

Aalto University

School of Electrical Engineering Department of Signal Processing and Acoustics

S-88.4212 Signal Processing in Telecommunications II Fall 2013

Lecture 2: ML Estimation Principles

Dr. Stefan Werner stefan.werner@aalto.fi Office SG410, Reception Monday 10-11

Timetable

L1	Introduction; models	for channels and	comms. systems
----	----------------------	------------------	----------------

L2**ML Estimation principles**

- **L3** Synchronization: Overview
- **L4** Carrier frequency estimation I
- **L5** Carrier frequency estimation II
- **L6** Carrier phase estimation I
- **L7** Carrier phase estimation II
- **L8** Symbol timing estimation I
- L9 Symbol timing estimation II
- L10 Channel estimation I
- L11 Channel estimation II, course review

Exam 12.12. Exam Thursday 12-15 (Check!)

Contents of Lecture 2

I What is synchronization

II ML estimation principles

III ML example: sinusoid phase estimation

IV Cramer-Rao lower bound

The material in this lecture is mostly based on the book

S. Kay: Fundamentals of Statistical Signal Processing

- Estimation Theory, Prentice-Hall 1993.

L2: ML Estimation Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 3 (43)

I. What is synchronization

What is synchronization

Synchronous digital transmission

- Information is carried by uniformly spaced pulses
- Signal is known except for:
 - Data symbols
 - Reference parameters
- **Baseband** pulse amplitude modulation:
 - Matched filtering & symbol-rate sampling
 - Optimum sampling time at pulse peaks for max eye opening and min errors
 - Timing (clock) synchronizer

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 5 (43)

What is synchronization...

- Coherent passband transmission:
 - Signal is modulated to a sinusoidal carrier frequency
 - For coherent demodulation, a local reference sinusoid is needed with the same *frequency* and *phase*
 - Requires carrier frequency and phase estimation
- Alternatives to coherent demodulation
 - Differentially coherent: phase difference between consecutive symbol samples sufficient
 - Noncoherent: decisions based on carrier envelope only
 - Simpler to implement, worse performance
 - Not considered in this course!

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 6 (43)

What is synchronization...

- · Higher levels of synchronization
 - Block coding: word synchronizers needed for identification of block boundaries
 - Convolutional coding: fixed symbol segments used, node synchronizers needed to mark the start of each segment
 - Frame synchronizers for time-shared channels (like TDMA)
 - Network synchronization: transmitter timing adjusted in e.g.
 PCM networks
 - Also beyond our scope!

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 7 (43)

What is our synchronization

- Concentrate on the estimation of
 - timing
 - carrier frequency and
 - carrier phase parameters

in passband transmission

Review ML estimation principles first

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

L2: ML Estimation

Page 8 (43)

II. Maximum Likelihood (ML) Estimation

Maximum Likelihood (ML) Estimation

- Historical development of digital synchronization algorithms:
 - heuristic methods
 - application of ML estimation methods
- We want to employ the ML method systematically for different synchronization tasks

- Problem of extracting values of parameters from a discrete-time (continuous) waveform or a data-set
- Mathematically, we have the N-point data set $\{r(0), r(1), \dots r(N-1)\}\$, which depends on our unknown synchronization parameters, v
- Determine v based on the data, or define an estimator

$$\hat{\mathbf{v}} = g[r(0), r(1), \dots, r(N-1)]$$

where g is some function

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 11 (43)

ML Estimation...

- To determine good estimators the first step is to mathematically model the data
- Data is inherently $random \Rightarrow$ we describe it by its probability density function (PDF)

$$p(\mathbf{r}; \mathbf{v}) = p[r(0), r(1), \dots, r(N-1); \mathbf{v}]$$

- PDF is parameterized by the unknown parameter v (denoted by a semicolon)
 - We have a class of PDFs where each one is different due to a different value of v

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 12 (43)

L2: ML Estimation

• Simple example: N = 1 sample, v denote the mean, the PDF might be

$$p[r(0);v] = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} [r(0)-v]^2\right\}$$

- Since the value of v affects the probability of r(0), we should be able to guess v from r(0)
- In an actual problem we must choose a proper PDF
 - Should be consistent with the problem constraints
 - Mathematically tractable
- In this course the PDF will take form above (AWGN channel)

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 13 (43)

ML Estimation...

