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An Iterative Algorithm for
Single-Frequency Estimation
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Abstract—An algorithm for the estimation of the frequency of
a complex sinusoid in noise is proposed. The estimator consists
of multiple applications of lowpass filtering and decimation, fre-
quency estimation by linear prediction, and digital heterodyning.
The estimator has a significantly reduced threshold relative to
existing phase-based algorithms and performance close to that of
maximum likelihood estimation. In addition, the mean-squared
error performance is within 0.7 dB of the Cramér-Rao bound
(CRB) at signal-to-noise ratios (SNRs) above threshold. Unlike
many autocorrelation and phase-based methods, the proposed
algorithm’s performance is uniform across a frequency range of

to . The computational complexity of the algorithm is shown
to be favorable compared with maximum likelihood estimation
via the fast Fourier transform (FFT) algorithm when significant
zero-padding is required.

I. INTRODUCTION

T HE problem of estimating the frequency of a complex ex-
ponential in additive white noise from a set of samples is a

fundamental and well-studied problem in estimation theory. Ap-
plications include radar, array signal processing, and frequency
synchronization of communication systems. Estimation is typi-
cally performed on a signal of the form

(1)

where is the frequency, and and ,
are unknown constants. The noiseis a zero-mean com-

plex white Gaussian process with . Its
components and are real, uncorrelated, zero-mean
Gaussian random variables with variance ( is the
variance of ). Maximum likelihood (ML) estimation was
studied by Rife and Boorstyn in [1], where the ML estimate
was shown to be of the form

(2)

The ML estimate was shown in [1] to be unbiased at sufficiently
high SNR and to exhibit the threshold effect typical
of nonlinear estimators: Below an SNR threshold, the mean-
squared estimation error increases rapidly. Above the threshold
SNR, the mean-squared error (mse) approaches the Cramér–
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Rao bound (CRB) given by

(3)

The mean-squared error of the ML estimator is independent of
the true frequency, except at the extreme band edges. The FFT
algorithm may be used to approximate (2)

(4)

However, padding is often required, i.e., , to obtain
sufficient resolution. In such cases, the algorithm’s complexity
( complex multiplications) can be large.

A number of suboptimal algorithms that avoid the complexity
of the ML estimator have been proposed. One class of such al-
gorithms use the signal’s sample autocorrelation function

(5)

as a basis for the frequency estimate. The simplest of these was
proposed by Lanket al. [2] and is equal to the argument of
accumulated lag products

(6)

For , this approach can be interpreted as a linear predictor
estimator [3]. While the complexity of this approach is low, it
does not attain the CRB, even at high SNR. Other autocorrela-
tion-based estimators were proposed in [4] and [5]. In [4], the
estimator is of the form

(7)

where is a parameter of the algorithm. The algorithm
in [5] interchanges the order of the argument and summation to
give the estimator

(8)

where, again, is a parameter of the algorithm. These
estimators, rather than degrading rapidly below a threshold,
show a smooth loss in performance as SNR is reduced, whereas
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at high SNR, they exhibit small losses relative to the CRB. Their
main disadvantage, however, is their limited frequency range.
At frequencies outside of and , respectively,
the algorithms in [4] and [5] fail.

A second set of suboptimal algorithms operate on the signal’s
phase. Tretter proposed unwrapping the signal phase and per-
forming linear regression to obtain a frequency estimate [6]. This
approach was shown to approach the CRB at high SNR and is
relatively simple computationally. The difficulty, however, is in
the moderate-to-low SNR region where the phase unwrapping
process becomes prone to errors. Kay addressed the phase un-
wrapping problem by only considering the phase differences [7]

(9)

Kay shows that for large SNR, these differences may be ex-
pressed as

(10)

where is a zero-mean colored Gaussian process. This is a
linear model whose minimum variance unbiased estimator is of
the form

(11)

where are weights derived from the correlation of the
noise terms . Like the ML estimator, this computationally
simple estimator reaches the CRB for SNRs above a threshold.
The threshold is larger than that observed with ML estimation
(MLE), however, and therefore, performance at low SNR is
substantially worse than the ML algorithm. In addition, at
frequencies approaching, the phase differences themselves
wrap, causing large increases in mean-squared error. The
estimator therefore performs poorly at frequencies near half
the sampling frequency. Lang and Musicus [8] showed that the
Kay estimator can be obtained from the Tretter estimator by
summation by parts.

