
For the case when the number (M) of channels is 2, the impulse 
responses are h,(O) = 1 + j ,  ho(l) = 14, hl(0) = -1-j, hl(l) = 19, 
which demonstrate the conjugate symmetric and conjugate anti- 
symmetric properties ho(0) = h<(1), h,(O) = h,*(l). 
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Fig. 3 Amplitude responses of 16-channel complex-valued linear-phase 
filter bank 

0.00116 0.00116 0.00215 0.00215 -0.00328 400328 4.00185 4.00185 
0.00006 0.00006 -0.00016 4.00016 0.00257 0.00257 0.00311 0.00311 

0.00353 0.00353 0.00543 0.00543 4.00857 4.00857 400606 4.00606 

Table 1: Impulse responses of eight-channel filter bank (real component) 

I I I I I 

13 I402638 14.02638 14.21406 14.21406 I421800 I -0.21800 I4.02790 I402790 
141 0.064521 0 .06452~~) .15516~~) .15516~  0.154191 0.1541914.0663314.06633 

I I I I I I I I 

15 I 0.08157 I 0.08157 I 0.03339 I 0.03339 I 0.03297 I 0.03297 I 0.08447 I 0.08447 

Table 2 Impulse responses of eight-channel filter bank (imaginary 
component) 

I I 

1 I4.00181 I-O.00181 I4.00069 I4.00069 I 0.00178 I 0.00178 I 0.00401 I 0.00401 
2 I -0.OO040 I4.00040 I4.00064 I4.00064 I 0.00086 I 0.00086 I4.00147 I4.00147 

An eight-channel complex-valued filter bank was designed by 
employing eqn. 5 - 7 and optimising the stopband energy of the 
analysis filters Hk(z), i.e. SZ = C~~lkth,,p,b,,41Hk(eiw)J2dw. The 
amplitude and phase responses are shown in Figs. 1 and 2. The 
impulse response data are given in Tables 1 and 2 where the coef- 

ficients show that the filters are conjugate symmetric and conju- 
gate anti-symmetric. A 16-channel filter bank of length 64 is 
shown in Fig. 3. 

Conclusion: In this Letter, we have presented an algorithm for the 
design of complex-valued linear-phase paraunitary filter banks. 
The designed filter banks have, for the frrst time in the design of 
sub-band filter banks, complex-valued filter responses. The differ- 
ence between a real-valued and complex-valued linear-phase 
paraunitary filter bank is that conjugate-centro-symmtric matrices 
are employed. Filter banks with 8 and 16 channels have been pre- 
sented to validate the algorithm. 
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Modified Kay‘s method with improved 
frequency estimation 

S.H. Leung, Y. Xiong and W.H. Lau 

A modified frequency estimation method for use in the presence 
of additive complex white Gaussian noise is proposed. This 
method is basically an extension of Kay’s method, but includes 
the use of autocorrelation functions. It retrieves the frequency 
value from the optimal linear combination of the differenced 
phases of the autocorrelation functions. It yields a considerably 
lower variance threshold than Kay’s method while remaining 
unbiased and retaining the same frequency range. 

Introduction: The estimation of the frequency of a single complex 
sinusoid in the presence of white Gaussian noise is a basic prob- 
lem in many applications. Without loss of generality, the signal 
model of the problem can be described as 

~ ( i )  = exp( j [wi  + $1) + v(i)  i = 0,1,  ..., N - 1 (1) 

where the amplitude of the sinusoid is normalised to one. The fre- 
quency o and the initial phase Cp are deterministic and unknown 
constants. The noise v(i) is an independent complex white Gaus- 
sian process with zero mean and variance u2. 

It is well known that determination of the frequency location of 
the peak of a periodogram is equivalent to the function of a max- 
imum likelihood estimator (MLE) [l]. It yields an unbiased esti- 
mate and has the best estimation performance for a single 
sinusoid. However, the periodogram method requires an intensive 
search in the frequency domain to achieve the desired accuracy. 

Kay introduced a fast and  simple method based on the differ- 
enced phase of the received data [2]. The estimator can be consid- 
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ered to be either a weighted phase averager or weighted linear 
predictor. The shortcoming of this method is the large variance 
threshold in comparison with that of other frequency estimation 
methods. Use of the autocorrelation functions of the received data , 
has been proposed for the estimation of frequency by Fitz [3] and ' 
Luise and Reggiannini (L&R) [4]. We can consider the Fitz esti- 
mator and L&R estimator as a weighted phase averager and 
weighted linear predictor, respectively. Since the phase detection 
based on R(m) is so 'hard', these approaches will cause unrecover- 
able phase wrapping for high frequencies. Consequently, their 
operating ranges will be reduced and limited by M, the number of 
autocorrelation terms in the estimators. 

