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Contents of Lecture 2

I What is synchronization

I1 ML estimation principles

111 ML example: sinusoid phase estimation
IV Cramer-Rao lower bound

The material in this lecture is mostly based on the book
S. Kay: Fundamentals of Statistical Signal Processing
- Estimation Theory, Prentice-Hall 1993.
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I. What is synchronization




What is synchronization

Synchronous digital transmission
- Information is carried by uniformly spaced pulses
- Signal is known except for:
— Data symbols
— Reference parameters
- Baseband pulse amplitude modulation:
— Matched filtering & symbol-rate sampling

— Optimum sampling time at pulse peaks for max eye opening
and min errors

— Timing (clock) synchronizer
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L2: ML Estimation

What is synchronization...

- Coherent passband transmission:
— Signal is modulated to a sinusoidal carrier frequency

— For coherent demodulation, a local reference sinusoid is
needed with the same frequency and phase

— Requires carrier frequency and phase estimation
- Alternatives to coherent demodulation

Differentially coherent: phase difference between
consecutive symbol samples sufficient

Noncoherent: decisions based on carrier envelope only

Simpler to implement, worse performance
Not considered in this course!
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What is synchronization...

- Higher levels of synchronization

— Block coding: word synchronizers needed for identification

of block boundaries

PCM networks
— Also beyond our scope!

Convolutional coding: fixed symbol segments used, node
synchronizers needed to mark the start of each segment

Frame synchronizers for time-shared channels (like TDMA)
Network synchronization: transmitter timing adjusted in e.g.
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What is our synchronization

- Concentrate on the estimation of
— timing
— carrier frequency and
— carrier phase parameters
in passband transmission
- Review ML estimation principles first
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1. Maximum Likelihood (ML) Estimation

Maximum Likelihood (ML) Estimation

Historical development of digital synchronization
algorithms:
— heuristic methods
— application of ML estimation methods

- We want to employ the ML method systematically for
different synchronization tasks
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ML Estimation...

- Problem of extracting values of parameters from a
discrete-time (continuous) waveform or a data-set

- Mathematically, we have the N-point data set
{r(0), r(2),...r(N-1)}, which depends on our unknown
synchronization parameters, v

- Determine v based on the data, or define an estimator

V=g[r0),r@)...,r(N-1)]
where g is some function
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ML Estimation...

- To determine good estimators the first step is to
mathematically model the data

- Data is inherently random = we describe it by its probability
density function (PDF)

p(r;v) = plr(0),r@)...,r(N -1);v]

- PDF is parameterized by the unknown parameter v (denoted
by a semicolon)

— We have a class of PDFs where each one is different due to a
different value of v
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ML Estimation...

- Simple example: N =1 sample, v denote the mean, the PDF
might be

pIr(0);v]= 21 zexp{—ziz[r(m—v]z}

o

- Since the value of v affects the probability of r(0), we should
be able to guess v from r(0)

- Inan actual problem we must choose a proper PDF
— Should be consistent with the problem constraints
— Mathematically tractable

« In this course the PDF will take form above (AWGN channel)
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ML Estimation...

- Transmitted signal: (baseband model, linear modulation
like PAM, MPSK etc.)

X(0) =y () a5t -KT)= D ahy(t—KT)

ay data symbols to be transmitted
h.(t) = transmitted continuous-time waveform
o(t) = Dirac delta function
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ML Estimation...

- Received continuous-time signal:
r(t) = x(t,v) + w(t)

v = vector of unknown sync parameters
r(t) = received signal waveform
w(t) = additive noise

- Consider different trial sets v,,v, for the sync parameters
and the corresponding set of realizations r (vector
representation of r(t) ) for the received signal
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ML Estimation...

- Define probability density function (PDF) of r with the
parameter set v,

p(rivy)

- The parameter set v, is more likely than v, if

p(r;vy) > p(r;vy)
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ML Estimation...

- The maximum likelihood (ML) solution: find such
parameter set v that the probability density function

p(r;v)

is maximum, or

¥y (r) =argimax{p(r; v)}
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ML Estimation...