 Transmitted signal: (baseband model, linear modulation like PAM, MPSK etc.)

$$x(t) = h_{\mathrm{T}}(t) * \sum_{k = -\infty}^{\infty} a_k \delta(t - kT) = \sum_{k = -\infty}^{\infty} a_k h_{\mathrm{T}}(t - kT)$$

 a_k = data symbols to be transmitted

 $h_{\rm T}(t)$ = transmitted continuous-time waveform

 $\delta(t)$ = Dirac delta function

• Received continuous-time signal:

$$r(t) = x(t, \mathbf{v}) + w(t)$$

v = vector of unknown sync parameters

r(t) = received signal waveform

w(t) = additive noise

Consider different trial sets v₁,v₂ for the sync parameters and the corresponding set of realizations r (vector representation of r(t)) for the received signal

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 15 (43)

ML Estimation...

• Define probability density function (PDF) of ${\bf r}$ with the parameter set ${\bf v}_1$

$$p(\mathbf{r}; \mathbf{v}_1)$$

• The parameter set \mathbf{v}_1 is more likely than \mathbf{v}_2 if

$$p(\mathbf{r}; \mathbf{v}_1) > p(\mathbf{r}; \mathbf{v}_2)$$

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

• The maximum likelihood (ML) solution: find such parameter set **v** that the probability density function

$$p(\mathbf{r}; \mathbf{v})$$

is maximum, or

$$\hat{\mathbf{v}}_{\mathrm{ML}}(\mathbf{r}) = \arg \left\{ \max_{\mathbf{v}} \left\{ p(\mathbf{r}; \mathbf{v}) \right\} \right\}$$

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 17 (43)

ML Estimation...

- Sometimes only a subset u of all the parameters v is of interest (and the remaining set u_R are unwanted)
- Total probability theorem gives the result

$$p(\mathbf{r}; \mathbf{u}) = \int_{-\infty}^{\infty} p(\mathbf{r}; \mathbf{v}) p(\mathbf{u}_{R}) d\mathbf{u}_{R}$$

i.e., the unwanted parameters are *integrated away* (practical approximation: *averaging*)

• The modified ML estimate is then

$$\hat{\mathbf{u}}_{\mathrm{ML}}(\mathbf{r}) = \arg \max_{\mathbf{u}} \{p(\mathbf{r}; \mathbf{u})\}$$

Scalar parameter ML Estimation

 Simple example: Discrete-time received signal is a DC level in zero-mean additive white Gaussian noise (AWGN):

$$r(k) = A + w(k),$$
 $k = 0,1,...,N-1$

where the DC level A is *unknown* but the noise variance σ^2 is *known*. The PDF of the observation vector **r** is

$$p(\mathbf{r}; A) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[\frac{-1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A)^2\right]$$

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 19 (43)

Scalar parameter ML Estimation...

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 20 (43)

Scalar parameter ML Estimation...

- PDF is viewed as a continuous function of the unknown parameter (*likelihood function*, LF)
- For an ML estimate we need to find the *A* that maximizes the likelihood function
- For easier optimization, the likelihood function is usually replaced by the log-likelihood function (LLF)

$$\Lambda(\mathbf{r}; A) = \ln p(\mathbf{r}; A) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A)^2$$

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 21 (43)

Scalar parameter ML Estimation...