The threshold performance of Kay’s method can be improved
by filtering the received signal with a rectangular filter of length
2, thereby increasing the SNR by 3 dB [9]. In a manner sim-
ilar to that used by Kay, the minimum variance unbiased es-
timator is applied to consecutive phase differences to obtain
the frequency estimate. This method can be generalized to fil-
tering with a rectangular filter of length to give a gain of

. As with the autocorrelation-based algorithms of
(7) and (8), this performance improvement comes at the price
of limited frequency range. Namely, the frequency range is lim-
ited to . This limitation was addressed in [10] and [11]. In
these approaches, a bank of filters are used to obtain a coarse es-
timate of the frequency. Effectively, this coarse estimate is used
to reduce the received signal’s frequency to within a small range.
Lowpass filtering can then be used as in [9] to increase the SNR.
Kay’s phase-based estimation is then used to obtain the fine es-
timate. The final frequency estimate is just the sum of the coarse
and fine frequencies. In [10], the filterbank is implemented with
a DFT matrix, whereas in [11], cascaded stages of quadrature
mirror filters are used. These methods yield lower thresholds

than those obtained with Kay’s method and may be attractive
alternatives to direct computation of the likelihood function via
the FFT. However, their threshold performance can vary widely,
depending on the location of the frequency relative to the filter-
bank’s response. Unlike the degradations at the band edges ex-
hibited by Kay’s method, degradation in these methods is peri-
odic across the band, being related to the frequency responses of
the bank’s filters. In addition, these methods offer only modest
improvements over Kay’s method when the number of sample
points is small. A 1-dB reduction in threshold was reported in
[11] at for a record length of 24. Unlike Kay’s method,
which attains the CRB at high SNR for all frequencies, the four
channel filterbank (FCFB) method of [11] suffers a degradation
of up to 0.9 dB, depending on frequency, with respect to the
CRB.

This paper presents a computationally efficient iterative al-
gorithm with threshold performance close to that of the ML
estimator. Its performance is insensitive to frequency and has
asymptotic performance within 0.5 to 0.74 dB of the CRB, de-
pending on record length. The algorithm is based on the repeated
use of an autocorrelation-based frequency estimator. In partic-
ular, the algorithm uses first-order linear prediction (i.e., Lank’s
algorithm) to form an initial estimate. The signal is then trans-
lated in frequency by this estimate to yield a new signal whose
frequency is the negative of the error in the first estimate and
therefore confined to a relatively narrow band around zero. Fil-
tering is performed by accumulating samples, and the result is
decimated to give a new signal with fewer samples. The process
is iterated with the final estimate being the sum of the interme-
diate estimates modulo the initial sampling rate.

This method therefore performs multiple iterations of the fre-
quency translation/filtering technique of [10] and [11]. More
importantly, however, intermediate frequency estimates are ob-
tained by a simple frequency estimator rather than a detection
process based on a filterbank’s output. This alleviates the fre-
quency dependence due to the boundaries between channels.
The technique of iteratively translating a signal in frequency to
a more optimal range was suggested in [12]. However, there,
the goal was the estimation of the frequencies of closely spaced
sinusoids in noise, and no filtering was applied between itera-
tions.