In this Letter we propose the use of the differenced phase of the 
autocorrelation functions to estimate the frequency. The new esti- 
mator will increase the number of computations in the calculation 
of the autocorrelation functions but can achieve the Cramer-Rao 
bound (CRB) for high SNR and maintain a wide frequency range 
and obtain an improved variance threshold over Kay's method. 

Derivation of new frequency estimator: We can express the received 
data x(iJ in eqn. 1 as follows: 

.(i) = , j (W %+4) [I + ~ ( i ) ]  i = 0 , 1 ,  ..., N - 1 ( 2 )  

where u(i) can be shown to be zero mean independent complex 
white Gaussian noise with variance oU2 = 02. The input S N R  is 
given by SNR, = c2. The autocorrelation function of x(i) is given 
by 

N - k - 1  

R(IC) = z*( i )z( i  + I C )  = eju!-[(N - I C )  + ~ ( I c ) ]  
2=0 

k = 1, ..., N - 1 (3) 

where 
N-!--1 

q ( k )  = [u*(i) + u(2 + I C )  + u*( i )u( i  + I C ) ]  (4) 
z=o 

Noting that R(k) is proportional to dok plus noise, we can obtain 
the frequency without the need for phase unwrapping by con- 
structing differenced phase variable z(k) defined as follows: 

~ ( I c )  = R * ( I C ) R ( I C  + 1) = eju[(N - S ) ( N  - IC - 1) + { ( I C ) ]  
IC = 1, ..., N - 2 (5) 

where 

[ ( I C )  = (N- IC)q(IC+ 1) + ( N -  I C -  1)q*(k) +q*(IC)q(k+l) 
(6) 

For high SNR,, the signal-noise-ratio in the argument of z(k), 
denoted by SNR,;, is given by 

S N R L ~  = ( N  - k ) ' (N  - IC - l)2/E{Im[<(IC)]'} (7 )  
where 

E{Im[C(k)12} = ( N  - IC - 1)( N - I C )  +N max{ N - 2k-  1,0} 
- k 2 6 ( k - 0 . 5 ( N -  1)) 

Based on eqn. 7, it can be shown that SNR,,(k) is considerably 
improved by a factor of order (N - k)2 over SNR,,(k). 

The frequency can be estimated by taking the argument of the 
linear combination of the differenced phase variables as given by 

2 = arg(HTZ) = arg[exp(jw)HT(G + S)] 

= w + arg[HT(G + E)] (8 )  
where H is a positive real weight vector, and the vectors Z, G, and 
E are defined as follows: 

ZT = [2(1),2(2), ..., z ( N  - 2 ) ]  
GT = [ (N - 1)(N - 2), ..., 21 
ET = [ ( ( l ) ,  ..., C(N - 2 ) ]  

(9a) 

(9b) 
(9c) 

Without loss of generality, we set the weights with the following 
constraint HTG = 1. Assuming high S N R ,  i.e. HTG >> IHT:EJ, we 
can approximate eqn. 8 as 

G = U + H H T E I  (10) 

where E r  denotes the imaginary part of E .  
The minimum variance solution of eqn. 10 is given by 

where C is the correlation matrix of Er given by 

c = C l 2  + C 2 O 4  + C3a6 + cqo* (12) 

where C, is given by (the expressions of other matrices {Cl}r=2,3,4 
are omitted for brevity) 

C1 = A ( I - J ) A + A + N K  (13) 

where 

A = diag{N - 2, N - 3,1}  

Since the correlation matrix C is a function of the noise vari- 
ance, the optimal weight vector Hopt is thus dependent on the 
input SNR,. We can obtain a solution for the weight vector H 
independent of the noise variance by considering high SNR, (i.e. 
the noise variance approaches zero). We refer to this solution as 
H,, which is given by 

It is noted that C, is a singular matrix for data length N > 4. 
Therefore C;' in eqn. 15 is generally the pseudo-inverse of C. If 
the noise variance is known, then the solution in eqn. 11 provides 
a better performance than the solution H, in eqn. 15. Nevertheless 
the performance of the weight vector & is still considerably better 
than that of Kay's method. 

