
212 IEEE SIGNAL PROCESSING LETTERS, VOL. 3, NO. 7 ,  JULY 1996 

An Improved Single Frequency Estimator 
Daeyoung Kim, Madihally J. Narasimha, Senior 

Abstract- A new method for estimating the frequency of a 
complex sinusoid in complex white Gaussian noise is proposed. Its 
computational complexity is comparable to Kay’s method [l], but 
it attains the Cramer-Rao bound (CRB) down to lower signal- 
to-noise ratio (SNR) values. Simulation results are included to 
demonstrate the performance of the proposed method. 

I. ~NTRODUCTION 

HE PROBLEM of estimating the frequency of a complex 
sinusoid in white Gaussian noise arises in many applica- 

tions [2]. The observed discrete-time signal in this situation 
can be represented as 

z k  = AeJ(”ok++B) + 71k; I; O ;  1. ’ ’  ’ .  N - 1 (1) 

where the amplitude A, the frequency W O ,  and the phase 0 are 
deterministic but unknown constants. The noise nk is assumed 
to be a zero-mean complex white Gaussian process (WGP) 
with variance D:. It is well known that the maximum likeli- 
hood estimate (MLE) in this case is given by the location of the 
peak of the periodogram 131. However, this approach requires 
too many computations, even if fast Fourier transform (FIT) 
techniques are employed. Therefore, simpler methods have 
been reported by Kay [l], Fitz [4], and Luise and Reggiannini 
(L&R) [5] .  All these methods achieve the Cramer-Rao bound 
(CRB) [2] under the following two conditions. First, the input 
signal-to-noise ratio (SNR) ( A 2 / 2 ) / 4  should be greater than 
a certain threshold. Second, lwol should be smaller than the 
estimation range. 

The threshold, the estimation range, and the computational 
requirements for the three estimators mentioned above are 
compared with the proposed estimator in Table I.’ The Kay 
estimator has better estimation range and requires fewer mul- 
tiplications than the other estimators; however, its threshold 
is limited to 6 dB. The Fitz and L&R estimators can operate 
at lower SNR values, but at the expense of the estimation 
range and the computational complexity. The computational 
complexity of the proposed estimator is comparable to the Kay 
estimator. However, it has a design parameter K ,  which can 
be adjusted to achieve lower threshold values at the expense 
of the estimation range. 
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111 is a design parameter for the Fitz and L&R estimators [4], [ 5 ] .  Fitz and 
L&R estimators achieve CRB when df = 17i/2 [41, 151. We can decrease the 
number of multiplications by decreasing M; however, as M gets smaller, the 
estimator’s performance gets worse [4], [ 5 ] .  
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The reason for the 6 dB threshold in the Kay estimator 
is explained in Section 11. Section I11 shows how to modify 
Kay’s algorithm to achieve lower threshold values. Section IV 
provides simulation results to demonstrate the performance of 
the proposed estimator. 

11. THRESHOLD EFFECT IN THE KAY ESTIMATOR 

We rederive the Kay estimator to explain why threshold 
occurs. Equation (1) can be rewritten as 

where 

(3) 

f i k  is a complex WGP with variance a:/A2. Equation (2) can 
be rewritten 

z k  A e J ( w o k + o + v i , ) ,  k = 0.1,. . . J - 1 (4) 

where uk is the phase term of (1 + j i k ) .  At high-input SNR 
values (i.e., A 2 / a i  >> l), uk is the same as the imaginary 
part of f i k ;  therefore, it is a real WGP with variance 

( 5 )  0: = 0212 = o;/(2A2). 

arg(zkj = wok + B + uk;  IC = 0, I , .  . . , N  - 1. 

The argument of z k  is given by 

(6) 

To avoid phase unwrapping [l], Kay considered the differ- 
enced phase data 

Q r g ( z k z E - 1 )  = arg(Xk) - U r . q ( z k - 1 )  

= W O  + U k  - Uk-1; k = l , “ ’ , N -  1. (7) 

The minimum variance unbiased estimator [2] for the linear 
model of (7) is the Kay estimator [l], as follows: 

A - 1  

Go = W k a T g ( z k z ; - 1 )  (8) 
k=l 

where W k  is a proper weighting constant. 
Since uk is a noise term after taking the nonlinear arg( ) 

function, ( 5 )  is not valid at lower SNR values. For example, 
when fin. = -1.01 + O j ,  though the imaginary part of j i k  is 
zero, /uk/ = 7r which is large and results in D,”, > a2/(2A2).  
At low values of SNR, this situation occurs more often and 
eventually leads to the threshold effect in the Kay estimator. 
One way to reduce the threshold is to boost the SNR before 
taking the arg() function so that ( 5 )  is valid for lower values 
of the SNR. We will show how this can be achieved in the 
next section. 
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Fig. 1 .  Performance of the Kav estimator (Kavi and the urouosed estimator for different values of the desien "meter I<. CRB is the Cramer-Rao bound. 