Section II describes the proposed estimator in two parts. First,
the lag product estimator that is the building block of the itera-
tive algorithm is described and its performance analyzed. Exam-
ination of this performance is used to motivate the iterative algo-
rithm, which is described next. Section III describes the asymp-
totic performance of the algorithm and compares this perfor-
mance with the CRB. Computational complexity is addressed in
Section IV, where a complexity analysis of the proposed algo-
rithm is presented along with a comparison of other estimators.
Section V presents simulated results comparing the proposed al-
gorithm with MLE, the FCFB algorithm, and Kay’s algorithm.

II. PROPOSEDMETHOD

A. Basic Algorithm

The proposed algorithm consists of iteratively applying a
basic frequency estimation algorithm. Before describing the
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iteration process, this basic algorithm, which is based on the
linear predictor estimator of (6) with , will be described.
In this algorithm, the received data sequenceis first lowpass
filtered with a rectangular filter with coefficients ,

, and the result is decimated by to
give the new sequence

(12)

where is assumed to be integer. The frequency esti-
mate is then

(13)

Accumulating samples decreases the error of the frequency
estimate at the expense of a reduction in the estimator’s fre-
quency range. Namely, the range is reduced fromto .
As will be seen when the iteration process is described, values
of will only be used when the frequency to be estimated
is very likely to be confined to the interval .

Two properties of the estimator’s error will now be derived.
The first property involves the decomposition of the error into
the sum of continuous and discrete valued terms. Using (1) in
(12) gives

(14)

where

sinc (15)

sinc (16)

and is a zero-mean complex white Gaussian process with
independent real and imaginary parts and variance

(17)

Substituting (14) into (13) gives

(18)

In Appendix A, it is shown that is of the form

(19)

where is a random variable distributed on , and the
notation is the modulo of taken on , i.e.,

. Using the identity

(20)

Fig. 1. Relationship betweenM!, M!̂(M), and� when phase wrapping
occurs. In this example,m = �1, i.e.,M!̂(M) =M! + �� 2�.

the error is then

(21)

where is the number of times the phase wraps
across the boundary

(22)

The notation represents the greatest integer less than or
equal to . The relationship between, , and is il-
lustrated in Fig. 1. The error in can be seen to be de-
composed into two parts: a continuous-valued unwrapped error
term that takes values in the interval , and a dis-
crete-valued error term that is a multiple of and is due
to phase wrapping. As long as no phase wrapping occurs, the
estimation error will therefore be less than in magnitude.

A second property of the estimator is that its error is bounded
by

(23)

This may be obtained by observing that the estimates are re-
stricted to the interval and .

Appendix A shows that the estimator is zero-mean with vari-
ance

var

(24)
under the assumptions that 1) no phase-wrapping errors occur,
and 2) the SNR satisfies the condition

sinc
(25)
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Fig. 2. Standard deviation (std) of frequency estimation error versusM for
various frequencies(!=2� = 0; 0:03125; 0:0625;0:1250:25;0:5) with N =
128 and SNR= 0 dB).

Using , (15), and (17) in (24) yields an alternative
form for the estimator variance:

var
sinc

sinc
(26)

This form is useful for understanding the motivation for the pro-
posed algorithm. A plot of (26) as a function of for various

is shown in Fig. 2 for and an SNR of 0 dB. Each
curve in the plot represents a different frequency. For each fre-
quency, the standard deviation (std) of the error is plotted for

. The value is the largest filter length that,
after decimation, yields phase changes between samples of less
than . Using larger values of will lead to phase changes be-
tween adjacent samples of greater than. For , no
decimation is possible giving the single point at , where
the standard deviation is 0.04. For , decimation
by a factor of two is possible with a resulting standard devia-
tion of about 0.01. This continues until the line, which is
plotted through , which is the largest decimation factor
possible for since at least two samples are needed to
calculate the frequency estimate. The standard deviation here is
seen to be only slightly above the CRB. Note that for any fre-
quency, the choice of that minimizes estimation variance is
slightly below the maximum value that could be used without
incurring phase wrapping.