- Sometimes only a subset u of all the parameters v is of
interest (and the remaining set ug are unwanted)

- Total probability theorem gives the result
p(r;u) = [ p(r;v)p(ug)dug

I.e., the unwanted parameters are integrated away
(practical approximation: averaging)

- The modified ML estimate is then

0y, (r) = arg{max {p(r; u)}
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Scalar parameter ML Estimation

- Simple example: Discrete-time received signal is a DC

level in zero-mean additive white Gaussian noise
(AWGN):
r(k)= A+wk), k=01..,N-1

where the DC level A is unknown but the noise variance &2

is known. The PDF of the observation vector r is

|0(Ir;A)=(2 12)N,2 eXp{ 6122 r(k)—A) }
o k=0
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Scalar parameter ML Estimation...
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Scalar parameter ML Estimation...

PDF is viewed as a continuous function of the unknown
parameter (likelihood function, LF)

For an ML estimate we need to find the A that maximizes
the likelihood function

For easier optimization, the likelihood function is usually
replaced by the log-likelihood function (LLF)

N-

A(r; A)=Inp(r; A) =

r(k) A

k=0
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Scalar parameter ML Estimation...

The maximum is found by setting the first derivative to

ZEero:
N-—
—A(r A) =

rk A=
A :O )(r(k)—

Z
AR

= Yr(k)=NA

z—
Il
o

Z
AR

A~

& A=

%k (k)

1l
o

The conventional averager thus gives the ML estimate for
a DC level in the AWGN case.
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Vector parameter ML Estimation

Let us modify the DC-in-AWGN example so that both A
and o? are unknown. The likelihood function looks the

Same

N-

|0(Ir;v)=(2 ﬁ)N,zeXp[ Zr(k) A)
o

=0

J

but it is now considered as a function of two parameters, or

a function of the vector parameter

=[A62]T
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Vector parameter ML Estimation...
The zero of the derivative of the LLF with respect to
(w.r.t.) A gives the same equation as before:
0 -1 ¢
—A(r;Vv) = = > (2)(r(k)-A)=0
oA k=0
Differentiating w.r.t. to o yields
N 1
! 2 r(k) A
20 k=0
S e e 24




Vector parameter ML Estimation...

- Solving these two equations simultaneously gives the ML
estimates for the DC level and AWGN variance as

~ 1 N-1
A=t==Y"r(k)
N k=0
N-1
s2=L (r(k)—r)
N k=0

which are the familiar results for sample mean and variance.
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Construction of MLE algorithms

In principle, the design of MLE algorithms is easy:
1) Express the LLF, preferably using AWGN model
2) Find the maximum of the LLF
- Differentiate w.r.t. parameters and set derivatives to zero
3) Solve for desired parameters
- The solution always in terms of received data samples
- The estimator has good properties (unbiased, efficient)
- Not always in neat closed form though!
- Problems: nonlinear dependencies of parameters
— Try linearizations & other tricks
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I11. ML example: sinusoid phase estimation

ML examples

- Consider sinusoidal signal

r(k) = Acos(2f,k +0) +w(k), k=021..,N-1

where w(k) is AWGN with known variance &, and the
sine amplitude A and frequency f, are known as well.
- The LF is thus a function of the unknown phase 6:

p(r:0) = (mlz 7 exp{z;lz 3 (1) - Acos(2rt K +9))2}

. N Department of Signal Processing and Acoustics
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ML examples...

- The log-likelihood function:

A(r;0) =C, —%f(r(k) — Acos(2zf k +0)

2
k=0

« Minimization: differentiate LLF w.r.t. 8:

oA(r;0) -2
00 207

NZ_l(r(k) — Acos(27f k +8))Asin(2af k +8) = 0
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ML examples...

This gives equation

N- ~ N-1 ~ A
D r(k)sin(27f k +0) = A>"sin(2xf k + ) cos(27f k + 6)
k=0

=0

AN

=

- Simplify:

N-1 N N N-1 ~
S sin(2rfk + 6) cos(2f K +6) = %Zsinmﬂfok +20)~0
k=0 k=0

when N is large enough and f, is not too close to 0 or 0.5.
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ML examples...

