpha^{2}\left(\frac{1}{2} x[n-1]-x[n]+\frac{1}{2} x[n+1]\right)
\end{aligned}
$$

leading to the Farrow structure shown on the next slide

Interpolation Using Second-Order B- Spline

$$
\begin{aligned}
& x[n] \\
& H_{0}(Z)=\frac{1}{2} Z^{-1}-1+\frac{1}{2} Z \\
& H_{1}(Z)=-Z^{-1}+1 \\
& H_{2}(Z)=\frac{1}{2} Z^{-1}+\frac{1}{2}
\end{aligned}
$$

Arbitrary-Rate Sampling Rate Converter

Practical Considerations

- A direct design of a fractional-rate sampling rate converter in most applications is not practical
- This is due to two main reasons:
- length of the time-varying filter needed is usually very large
- real-time computation of the corresponding filter coefficients is nearly impossible

Arbitrary-Rate Sampling Rate

 Converter- As a result, the fractional-rate sampling rate converter is almost realized in a hybrid form as indicated below for the case of an interpolator

- The digital sampling rate converter can be implemented in a multistage form to reduce the computational complexity