B. Iterated Algorithm

The previously described method can be used in an iterative
fashion to provide frequency estimation with near- uniform per-
formance across the range of frequencies fromthrough .
In addition, at high SNR, the estimation mean-squared error ap-
proaches the CRB. Before describing the algorithm in detail, an
example that illustrates the fundamental idea will be presented.

Consider frequency estimation with the previously described
algorithm for the parameters of Fig. 2, i.e., received

samples and SNR0 dB. Since the frequency may not be in the
range , it is not safe to perform filtering and deci-
mation, i.e, estimation with the previously described algorithm
can only be applied with . From Fig. 2, the error will, de-
pending on frequency, have a standard deviation between about
0.01 and 0.04. This initial estimate can then be used to remove
the unknown frequency of the received samples. This is done
by digitally heterodyning the received samples with a complex
tone with frequency equal to the negative of the initial estimate.
The result of this frequency translation is a residual signal whose
frequency is random with zero mean and standard deviation of
no more than 0.04. Frequency estimation is then performed on
this signal but with filtering and decimation by . This is
safe to do as long as the phase does not increase or decrease by
more than rad in two samples, which is equivalent to saying
that the residual signal’s frequency is less than 0.25 in mag-
nitude. Since this signal’s frequency is centered at zero with a
standard deviation of no more than 0.04, this is very likely to
be the case. From Fig. 2, for and a frequency less than
0.25, the standard deviation of the error will be less than 0.02.
At this point, an estimate of can be obtained by adding the
initial estimate obtained with and the estimate of the
translated data obtained with . This estimate can then
be used to translate the original data resulting in a signal whose
frequency is again random but with standard deviation of less
than 0.02. This process continues withdoubling at each iter-
ation until , where estimation is performed on a signal
whose frequency is distributed tightly around zero. Again, re-
ferring to Fig. 2, this last stage of estimation is seen to have
error very near the CRB. The algorithm’s frequency estimate of

is then just the sum of the frequency estimates obtained with
.

The proposed algorithm, which will be termed iterative linear
prediction (ILP), is illustrated in Figs. 3 and 4. For notational
reasons, define the sequenceas the set of original received
samples

(27)

Form an initial estimate with error from using
in the previously described algorithm:

(28)

This estimate is used to translate the received samples in fre-
quency to give the residual signal

(29)

where

(30)

can be interpreted as the frequency of. From the results of
Section II-A, the error may represented as ,
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Fig. 3. Block diagram of proposed estimator.

, and therefore, the frequency of the first residual
signal is equal to the negative of the initial estimate’s unwrapped
error . This is true regardless of whether phase
wrapping occurred, i.e., regardless of the value of, and there-
fore, the error does not increase asapproaches . At suffi-
ciently high SNR , this unwrapped error will be small, and there-
fore, the residual signal’s frequency will be confined to a rela-
tively narrow interval about zero. The residual signalis then
filtered by summing consecutive samples and decimating
by to give the sequence

(31)

where is assumed to be integer. This sequence is then
used to form an estimate of

(32)

A refined estimate of , is then formed by summing and
and taking the result modulo :1

(33)

Substituting (32) into (33) yields

(34)

Using (28) and (30) in (34) gives

(35)

After one iteration, we see that as long as , the
estimation error is . This error, however, is the error in esti-
mating the frequency of the first residual signal . As long
as this frequency is sufficiently small to prevent phase-wrapping
errors during decimation, the mean-square ofwill be less than
the mean-square of . This process then continues and, barring

1Practically, the modulo operation is only needed in the last iteration.

phase-wrapping errors, the mean-squared error reduces at each
iteration.

Induction may be used to show that the frequency estimate at
iteration is

(36)

Assume that the frequency estimate at iteration is

(37)

Translating with this estimate then gives

(38)

where

(39)

Substituting (37) into (39) gives

(40)

Filter and decimate the result to give the residual sequence

(41)

The frequency of is then estimated with error

(42)

Using (40) in (42) gives

(43)

The frequency estimate at iteration, by definition, is

(44)
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Fig. 4. Summary of proposed algorithm.