The maximum is found by setting the first derivative to zero:

$$\frac{\partial}{\partial A} \Lambda(\mathbf{r}; A) = \frac{-1}{2\sigma^2} \sum_{k=0}^{N-1} (-2) (r(k) - A) = 0$$

$$\iff \sum_{k=0}^{N-1} r(k) = NA$$

$$\Leftrightarrow \hat{A} = \frac{1}{N} \sum_{k=0}^{N-1} r(k)$$

• The conventional *averager* thus gives the ML estimate for a DC level in the AWGN case.

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 22 (43)

Vector parameter ML Estimation

• Let us modify the DC-in-AWGN example so that both A and σ^2 are unknown. The likelihood function looks the same

$$p(\mathbf{r}; \mathbf{v}) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[\frac{-1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A)^2\right]$$

but it is now considered as a function of *two* parameters, or a function of the *vector* parameter

$$\mathbf{v} = \left[A \, \sigma^2 \, \right]^{\mathrm{T}}$$

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 23 (43)

Vector parameter ML Estimation...

• The zero of the derivative of the LLF with respect to (w.r.t.) *A* gives the same equation as before:

$$\frac{\partial}{\partial A} \Lambda(\mathbf{r}; \mathbf{v}) = \frac{-1}{2\sigma^2} \sum_{k=0}^{N-1} (-2) (r(k) - A) = 0$$

• Differentiating w.r.t. to σ^2 yields

$$\frac{\partial}{\partial \sigma^2} \Lambda(\mathbf{r}; \mathbf{v}) = \frac{-N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{k=0}^{N-1} (r(k) - A)^2 = 0$$

L2: ML Estimation

Department of Signal Processing and Acoustics

© Timo I. Laakso & Stefan Werner

Page 24 (43)

Vector parameter ML Estimation...

 Solving these two equations simultaneously gives the ML estimates for the DC level and AWGN variance as

$$\hat{A} = \bar{r} = \frac{1}{N} \sum_{k=0}^{N-1} r(k)$$

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{k=0}^{N-1} (r(k) - \overline{r})^{2}$$

which are the familiar results for sample mean and variance.

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 25 (43)

Construction of MLE algorithms

- In principle, the design of MLE algorithms is easy:
 - 1) Express the LLF, preferably using AWGN model
 - 2) Find the maximum of the LLF
 - Differentiate w.r.t. parameters and set derivatives to zero
 - 3) Solve for desired parameters
- The solution always in terms of received data samples
- The estimator has good properties (unbiased, efficient)
- Not always in neat closed form though!
- Problems: nonlinear dependencies of parameters
 - Try linearizations & other tricks

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 26 (43)

III. ML example: sinusoid phase estimation

ML examples

Consider sinusoidal signal

$$r(k) = A\cos(2\pi f_0 k + \theta) + w(k), \qquad k = 0,1,...,N-1$$

where w(k) is AWGN with known variance σ^2 , and the sine amplitude A and frequency f_0 are known as well.

• The LF is thus a function of the *unknown phase* θ :

$$p(\mathbf{r};\theta) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[\frac{-1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A\cos(2\pi f_0 k + \theta))^2\right]$$

ML examples...

• The log-likelihood function:

$$\Lambda(\mathbf{r};\theta) = C_1 - \frac{1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A\cos(2\pi f_0 k + \theta))^2$$

• Minimization: differentiate LLF w.r.t. θ :

$$\frac{\partial \Lambda(\mathbf{r};\theta)}{\partial \theta} = \frac{-2}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A\cos(2\pi f_0 k + \theta)) A\sin(2\pi f_0 k + \theta) = 0$$

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 29 (43)

ML examples...

This gives equation

$$\sum_{k=0}^{N-1} r(k) \sin(2\pi f_0 k + \hat{\theta}) = A \sum_{k=0}^{N-1} \sin(2\pi f_0 k + \hat{\theta}) \cos(2\pi f_0 k + \hat{\theta})$$

• Simplify:

$$\sum_{k=0}^{N-1} \sin(2\pi f_0 k + \hat{\theta}) \cos(2\pi f_0 k + \hat{\theta}) = \frac{1}{2} \sum_{k=0}^{N-1} \sin(4\pi f_0 k + 2\hat{\theta}) \approx 0$$

when N is large enough and f_0 is not too close to 0 or 0.5.

