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Further Results in the Fast Estimation of a Single Frequency 

Michael P. Fitz, Member 

A bstract-This correspondence proposes a new 
frequency estimator for a single complex sinusoid in 
complex white Gaussian noise. The estimator is 
applicable to problems in communications requiring 
high speed, recursive frequency estimation. The 
estimator is computationally efficient yet obtains 
near optimum performance at moderate signal-to- 
noise ratios. 

I. INTRODUCTION 

Rapid estimation of the frequency of a single complex 
sinusoid in AWGN is an important problem in a wide variety 
of applications [ 11. Array signal processing, spectral 
estimation [2], carrier and clock synchronization for digital 
communications, FSK demodulation, Doppler rate estimation 
[3], and signal interception and detection are good examples of 
applications requiring rapid frequency estimation. Several fast, 
accurate frequency estimators have been previously proposed . 
Reference [4] examines the asymptotic performance of several 
estimation structures and presents a comparison by Monte 
Carlo simulation. The signal model for this letter is 

x, = & e x p [ j ( a ~ + e ) ] + ~ ~  n=1,2, ..., N (1) 
where v, is a discrete time, delta-correlated complex Gaussian 
noise process with a variance of No, 8 is the carrier phase, and 
E, is the energy per sample (note EJNo = SNR). It is 
assumed that the carrier phase is an unknown random variable 
that is uniformly distributed in [-n;n]. 

In [4], Kay demonstrated that an asymptotically (high 
SNR) optimum estimate of frequency is obtained by an 
estimator of the form (equations (16) and (18) of [41) 

ii = C w n  arg{x,x:-,j or ii = arg ~ w , x , x , - ~  
N 

(2) 

where w, is an estimator window function. Often in 
recursive, high speed applications this windowing is difficult 
to implement since the window changes with each new 
sample. Uniform time weighting in frequency estimation 
results in estimators having the form (equations (17) and (19) 

Carg(xnxi-,) or = arg Cxnx:- ,  . (3) 

n=2 {n:2 * 1 

{n:2 I of ~41) 
A l N  Q=---- 

N - 1 "=2 

While estimators of the form in (3) are significantly simpler to 
implement, their performance is significantly lower than the 

Paper approved by Michael L. Honig, the Editor for Communicatlon Theory 
of the IEEE Communications Society. Manuscript received February 27 
1992; revised June 8, 1992. This work supported in part by the National 
Science Foundation under Grant NCR-9010239 and by TRW Electronic 
Systems Group. 

The author is with the School of Electncal Engineering, Purdue University 
West Lafayette, ZN 47907-1285. 

IEEE Log Number 9400978. 

frequency estimators in (2). The work presented in this 
correspondence provides improved performance over estimators 
of the form in (3) in an architecture compatible with recursive, 
high speed, real-time applications. 

The estimators in (3) are closely related to a digitally 
implemented balanced quadricorrelator frequency-tracking loop 
[5]. The equation governing this loop is 

(4) 
where p is the loop gain (a first-order loop). From (4) it is 
seen that the quadricorrelator uses the last term in the 
summation in (3) as the innovation to the loop. This 
relationship is not really unexpected since both the estimation 
structure in (2) and the structure in (4) can be viewed as 
approximations to the maximum likelihood (ML) estimator of 
frequency [6]. This work investigates planar filtered' or open 
loop methods of frequency estimation instead of the traditional 
loop based architectures. 

11. DERIVATION OF THE PLANAR FILTERED ESTIMATOR 

The proposed frequency estimation algorithm is an 
approximation of the ML estimator. The ML estimator of the 
frequency of a sinusoid in the model in (1) is the maximum of 
the periodogram [6],  given as 

I 
The frequency estimator presented in this letter results from 
examining the likelihood equation. The likelihood equation is 
derived by taking the derivative of the periodogram w.r.t. G? 
and setting it equal to zero. The likelihood equation is, after 
grouping terms appropriately, 

(6) 

where 

(7) 
k=m+l 

is the unnormalized sample autocorrelation function. Since for 
the unmodulated sinusoid the sample autocorrelation function 
has the form 

R, (m)  = Ae'" + noise, (8) 
the ML estimate is chosen to make the weighted sum of the 
quadrature components of the derotated sample autocorrelation 
functions zero. 

