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CIC Decimators and CIC Decimators and 
InterpolatorsInterpolators

• An elegant application of multirate digital 
signal processing is in the design of the 
oversampling A/D converter

• In this type of converter, the analog signal is 
sampled at a rate much higher than the 
Nyquist rate, resulting in very closely 
sampled samples
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• As a consequence, the difference between 
the amplitudes of two consecutive samples 
is very small, permitting it to be represented 
in digital form using very few bits, usually 
one bit

• The sampling rate is then decreased by 
passing the digital signal through a factor-
of-M decimator to lower the sampling rate 
from          to TFTMF
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• The decimator is designed by cascading an 
anti-aliasing lowpass M-th band digital filter 
to reduce the bandwidth of the input digital 
signal to π/M with a factor-of-M down-
sampler

• The simplest lowpass FIR filter that can be 
employed is the box-car filter (also called a 
running-sum filter) with a transfer function
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• A more convenient form of the box-car 
filter transfer function is given by

• A multiplier-less realization of the factor-
of-M decimator is shown below

11
1)( −

−

−
−=

z
zzH

M

+

_1z

+

_1z

+

_
x[n] +

+
M y[n]

Copyright © 2010, S. K. Mitra
5

CIC Decimators and CIC Decimators and 
InterpolatorsInterpolators

• The recursive running-sum filter can also be 
employed to design a computationally 
efficient interpolator

• A multiplier-less factor-of-L interpolator
designed using a running-sum filter is 
shown below
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• Since the decimator based on a running-sum 

filter does not provide sufficient out-of-
band attenuation, often a multistage 
decimator formed by a cascade of running-
sum decimators, more commonly known as 
cascaded integrator comb (CIC) filters, is 
used in practice
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• The structure of a two-stage CIC decimator
is shown below

• It can be seen that the first stage is an 
integrator and the last stage is a comb filter
with a factor-of-R down-sampler in the 
middle
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• The structure shown is equivalent to a 

factor-of-R decimator with a length-RM
running-sum decimation filter

• Further flexibility in the design of a CIC 
decimator is obtained by including K
integrator sections before the K comb filters 
after the down-sampler as shown in the bext
slide
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• The transfer function of the decimation 
filter is thus given by

• The parameters M and K can be adjusted for 
a given down-sampling factor R to yield the 
desired out-of-band attenuation
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• A two-stage CIC interpolator is obtained by 
interchanging the positions of the integrator 
and the comb filter of the two-stage CIC 
decimator and replacing the down-sampler 
with an up-sampler as shown below

x[n] +

_1z

+

+
R

_Lz

++

_
y[n]

Copyright © 2010, S. K. Mitra
11

CIC InterpolatorCIC Interpolator

• Additional flexibility in the design of a CIC 
interpolator is obtained by including K
comb filters before and K integrators after 
the up-sampler as shown below
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• The CIC decimators and interpolators are 
multiplier-less structures and thus 
computationally efficient in addition being 
easy to implement

• However, the wordlength of the adder in 
each integrator grows rapidly in the 
multistage implementation
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• This problem can be avoided by realizing 
the running-sum filter in each stage as an 
FIR filter

• Consider the two-stage decimator shown 
below for M = 1
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• The transfer function of the decimation 
filter is now given by

• If R is a power-of-2 integer, say           , H(z)
can be rewritten in a factored form

)1(21
1
1 1)( 1

−−−−
−−

−− +++== R
z
z zzzzH R

K

JR 2=

)1()1)(1)(1()(
12421 −−−−− ++++=

J
zzzzzH L

Copyright © 2010, S. K. Mitra
15

FIR Decimation and FIR Decimation and 
Interpolation FiltersInterpolation Filters

• The above decomposition then leads to the 
cascaded structure shown below with a 
simple first-order FIR filter in each stage
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• In the general case, when          , each first-
order FIR filter with a transfer function          
is replaced with an M-th order FIR filter 
with a transfer function

• The integer-valued coefficients of the 
decimation filter transfer functions can be 
expressed in the form         , leading to an 
implementation of the multiplication 
operation using only shift-and-add 
operations
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Example – We illustrate the implementation 
for M = 5

• The transfer function of the FIR decimation 
filter in each stage is then given by
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• Thus
• A schematic representation of a single-stage 

factor-of-2 decimator based on the above 
polyphase decomposition is indicated below
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• A realization of            based on the second 
direct form FIR structure is shown below

• Now the multiplier coefficient of value 5
can be expressed as                       and the 
multiplier coefficient of value 10 can be 
expressed as 
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• Hence a multiplier-less realization of          
is thus as shown below

• The above realization requires 3 shift 
operations and 2 additions in addition to the 
2 original adders
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• Further reductions in the number of shift 
and add operations is obtained by
substructure sharing technique

• To this end, we observe that the shift-and-
add operations            can be written as223 +
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• The shift-and-add operations           in the 
expression                 can be shared with the 
same at the input to the delay chain 
resulting in the final structure shown below

• The above realization requires 2 shift 
operations and 3 additions
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