Substituting (37) and (43) into (44) yields the desired result in
(36). The algorithm’s frequency estimateis then the frequency
estimate at the final iteration

(45)

Using the decomposition of (22), the error at iterationmay be
expressed

(46)

Fig. 5. Relationship between the residual signal’s frequency at iterationk,
�! , and its estimate�!̂ when phase wrapping occurred in the previous
iteration. The error is seen to satisfyj�! ��!̂ j > (�=M )� (�=M ).

In the absence of phase wrapping, and the error is
bounded by . By extension, when no phase-wrap-
ping occurs during any of the iterations, the sequence of errors is
bounded by the decreasing sequence , ,
and in this sense, the algorithm converges. Once phase-wrap-
ping occurs, however, , and these bounds no longer
apply. In fact, for the case when doubles at each itera-
tion, it will be shown that once the error is outside the band

at any iteration , it will fall out-
side the corresponding band in each successive iteration. Specif-
ically, if and at iteration

, then . The derivation of this result fol-
lows.

Assume that at iteration ,
. From (23), the error lies in the union

,
and therefore, lies in the union

. However, by defini-
tion, the estimate is restricted to lie in the interval

, and therefore, from Fig. 5, it can be seen that

(47)

It can be seen therefore that once phase-wrapping causes
the error at iteration to exceed in magni-
tude, the subsequent errors will exceed

, respectively. In such cases, the
iterative process effectively fails, and the final error will have a
nonzero bias term of the form with .

In summary, under high SNR conditions, frequency estima-
tion is performed on residual signals that, on average, decrease
in frequency with each iteration, thereby allowing the use of in-
creased filtering at each iteration. This increased filtering re-
sults in residual signals with frequencies that are progressively
more concentrated about zero. The process repeats until the final
stage, where the residual signal’s frequency is estimated with an
accuracy close to the CRB. Just how close to this bound the es-
timator can come will be described in Section III.
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III. A SYMPTOTIC PERFORMANCEANALYSIS

The analysis in the previous sections indicates that as long as
the error in the last iteration satisfies , the algo-
rithm’s error is just equal to the last iteration’s estimation error

. At asymptotically high SNR, the frequency of the residual
signal entering the last iteration will be small, and there-
fore

sinc (48)

Using this approximation in the expression for the basic algo-
rithm’s variance (26) yields

var
sinc

sinc

(49)

Appendix A shows that is zero mean at high SNR, and there-
fore, at least asymptotically, the estimator’s variance is equal to
its mean-squared error:

mse

var (50)

Finally, when the SNR satisfies

(51)

we have, from (49)

mse

(52)

For the special case of ,
considered earlier, the requirement in (51) becomes

(53)

and therefore, the high SNR requirement is inversely propor-
tional to . For comparison purposes, this result can be refer-
enced to the CRB given in (3):

mse
(54)

It is easy to show that (54) takes on its minimum value
when , which is to say that at the last iteration,
samples of the residual signal are accumulated to form three
segments, which are then used for frequency estimation. For

, the degradation in this case is 0.51 dB.
For and , the degradation increases to
0.74 and 1.25 dB, respectively.

IV. COMPLEXITY ANALYSIS

The complexity of the ILP algorithm can be assessed by
breaking the algorithm into the four steps of

1) correlation calculation;
2) angle calculation;
3) frequency translation;
4) estimation update.

The following analysis assumes thatis a power of 2 and that
in addition to the initial estimation iterations
are performed with the filter lengths doubling at each iteration,
i.e., , , . Correlation
calculation requires complex multiplications and

complex additions at iteration, yielding totals of
and , respectively. Angle

calculation requires one arctangent evaluation per iteration, for
a total of .