A planar filtered stmcture is one that uses both the I and Q components of 
the input signal and not just the input signal phase or phase difference lke  a 
phase or frequency tracking loop. 
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Examination of (6) provides some insight into the design 
of a suboptimal frequency estimator. Note that higher lags for 
the sample autocorrelation function in (6) are given a greater 
weight. Intuitively this results since the higher lag sample 
autocorrelation functions are less affected by noise and give a 
better estimate of R. The reason for the improved 
performance can be seen by examining (7) when each 
autocorrelation lag has the same number of terms in the 
summation. In this case the noise in (8) has the same 
statistical description regardless of the lag, while the argument 
of the signal component is linearly proportional to m.  
Consequently, the estimates of the frequency derived from 
higher lags are more accurate (for N-m >> 1 in (7))*. The 
likelihood equation for the ML estimator given in (6) 
appropriately weights the higher lag sample autocorrelation 
functions to a greater degree. It should be noted that the work 
in [4] presents algorithms that use only iN (1). 

A practical estimator is produced by approximating the 
likelihood equation given in (6). Since 

i, (m))} = o m ,  (9) 
and for large N (i.e., small noise in (7)) 

Im(kN(m)e-j@”) = Asin(arg{k,(m)} - a m )  
(10) 

.- A(arg[k,(m)) - Qm), 

then (6) is heuristically approximated for large N as 

Algebra reduces (1 1) to 

If the summation in (12) is truncated at indices less than N a 
practical estimator has the form 

m=l 

This frequency estimator weights the argument of the sample 
autocorrelation function by the lag, m, as suggested in (6). 
Fig. 1 is a block diagram of this estimator. With the use of 
read only memory (ROM), a high speed implementation of 
this estimator is possible with only J+2 pipeline delays. A 
reviewer pointed out that (13) can be alternately viewed as a 
least squares fit of the phase of the estimated autocorrelation 
function phase versus lag to the true autocorrelation phase. 

This algorithm is practical and performs well. The 
performance of this estimator is also quite near the CRLB 
given as [l] 

var(c2 - h) 2 6 No 
N(N2 - 1) 

It should be noted that the optimum lag for estimating the frequency is 
mopt=2Nl3 [ 3 ] ,  but since this work only uses relatively small values of m 
compared to N ,  the pcrformance actually improves monotonically with m. 

Fig. 1. Frequency estimator block diagram. The rectangles 

II n I 

I 
Fig. 1. Frequency estimator block diagram. The rectangles in the 
block diagram contain operations that potentially could be Gplemented 
in ROM. 
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Fig. 3. Frequency estimator leaming cuwes. E,/NO=lOdB, R=0.5 
radianslsymbol, 10600 trials. 

for rclativcly small indiccs, J, and is indepcndent of a. 
Figs. 2-4 show plots of the estimator learning curves for 
differcnt summation indices J at SNR=2dB, lOdB, and 30dB 
obtained by Monk Carlo simulation. The estimator acquires 
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Fig. 4. Frequency estimator leaming curves. ES/No=30dB, Q=0.5 
radians/symbol, 10000 trials 

very rapidly so if the accumulators in Fig. 1 are given a fading 
factor the architecture is also capable of tracking a slowly 
varying frequency source. The planar filtered structure 
produces good performance at low SNR. It should be noted 
that (12) with J=l is equivalent to the estimator of equation 
(19) in [4] and the frequency estimator presented in [7]. In 
implementing this algorithm one needs to ensure that 
IJlA << n so that phase unwrapping of the arguments in the 
summation of (9) is not necessary. This condition is met if 
the unknown frequency is a small fraction of the sampling rate 
(note that Q/2z = 0.08/T in Figures 2-4), as is typical in 
many communications applications. This algorithm can be 
integrated with the planar filtered phase estimator proposed in 
[7] for a simple and rapidly acquiring carrier synchronization 
architecture. 
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