- The approximate MLE can then be solved from

Nz_r(k)sin(znfok +0)=0

LN

=

- Separate the phase:

N1 ! -
D r(k)sin(27f k) cos & = r(k) cos(2xf,k)sin 6
k=0

=0

=
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ML examples...

- The approximate MLE for the phase is then solved as:

fr(k)sin(znfok)

1 _ k=0
0 = —arctan =

D r(k)cos(2xf k)

k=0

« Closed-form (approximate) solution!
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IV. Cramer-Rao lower bound

Cramer-Rao lower bound

How good is the MLE? How good can any estimate be?
The goodness of any unbiased estimate can be measured
by the variance of the estimate

The variance depends on PDF (or LF) and its sensitivity to
the parameter in question

If the PDF depends only weakly (or not at all!) on the
parameter, we cannot expect to get a good estimate from
data samples by using any technique
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Cramer-Rao lower bounds...

« In the DC-in-AWGN example we obtained the LLF

derivative w.r.t. A as
1 N-1

o )
a—AA(r,A)_ =3 (r(k) - A)

- By setting this to zero

« The second derivative of the LLF is

0? -N
——A(r;A) =—-
OA? (riA) o2
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Cramer-Rao lower bounds...

- The second derivative is the negative inverse of the
estimator variance:
~ 2 —_—
var(A) = o _ 2—1
a—A(r' A)
oAr
« It can be shown that this is a lower bound for all
estimators and all PDFs!
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Cramer-Rao lower bound

- Cramer-Rao Lower Bound (Scalar parameter): For any
unbiased estimator of parameter A, the estimator variance

is lower bounded by

var(A) > 2_—1 = CRB

0 :
E{GAZA(r, A)}
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Cramer-Rao lower bound...

- Cramer-Rao Lower Bound (Vector parameter): For any
unbiased estimator of parameter vector v, the estimator

variance is lower bounded by

var(v,) > [1*(v)], = CRB

where

_ | O°A(rV)
[I(V)]ij_ E{ Vv, :|

- I(v) is the Fisher information matrix
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CRB example: phase estimation

Consider the CRB for the sine phase estimation problem:
r(k) = Acos(2xf,k +0) + w(k), k=01..,N-1
The LLF:

N-1

A(r;0)=C, -

(r(k) — Acos(2xf k + 6

k=0
The first derivative of LLF

OA(r;0) _ -1

R > (r(k) - Acos(2f k +0))Asin(2xf ok +6)
O k=0
—A N-1
= ==Y [r(k)sin(2zf k +0) — £sin(4f k +26)]
0 =0
L2: ML Estimation Department of Signal Processing and Acoustics
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CRB example: phase estimation...

The second derivative of LLF:
2 . _ AN
% - G—sz(;[r(k) cos(27f K + 6) — Acos(4rt k + 26)]
Negative expected value:

N

N-1
E 0 A(I’2 0) —AZZ[ACOSZ(Zﬂfok +9)—ACOS(47Z‘f0k+29)]
00 0" o
N-

A

[ +2cos(4nf .k +20) —cos(4xf k + 29)]
O k=0
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CRB example: phase estimation...

- Hence, the Cramer-Rao bound is obtained as:

_ 2
var(d) > CRB = ! 200 1

2 = 2=
EizA(r;Q) NA° N xSNR
OA

- Better phase estimates ( = small variance) can be obtained
with high SNR and by increasing the no. of samples
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Modified CRB

- The true Cramer-Rao bound is often difficult to compute
- Requires explicit elimination of nuisance parameters

- Alternative: Replace 2nd derivative with time-domain

integral: N, /2

Eu[ [“lesttv, u)/avi|2dt}

where s(t) is (passband) signal, v = sync parameters,

u = unwanted parameters
and v; is the ith element in sync parameter vector v.
- Always MCRB < CRB (‘looser bound’)

MCRB(v,) =

. N Department of Signal Processing and Acoustics
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Summary

Today we discussed

I What is synchronization

Il ML estimation principles

111 ML example: sinusoid phase estimation
IV Cramer-Rao lower bound

Next: Synchronization: overview
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