For all but the last iteration, the received samples are trans-
lated in frequency by multiplication with a complex exponen-
tial. One method of generating a complex exponential is with
a numerically controlled oscillator (NCO) [13]. The simplest
NCO consists of an overflowing phase accumulator that ad-
dresses a sin/cos look-up table. A sampled complex exponen-
tial function is generated by initializing the phase accumulator
to an initial value and incrementing the accumulator once per
clock cycle by a quantity proportional to the desired frequency.
The accumulator contents are then used to index into a sin/cos
look-up table. Using this arrangement, one sample of the com-
plex exponential can be generated per accumulator update. For
our purposes, the frequency translation stage then requires
complex multiplies and real additions per iteration for
totals of and , respectively.
Finally, a total of real additions are needed to up-
date the frequency estimate, as given in (44) for iterations one
through .

The total operation counts are summarized in Table I. For
comparison purposes, the operation counts for the FCFB and
Kay algorithms, as derived in Appendix B, are also shown in
Table II. The complexity of the FFT approach depends on the
amount of zero-padding used and is therefore a function of the
frequency resolution required. The resolution required in turn
depends on the operating SNR of the estimator since the limited
resolution effectively sets a lower bound on the estimation error
that can be obtained. A comparison of ILP and FFT complexity
will be given in Section V.

V. SIMULATION RESULTS

The performance of the ILP, FCFB, and Kay algorithms was
evaluated through simulation for and . Sim-
ulations with used filter lengths that doubled at each
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TABLE I
ILP COMPLEXITY BREAKDOWN

TABLE II
RELATIVE COMPLEXITY OF SINGLE FREQUENCYESTIMATORS IN THE FCFB

METHOD. NUMBER OF STAGES IS p � log N � 1

Fig. 6. ILP algorithm for zero through three iterationsK = 0, 1, 2, 3 (!=2� =

0:2, N = 24).

iteration, i.e., , . Similarly, for ,
the filter lengths were , . The number of
Monte Carlo runs was at least 200 000 for and at least
500 000 when . The FCFB method was simulated with
decimation.

Fig. 6 shows simulated results for the ILP algorithm for zero
through three iterations with and . Note the
case of no iterations is equivalent to that proposed in [2]. As the
number of iterations increases, the performance approaches that
of MLE. With three iterations, the threshold is 1 dB greater than
obtained with MLE. Above this threshold, the ILP algorithm’s
mean-squared error is within 0.5 dB of the CRB, as predicated
from the results of Section III.

Fig. 7 compares the performance of the proposed ILP algo-
rithm with Fowler’s FCFB method ( stage), Kay’s method,
and Lank’s method. Normalized frequencies of 0.2, 0.25, and
0.4 were simulated. At a frequency of 0.2, the threshold for the

Fig. 7. Mean-squared error comparison among phase-based algorithms
(!=2� = 0:2, 0.25, 0.4,N = 24). The FCFB method was simulated with the
p = 1 stage.

ILP algorithm is seen to be 5 dB below that of the FCFB method
and more than 8 dB below that of Kay’s method. The thresholds
of the MLE and ILP algorithms are seen to be independent of
frequency, whereas Kay’s method exhibits large variations with
frequency, and the FCFB’s threshold varies by about 2 dB over
the three frequencies plotted. Notice that a change in normal-
ized frequency of only 0.05 increases the FCFB’s threshold by
1 dB.

Performance variation with frequency is further illustrated in
Fig. 8, where contours of inverse mean-squared error in decibels
are plotted versus SNR and. The right-most contour represents
an inverse mean-squared error of 58 dB, where each subsequent
contour to the left is 3 dB less. The threshold occurs where
contours are closely spaced. The MLE, ILP, and FCFB

algorithms are shown. Threshold performance of the MLE
algorithm is relatively independent of frequency, whereas the
FCFB’s threshold varies by about 2 dB with the highest values
occurring between filterbank centers, i.e., at .
The performance of the ILP algorithm is nearly uniform across
frequency.

Results for are shown in Fig. 9 for and
. The ILP threshold is seen to be about 2 dB higher

than that of MLE, independent of frequency, whereas the FCFB
method with stages has thresholds that vary between 5
and 12 dB above that of MLE.