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

ML examples...

• The approximate MLE can then be solved from

$$\sum_{k=0}^{N-1} r(k) \sin(2\pi f_0 k + \hat{\theta}) = 0$$

• Separate the phase:

$$\sum_{k=0}^{N-1} r(k) \sin(2\pi f_0 k) \cos \hat{\theta} = -\sum_{k=0}^{N-1} r(k) \cos(2\pi f_0 k) \sin \hat{\theta}$$

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 31 (43)

ML examples...

• The approximate MLE for the phase is then solved as:

$$\hat{\theta} = -\arctan\left(\frac{\sum_{k=0}^{N-1} r(k)\sin(2\pi f_0 k)}{\sum_{k=0}^{N-1} r(k)\cos(2\pi f_0 k)}\right)$$

• Closed-form (approximate) solution!

IV. Cramer-Rao lower bound

Cramer-Rao lower bound

- How good is the MLE? How good can *any* estimate be?
- The goodness of any *unbiased* estimate can be measured by the *variance* of the estimate
- The variance depends on PDF (or LF) and its *sensitivity* to the parameter in question
- If the PDF depends only weakly (or not at all!) on the parameter, we cannot expect to get a good estimate from data samples by using any technique

Cramer-Rao lower bounds...

 In the DC-in-AWGN example we obtained the LLF derivative w.r.t. A as

$$\frac{\partial}{\partial A}\Lambda(\mathbf{r};A) = \frac{1}{\sigma^2} \sum_{k=0}^{N-1} (r(k) - A)$$

• By setting this to zero we got the averager as the MLE:

$$\hat{A} = \bar{r} = \frac{1}{N} \sum_{k=0}^{N-1} r(k)$$

• The *second* derivative of the LLF is

$$\frac{\partial^2}{\partial A^2} \Lambda(\mathbf{r}; A) = \frac{-N}{\sigma^2}$$

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 35 (43)

Cramer-Rao lower bounds...

• The second derivative is the negative inverse of the estimator variance:

$$\operatorname{var}(\hat{A}) = \frac{\sigma^2}{N} = \frac{-1}{\frac{\partial^2}{\partial A^2} \Lambda(\mathbf{r}; A)}$$

• It can be shown that this is a lower bound for *all* estimators and *all* PDFs!

Cramer-Rao lower bound

• *Cramer-Rao Lower Bound (Scalar parameter):* For any unbiased estimator of parameter *A*, the estimator variance is lower bounded by

$$\operatorname{var}(\hat{A}) \ge \frac{-1}{\operatorname{E}\left[\frac{\partial^2}{\partial A^2} \Lambda(\mathbf{r}; A)\right]} = CRB$$

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 37 (43)

Cramer-Rao lower bound...

• *Cramer-Rao Lower Bound (Vector parameter):* For any unbiased estimator of parameter vector **v**, the estimator variance is lower bounded by

$$\operatorname{var}(\hat{v}_i) \ge \left[\mathbf{I}^{-1}(\mathbf{v})\right]_{ii} = CRB$$

where

$$\left[\mathbf{I}(\mathbf{v})\right]_{ij} = -\mathbf{E}\left[\frac{\partial^2 \Lambda(\mathbf{r}; \mathbf{v})}{\partial v_i \partial v_j}\right]$$

• I(v) is the *Fisher information matrix*

stimation Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 38 (43)