-15 m 
U 

-1 0 1 2  3 4 5 6 7 8 9 10 
SNR, dB 

Fig. 1 Performance comparison of different esimators for o = 0.0400rr: 

--[I Kay 
-A- L&R ( M  = 3) -v- Fitz (Ad = 3) 

-0- periodogram 
- - _ ~  3dB above CRB 

CRB 

-*- Ho 
-+- Hog, 

Simulation results: Computer simulations were performed to com- 
pare the performance of Q,, in eqn. 11, 6 in eqn. 15, and the 
Kay [2], Fitz [3], and L&R [4] estimators. A data record of N = 24 
was used. The initial phase (I was randomly selected from within 
the range [0, 2 ~ ) .  The mean squared frequency errors (MSFEs) 
were averaged over 5000 independent trials. Two signal frequen- 
cies w = 0.04~,  0.761711 were considered in the experiments and 
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their mean squared frequency errors for the estimators against 
input SNR, are, respectively, shown in Figs. 1 and 2. As bench- 
marks for comparison, the CRBs and the MSFE obtained using a 
periodogram are plotted in the two Figures. 
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Fig. 2 Performance comparison of different estimators for w = 0.761771 
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For ease of performance comparison, we define the variance 
threshold as the input SNR,y that yields an MSFE 3dB above the 
CRB (a line 3dB above the CRB is plotted in the Figures). In 
Figs. 1 and 2, it is shown that the proposed method (tIopr and &) 
and the Kay estimator can achieve the CRB at a moderate level of 

SNR,, while the Fitz and L&R estimators require much larger 
SNR values. The results show that the variance threshold of & is 
improved by > 5dB compared with that for the Kay estimator and 
-2dB above that of a periodogram. Both the proposed method 
and the Kay method have a wide frequency range. For o = 
0.7617q the Fitz and L&R estimates can no longer operate owing 
to their limited frequency range. 

Conclusion: A new frequency estimator has been discussed. It has 
been shown that the estimator can give much better frequency 
estimates than Kay’s method with considerably lower variance 
threshold while remaining unbiased and having a wide frequency 
range. 
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Nonlinear decorrelator for multiuser 
detection in non-Gaussian impulsive 
environments 

T.C. Chuah, B.S. Sharif and O.R. Hinton 

A nonlinear decorrelator is proposed for robust multiuser 
detection in CDMA non-Gaussian channels. The new detector 
involves the use of a nonlinear front-end followed by a linear 
decorrelating stage. Simulation results show that the new detector 
exhibits good near-far resistance under both Gaussian and non- 
Gaussian impulsive noise environments. 

Introduction: A substantial amount of research has been recently 
devoted to developing sub-optimal multiuser detectors for direct 
sequence code division multiple access (DS/CDMA) systems. One 
of the main approaches involves the use of a linear decorrelating 
detector, which is a least squares estimator that provides a zero- 
forcing solution for multiaccess interference (MAI) rejection in the 
noiseless case [l]. The ambient noise is usually assumed to be 
Gaussian distributed primarily because of its simplicity and is jus- 
tified by the central limit theorem. However, many wireless com- 
munications channels are primarily impulsive and exhibit non- 
Gaussian statistics [2], therefore the linear decorrelator is no 
longer appropriate due to its lack of robustness against outliers. 

where the bold variables denote column vectors in RN, N is the 
system processing gain and NT, = T, K is the number of users, Ak 
is the received amplitude of user k, and bk E {-1, l}  is the symbol 
transmitted by user k. The normalised signature sequence of the 
kth user is denoted by 

where (pt ,  ..., pJ) is a signature sequence of +l’s assigned to user 
k. n is the ambient noise vector and is assumed to be a sequence of 
independent and identically distributed (i.i.d.) random variables. 
In this Letter, we model n with symmetric a-stable (SaS) random 
variables, which have been shown to accurately model impulsive 
noise processes [3]. The characteristic function of a zero mean SOS 
random variable is 

p(t) = e-dt l ”  ( 2 )  
where a (0 < a 2 2) is called the characteristic exponent; a smaller 
a signifies more impulsive behaviour and vice versa. y (y > 0) is a 
scale parameter known as the dispersion. An a-stable distribution 
is justified by the generalised central limit theorem: if the sum of 
an infinite number of i.i.d. random variables (with finite or infinite 
variance) converges in a distribution, then the limiting distribution 
is a-stable. This suggests that ambient noise with a-stable distribu- 
tion can arise in the physical world as the result of a large number 
of i.i.d. effects in the same way as Gaussian noise does. Since SaS 

system and noise model: we consider this problem in the context 
of a coherent, synchronous DS/CDMA system, After conventional 
chip-matched fdtering and sampling at the chip rate 1 / ~ ~ ,  the dis- 
Crete time version of the received signal within the ith svmbol 

noise with a < 2 has no finite variance, the standard signal-to- 
noise ratio (sm) measure becomes inconsistent. Therefore, a new 
scale parmeter, geometric power, is used to indicate the strength 
Of the a-stab1e noise 14]: 

interval T can be written in vector form as 
(3) 

(1) where C, = 1.78 is the exponential of the Euler constant. The geo- 
metric signal-to-noise ratio (G-SNR), which provides a mathemat- 
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