Fig. 10 compares the ILP algorithm with the FFT method
for and an -point FFT. Frequencies are randomly
distributed with a density that is uniform over the interval

. Below threshold, FFT performance agrees
well with MLE. However for high SNR, the FFT method’s
performance plateaus at a value that increases with. This
phenomenon results from calculating the ML statistic at only a
finite set of frequencies. The plateaus in inverse-mse are seen to
occur at about , which is the inverse of the quantization
error variance associated with quantization of the frequency
estimate to frequency bins. For an operating SNR of 2
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(a)

(b)

(c)

Fig. 8. Frequency versus SNR contours comparing mean-squared error of
estimators. Right-most contour corresponds to 1mse(!̂) = 58 dB. (Top) MLE.
(Middle) FCFB withp = 1 stage. (Bottom) ILP withK = 3 iterations.

dB, approximately at the ML threshold, we see that at least
a 256-point FFT is required for the FFT to have equivalent
performance to ILP. An FFT of length -point FFT requires

complex multiplications and add-

Fig. 9. Mean-squared error comparison for! = 0, !=2� = 0:2, andN =
128. The FCFB method was simulated withp = 5 iterations.

Fig. 10. Performance comparison between ILP and FFT (!=2� 2

[�0:45; 0:45], N = 4). At the SNR threshold, which is about 2 dB, a
256-point FFT is required to obtain similar mean-squared error to the ILP
algorithm.

itions [14]. Including an additional complex multiplies for
the magnitude calculation results in a total of about 1150 com-
plex multiplies. In contrast, the ILP algorithm using ,

, and requires complex
multiplies for lag product calculation and com-
plex multiplies for frequency translation, for a total of 114. The
number of complex multiplies required for the ILP algorithm is
therefore about one tenth of those required for the FFT. How-
ever, the ILP algorithm requires three arctangent computations.

VI. CONCLUSION

This paper presented a computationally efficient frequency
estimation algorithm called iterative linear prediction. In this al-
gorithm, linear prediction frequency estimation is used to obtain
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an initial estimate of the unknown frequency. Translation in fre-
quency of the received signal by this initial estimate results in a
signal whose frequency is equal to the negative of the initial esti-
mate and is therefore confined to a relatively narrow band about
zero. This allows lowpass filtering to be applied, which results
in increased SNR and, therefore, improved frequency estima-
tion in the next iteration. This approach yields a significantly
reduced threshold relative to the algorithms of Fowler and Kay;
this is a performance that is close to that of maximum like-
lihood estimation. In addition, the mean-squared error perfor-
mance is within 0.7 dB of the Cramer-Rao bound at SNRs above
threshold. Unlike many frequency estimation methods, the pro-
posed algorithm’s performance is uniform across the frequency
range . This may be attributed to the continuous-valued
estimates, made at each iteration, that produce estimation errors
at each iteration that are largely insensitive to the frequency of
the original signal. This is in contrast to the case where a detec-
tion process is used to form a discrete-valued coarse estimate of
the received signal’s frequency.

This work addressed the problem of estimating an unknown
frequency in the range of to from a set of samples.
In many applications, however, the unknown frequency may
be knowna priori to lie within some range, say, to ,

. As described in [9], this problem can be converted
to the problem treated here by prefiltering and decimation. This
will result in a reduction in the number of samples, and if the fre-
quency range is sufficiently small, as few as three or four sam-
ples may remain after decimation. In this case, iteration is not
possible, and the algorithm reduces to that of Lank. If the orig-
inal data is filtered and decimated so that the resulting frequency
range is from to , then the number of samples that emerge
will be approximately equal to twice the maximum number of
cycles of the complex exponential that could have been received
in the original set of samples. The conclusion is that iteration
is possible, and therefore, the algorithm is beneficial when the
maximum number of cycles received is at least three. Future in-
vestigation in this area may include the study of performing fre-
quency estimation at each iteration with algorithms other than
linear prediction. The algorithms of [4] and [5], for example,
may also be used at the expense of increased complexity. Al-
ternatively, frequency estimation may be performed with Kay’s
algorithm. Our investigations, however, have shown that this
method results in poor performance both in terms of threshold
level and uniformity of threshold with frequency.