CRB example: phase estimation

• Consider the CRB for the sine phase estimation problem:

$$r(k) = A\cos(2\pi f_0 k + \theta) + w(k), \qquad k = 0,1,...,N-1$$

• The LLF:

$$\Lambda(\mathbf{r};\theta) = C_1 - \frac{1}{2\sigma^2} \sum_{k=0}^{N-1} (r(k) - A\cos(2\pi f_0 k + \theta)^2)$$

• The first derivative of LLF:

$$\begin{split} \frac{\partial \Lambda(\mathbf{r};\theta)}{\partial \theta} &= \frac{-1}{\sigma^2} \sum_{k=0}^{N-1} \left(r(k) - A \cos(2\pi f_0 k + \theta) \right) A \sin(2\pi f_0 k + \theta) \\ &= \frac{-A}{\sigma^2} \sum_{k=0}^{N-1} \left[r(k) \sin(2\pi f_0 k + \theta) - \frac{A}{2} \sin(4\pi f_0 k + 2\theta) \right] \end{split}$$

L2: ML Estimation

Department of Signal Processing and Acoustics
© Timo I. Laakso & Stefan Werner

Page 39 (43)

CRB example: phase estimation...

• The second derivative of LLF:

$$\frac{\partial^2 \Lambda(\mathbf{r}; \theta)}{\partial \theta^2} = \frac{-A}{\sigma^2} \sum_{k=0}^{N-1} \left[r(k) \cos(2\pi f_0 k + \theta) - A \cos(4\pi f_0 k + 2\theta) \right]$$

• Negative expected value:

$$-\mathbf{E}\left[\frac{\partial^{2} \Lambda(\mathbf{r};\theta)}{\partial \theta^{2}}\right] = \frac{A}{\sigma^{2}} \sum_{k=0}^{N-1} \left[A \cos^{2}(2\pi f_{0}k + \theta) - A \cos(4\pi f_{0}k + 2\theta)\right]$$
$$= \frac{A^{2}}{\sigma^{2}} \sum_{k=0}^{N-1} \left[\frac{1}{2} + \frac{1}{2} \cos(4\pi f_{0}k + 2\theta) - \cos(4\pi f_{0}k + 2\theta)\right]$$
$$\approx \frac{NA^{2}}{2\sigma^{2}}$$

L2: ML Estimation

Department of Signal Processing and Acoustics

© Timo I. Laakso & Stefan Werner

Page 40 (43)

CRB example: phase estimation...

• Hence, the Cramer-Rao bound is obtained as:

$$\operatorname{var}(\hat{\theta}) \ge CRB = \frac{-1}{\operatorname{E}\left[\frac{\partial^2}{\partial A^2} \Lambda(\mathbf{r}; \theta)\right]} = \frac{2\sigma^2}{NA^2} = \frac{1}{N \times SNR}$$

• Better phase estimates (= small variance) can be obtained with high SNR and by increasing the no. of samples

L2: ML Estimation

Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 41 (43)

Modified CRB

- The true Cramer-Rao bound is often difficult to compute
- Requires explicit elimination of nuisance parameters
- Alternative: Replace 2nd derivative with time-domain integral:

$$MCRB(v_i) = \frac{N_0 / 2}{E_u \left[\int_0^{T_0} \left| \partial s(t, \mathbf{v}, \mathbf{u}) / \partial v_i \right|^2 dt \right]}$$

where s(t) is (passband) signal, $\mathbf{v} = \text{sync}$ parameters,

 \mathbf{u} = unwanted parameters

and v_i is the *i*th element in sync parameter vector \mathbf{v} .

• Always MCRB ≤ CRB ('looser bound')

L2: ML Estimation

Department of Signal Processing and Acoustics

© Timo I. Laakso & Stefan Werner

Page 42 (43)

Summary

Today we discussed

I What is synchronization

II ML estimation principles

III ML example: sinusoid phase estimation

IV Cramer-Rao lower bound

Next: Synchronization: overview

L2: ML Estimation Department of Signal Processing and Acoustics © Timo I. Laakso & Stefan Werner

Page 43 (43)