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Optimizing the Half-band Filters in Multistage 

Decimation and Interpolation 
  by Richard Lyons [January 2016] 

 

This blog discusses a not so well-known rule regarding the filtering in 

multistage decimation and interpolation by an integer power of two. I'm 

referring to sample rate change systems using half-band lowpass filters 

(LPFs) as shown in Figure 1. Here's the story. 
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    Figure 1: Multistage decimation and interpolation using  

              half-band filters. 

 

Multistage Decimation – A Very Brief Review 

Figure 2(a) depicts the process of decimation by an integer factor D. That 

is, lowpass FIR (linear-phase) filtering followed by downsampling. The 

downsampling operation '↓D' means discard all but every Dth input sample. 
 

When the desired decimation factor D is large, say D > 10, a large number of 

multipliers is necessary within the tapped-delay line of lowpass filter LPF0. 

Early DSP pioneers, upon whose shoulders we stand, determined that a more 

computationally efficient scheme uses multiple decimation stages as shown in 

Figure 2(b). There the product of integers D1 and D2 is our desired overall 

decimation factor, that is, D1D2 = D. The point is, in Figure 2 the sum of the 

number of multipliers in filters LPF1 and LPF2 will be significantly less than 

the number of multipliers in LPF0.  
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  Figure 2: Decimation by integer factor D: (a) single-stage; 

            (b) multistage. 

 

And, happily, in real-time operations the LPF2 filter operates at a lower 

clock rate than the LPF0 filter. So for decimation by D = 10, the smart thing 

to do is use the Figure 2(b) implementation where D1 = 2 and D2 = 5. Let's now 

look at multistage decimation by an integer power of two. 
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Multistage Decimation by an Integer Power of Two 

The first focus of this blog is multistage decimation by an integer power of 

two, such as the decimation by D = 8 process shown in Figure 3. The hx[k] 

variables in that figure represent the coefficients of the lowpass FIR 

filters. 
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  Figure 3: Three-stage decimation by D = 8 using half-band  

            lowpass filters. Filter impulse responses are hn[k]. 

 

Multistage decimation by an integer power of two is super efficient because 

all the filters are half-band lowpass filters, where roughly every other 

filter coefficient is zero-valued. (For example, a 31-tap half-band filter 

will have only 17 nonzero-valued coefficients). 

 

Years ago when I first saw Figure 3 I thought, "Neat. All I have to do is 

pass my input signal through a cascade of three identical 'half-band filter 

and downsample by two' stages." That is, it seemed convenient to use the same 

half-band filter for each of the three stages. As was pointed out to me, that 

would be a mistake! [1,2]  

 

   Indeed, the most efficient implementation of  

   Figure 3 is to use three different half-band filters. 

 

As it turns out, the number of h1[k] coefficients can be less than the number 

of h2[k] coefficients. And the number of h2[k] coefficients can be less than 

the number of h3[k] coefficients. 

 

We prove this important principle by way of example starting with Figure 4. 

That figure shows the spectra of the outputs of the initial operations in 

Figure 3 when fs,in = 8 kHz. Figure 4(a) shows the spectrum of our x[n] input 

signal and the dashed lines in Figure 4(b) show the frequency magnitude 

response, |H1(f)|, of our first half-band filter. Figure 4(c) shows that 

filter's |A(f)| output spectrum.    
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     Figure 4: Initial Figure 3 decimation by D = 8 processing: 

               output spectra. 

 

Figure 4(d) shows that after our first downsample by two operation aliasing 

does occur. However, that aliased spectral energy (which does not contaminate 

the spectrum of our dark-shaded signal of interest) will be eliminated in the 

follow on filtering. Figure 5 shows the spectra of the outputs of the 

remaining operations in Figure 3.  
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     Figure 5: Final Figure 3 decimation by D = 8 processing: 

               output spectra. 

 

We see in Figures 3 and 4 that the normalized transition region widths, the 

dashed lines of |H1(f)|, |H2(f)|, and |H3(f)|, of the three half-band filters 

are different. The transition region widths of the h1[k] and h2[k] filters 

need not be as narrow as the transition region width of the h3[k] filter. And 

if the numbers of multipliers in the Figure 3 filters are N1, N2, and N3, we 

can say: 

 

    For decimation: N1 < N2 < N3. 

 

Thus in our relentless pursuit of computational efficiency, for optimum 

multistage decimation those three half-band filters will each have a 

different number of multipliers. That situation is the main point I wanted to 

make in this blog. Let's conclude this blog by taking a quick look at 

multistage interpolation by an integer power of two. 

 

Multistage Interpolation by an Integer Power of Two 

Figure 6 depicts multistage interpolation by the factor I = 8. An upsampling 

operation '↑2' means insert one zero-valued sample between each of the 
upsampler's input samples. The lowpass filters in Figure 6 are linear-phase, 

symmetrical-coefficient, half-band filters. 
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     Figure 6: Three-stage interpolation by I = 8 using  

               half-band lowpass filters 

 

Similar to the multistage decimation in Figure 3, the most efficient 

implementation of Figure 6's multistage interpolation is to use three 

different half-band filters. That is, in Figure 6 the number of h3[k] 

coefficients can be less than the number of h2[k] coefficients. And the number 

of h2[k] coefficients can be less than the number of h1[k] coefficients. 

 

We show this situation by way of example starting with Figure 7. That figure 

shows the spectra of the outputs of the initial operations in Figure 6 when 

fs,in = 1000 Hz. Figure 7(a) shows the spectrum of our x[n] input signal. 

Figure 7(b) shows the spectrum of Figure 6's upsampled by 2 a[n] sequence. 

The shaded spectral components in Figure 7(b) are the spectral images 

generated by our first upsampling by two operation. An explanation of why 

those images exist is given in reference [3]. 

 

The dashed lines in Figure 7(b) show the frequency magnitude response, 

|H1(f)|, of our first half-band filter whose function is to eliminate the 

unwanted shaded spectral images in |A(f)|. 
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  Figure 7: Initial three-stage interpolation by I = 8 processing:  

            output spectra. 

 

Figure 7(c) shows that filter's |A(f)| output spectrum. Figure 8 shows the 

output spectra of the four remaining operations in Figure 6.  
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  Figure 8: Final three-stage interpolation by I = 8 processing:  

            output spectra. 

 

By careful examination of the frequency axis values, we can see in Figures 7 

and 8 that the normalized transition region widths, the dashed lines of 

|H1(f)|, |H2(f)|, and |H3(f)|, of the three half-band filters are different. 

The transition region widths of the h2[k] and h3[k] filters need not be as 

narrow as the transition region width of the h1[k] filter. Thus if the numbers 

of multipliers in the Figure 6 filters are N1, N2, and N3, we can say: 

 

    For interpolation: N1 > N2 > N3. 

 

Conclusion 

I have shown that multistage sample rate change by an integer power of two is 

most computationally efficient when the half-band filters each have a 

different number of multipliers. To quote Forrest Gump, "And that's all I 

have to say about that." 
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