APPENDIX A
MEAN AND VARIANCE OF BASIC ALGORITHM

This appendix derives the mean and variance of the estimator
in (18) under a high SNR assumption and under the assumption
that phase-wrapping does not occur. The first step is to expand
the argument of the function

(A.1)

where

(A.2)

Next, define the scaled and rotated version ofas

(A.3)

The real and imaginary parts ofare zero mean with variances

var

(A.4)

var

(A.5)

Using (A.1) and (A.3), the estimator in (18) can be expressed as

(A.6)

where , but can be written

(A.7)

When the variance of the components ofsatisfy var
and var , the standard small angle approximation

applies, and thus

(A.8)

From (A.4) and (A.5), these conditions will be satisfied when

(A.9)

Condition (A.9) can be expressed in terms of the SNR ,
the number of samples accumulated, and the record length

through the relations and , and the
definition of in (15):

sinc
(A.10)



BROWN AND WANG: ITERATIVE ALGORITHM FOR SINGLE-FREQUENCY ESTIMATION 2681

TABLE III
OPERATION COUNTS FOR THEp-STAGE FCFB ESTIMATOR

Under the assumption of no-phase wrapping, ,
and from (A.6) and (A.8), we have

(A.11)

The estimate is seen to be unbiased with variance

var

(A.12)

APPENDIX B
COMPLEXITY OF KAY AND FCFB ESTIMATORS

This Appendix presents a complexity analysis of the Kay and
FCFB estimators. In the Kay estimator, the phase differences
in (9) require complex multiplications, complex
additions, and arctangents. Assuming the weighting coef-
ficients are precalculated and stored in memory, the linear com-
bination of phase differences given in (11) require an additional

real multiplications and real additions.
The single-stage FCFB estimator takes the original sequence

of samples and forms four new sequences by digital het-
erodyning with sequences of the form , ,

, and . Because this step only involves
changing the signs of the real and imaginary parts, the com-
plexity incurred in this step will be assumed to be negligible.
Each of the resulting sequences is filtered with a length two
filter with coefficients and decimated. This step therefore
requires complex additions. Each sequence also requires
the calculation of a detection statistic that is equal to the
magnitude of the sum of first-order lag products, and therefore,
all four decision statistics can be calculated with
complex multiplications and complex additions
for the lag product calculation and an additional four complex
multiplications to form the complex magnitude. Kay’s phase
estimation is performed on the sequence with the largest deci-
sion statistic. Note that each lag product was already computed
in the calculation of the winning decision statistic, and thus, the

phase deltas require only arctangents. Again, assuming
the weights are precomputed, the frequency estimate requires

real multiplications and real additions.
A breakdown of the operation counts for the-stage FCFB

estimator is given in Table III. In the first stage of filtering,
complex adds are performed for each of the four sequences. In
the second stage, the length of the sequences is cut in half, but
their number increases by four, and therefore, forstages, the
number of complex adds is

Each of the sequences has points, and therefore, the
decision statistic requires complex multiplica-
tions to form the lags, an additional complex multiplica-
tions to form the magnitude, and complex ad-
ditions. Frequency estimation is performed on the winning se-
quence of length and therefore requires arc-
tangents, real multiplications, and real
additions. Overall, the number of operations increases linearly
with , although for maximum performance, the number of
stages also increases with . For example, in [11], one, three,
and four stages were reported to be required to obtain optimum
threshold performance for 32, 64, and 128 points, respectively.
The number of complex multiplication and additions increases
exponentially with , but the number of arctangents required de-
creases exponentially with.
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