111. DERIVATION OF THE PROPOSED ESTIMATOR 
We first show how to achieve 3 dB less threshold than the 

Kay estimator and then generalize the method. We define the 
average value ak. as 

nk = ( 2 k  + 2&1)/2; k = 1; ' ' N - 1. (9) 

After some manipulation, it can be shown that 

(10) w o ( k - l / 2 ) + B )  WO 6" + Gk-1 
(co'.(,L) + 2 

uk = A d (  

In matrix form 

(15) 
1 

y := 1 W O  + Pu 
2cos (WO /2) 

where 

y = (y(N - 1) Y ( N  - 1) . . .  w ( q t  (16) 

1 =(]I 1 4 ) t  (18) 

U = (u(N - 1) u(N - 2) . . .  ~ ( 0 ) ) ~  (17) 

i f l = i  
(19) 

where n k  is a complex WGP whose variance is a i /AL .  Note 
that the variance of is 3 dB less than f i k  of (2). The 
argument of a k  is given by 

(0.  otherwise. 

The minimum variance unbiased estimator and its estima- 
tion variance for the linear model of (15) is well known [2], 

At high input SNR, this can be written as / A  \ ,n,\ 1 

where uk is the imaginary part of nk. 'lhis can be viewed as 
a real WGP with variance 

The final form of this estimator is 
-2 - n2 /13 A 2 )  ( 1  2) 

N - l  AT- 1 <vu - V n /  (& d l  1. \ l J /  

To avoid phase unwrapping, we consider the differenced W O  = w k y k  = Wkarg(akai-1)  (23) 
k=2 k = 2  phase data ? /k  

where wk: is a weighting constant derived from (20) and a k  

is defined in (9). 
It can be seen from (2) and (10) that the SNR before 

taking the arg() function for the proposed estimator is 3 dB 

yk = a?".q(akaz-1) = arg(ak)  - arg(ak-1) 

= 2 , .  . . . N  - 1, (14) 
U k  - 1Lk-2 

= WO + 
2cos(w0/2) ' 
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Kay 
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threshold estimation range multiplications multiplications to achieve CRB 

6 d  B K 2(hi  - 1) 2 ( N  - 1) 

TABLE I 
THRESHOLD, ESTIMATION RANGE, NUMBER OF MULTIPLIC-\TIO\S REQUIRED FOR K A Y  Fr rz L&R, AND THE PROPOSED ESTIMATOR 

Fitz 

L&R 

proposed 

< OdB < $  M ( N  - (M  - 1)/2) gN2 

< OdB < A  M ( N  - (M  - 1) /2 )  ; N2 

( 6  - 2OlogK)dB < $  a( N - K )  2( N - I<)  
M+1 

higher than that of the Kay estimator for the same input SNR. 
Therefore, the proposed estimator experiences the threshold 
effect at 3 dB lower input SNR than the Kay estimator. 

The problem with the proposed estimator is that its perfor- 
mance degrades as lwol gets large due to the cos(w0/2) term in 
(22). However, this is true for other estimation methods (Fitz 
and L&R) that achieve better threshold than the Kay estimator. 

information has been lost through the averaging operation in 
(24). Using simulation, we have found that for N > 24, the 
proposed estimator with K = 2, 3, and 4 gives less than 0.2 
dB degradation from the CRB. It should be noted that division 
by K in (24) is not needed, as we only use the argument of a k .  

IV. COMPUTER SIMULATIONS 
In fact, the proposed estimator has less degradation as lwol 
gets large than the Fitz or L&R estimators. The proposed 
estimator has less than 0.1 dB loss from CRB until W O  = 0.3, 
independent of N ,  while the Fitz and the L&R estimators have 
more than 3 dB loss at the same W O  when N = 10, and get 
worse at high values of N .  

We can generalize the proposed estimator to achieve more 
threshold gain. We define the average value a,+ as 

A computer simulation was performed to compare the 
performance of the Kay estimator and the proposed estimator. 
A data record of A T  = 25 points was chosen. Fig. 1 shows 
the inverse of z ~ T - ( w ~ )  versus input SNR for W O  = 0 . 0 4 ~ .  
As predicted by the derivation, the threshold of the proposed 
estimator is 2OlogloK dB less than that of the Kay estimator. 
The Kay estimator can be thought as a special case of the 
proposed estimator with K = 1. 

1 
= - 

K 
y k p T n ,  k = K - 1:’. . N  - 1. (24) 

m=O 

We do not show the detailed derivation for general K ,  since 
it is a straightforward extension to the case K = 2. The final 
form of this estimator is 

I\- - 1 

ij, = 1 wkarg(nka;_,)  (25) 
k . = K  

where ti),+ is a weighting constant that can be derived as was 
done for the K = 2 case. As we have averaged K input 
samples before taking the arg0 function, the SNR to the input 
of the arg() function is 20log(K) dB better than the Kay 
estimator. Therefore, its threshold is 2Olog(K) dB lower than 
the Kay estimator. One obvious question is: Can we increase 
K up to N - 1 to achieve better threshold? The answer is 
no. As K gets large, the proposed estimator does not achieve 
CRB even at high SNR. This is due to the fact that some 

V. CONCLUSIONS 

We have proposed a new single-frequency estimator that 
can achieve a lower threshold than the Kay estimator, and 
is as computationally efficient. The threshold is shown to be 
20logloK dB less than the Kay estimator, and can easily be 
used to achieve the threshold of 0 dB ( K  = 4). 
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