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Carrier Frequency Recovery in All-Digital Modems 
for Burst-Mode Transmissions 

Marco Luke, Member, IEEE, and Ruggero Reggiannini 

Abstract-Reliable data detection in Time Division Multiple 
Access (TDMA) communication systems strictly depends on the 
availability of accurate estimates of the synchronization 
parameters of the received signal, i. e., carrier frequency/phase 
and symbol timing, which must be derived from the burst 
preamble. In this paper we focus on the carrier frequency 
estimation aspect, and we present a fast, open-loop, all-digital 
frequency offset estimation technique, whose performance is 
assessed in two different communication scenarios: a TDMA 
satellite link employing standard modulation and burst formats, 
and a mobile cellular terrestrial radio system with signal and 
channel characteristics obeying the pan-European Group Special 
Mobile (GSM) recommendations. The use of the algorithm as a 
frequency error detector (discriminator) in a recursive ("closed- 
loop") frequency offset estimator is also discussed, and some 
results concerning both the transient and the steady-state 
behavior of such a scheme are presented. Finally, the impact of 
the algorithm on the receiver BER is briefly analyzed. 

I. INTRODUCTION 
Time division multiple access techniques, although 

primarily developed for satellite links [ 13, have grown popular 
in a variety of application areas, notably in terrestrial mobile 
cellular systems and wireless communications [2]. As is 
known, each TDMA data burst includes a sequence of training 
bits (preamble) which are exploited by the receiver for burst 
identification as well as for carrier and symbol timing 
recovery. 

Focusing on the carrier frequency recovery problem, a 
number of fast-converging methods for its solution have been 
presented in the literature, most of which are intended for 
application with linearly modulated, burst-mode signals 
transmitted over the Additive White Gaussian Noise (AWGN) 
channel. Among these techniques, we mention the maximum- 
likelihood (ML) method for PSK signals proposed in [3], 
whereby a periodic sequence of training bits is recursively 
passed through a bank of bandpass filters (implemented in the 
form of a discrete Fourier transform) whose frequency spacing 
is varied so as to achieve an accurate estimate of the frequency 
at which the input signal spectrum peaks. An alternative 
scheme proposed in [4] employs a sort of differential detector 
whose output is sampled at symbol rate and appropriately 
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processed to remove modulation, so as to obtain a complex- 
valued sequence of samples whose phase depends on the 
carrier frequency offset and not on data symbols. Paper [ 5 ]  
presents an algorithm for carrier synchronization which does 
not require the presence of the training symbol sequence. As in 
the previous case, differential symbol estimates are used to 
cancel data modulation from the received signal, thus 
obtaining a sequence of samples whose average phase slope is 
proportional to the frequency offset. As a next step, the cited 
phase slope is evaluated by means of a fitting technique 
analogous to that illustrated in [6]. A similar approach was 
also developed and analyzed in [7]. 

The problem of carrier frequency recovery may be 
sometimes circumvented by imposing stringent requirements 
on the frequency stability of the transmit and receive oscilla- 
tors. For instance, GSM recommendations [8] demand that the 
uncompensated frequency offset at the demodulator output 
should not exceed a few hundred Hz inclusive of Doppler 
shifts, thus calling for oscillator stabilities better than lo-'. 
This seems a rather severe constraint, and some methods for its 
relief would be of interest. 

In this paper, we present an efficient technique for fast 
carrier frequency offset recovery based on data modulation 
and/or channel distortion removal from the received signal. As 
was done in [9] by Fitz, our algorithm was derived from ML 
estimation theory, and its error performance in the absence of 
fading was observed to lie very close to the CramCr-Rao lower 
bound (CRLB) for unbiased estimators [lo], [ l l ] .  We also 
present a simple implementation of the algorithm, which is 
made up of a few standard digital signal processing (DSP) 
components (Section 11). As a next step, the algorithm is 
applied to two different communication scenarios: a typical 
TDMA satellite link and a mobile cellular terrestrial radio 
system with signal and channel characteristics obeying the 
pan-European GSM recommendations [ 121 (Section In). We 
also show how the scheme can operate as a frequency error 
detector within a closed loop tracker (Section IV). A summary 
and some final remarks conclude the paper (Section V). 

II. FREQUENCY OFFSET ESTIMATION 

A. Frequency estimation algorithm 

We consider the problem of ML estimation of the frequen - 
cy Af of the complex-valued oscillation exp{j2nAft}, start- 
ing from the observation of the sampled signal 
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where T, 5 1/(2Af) is the sampling interval, 0 is an unknown 
random phase with uniform probability density in [0,2n) and 
v, = vk,c + jvk.,, {vkTC} and {vk,,} being independent zero-mean 
Gaussian random sequences, both with autocorrelation 
R,,(k) = c ~ ~ 6 ~ . ~  ( 6,, represents here the Kronecker's symbol). 
This problem is well developed in the literature [14], [15], so 
that, skipping all details for brevity's sake, we are led to the 
problem of seeking the maximum of the equivalent likelihood 
function 

k=l m=l 

where A j  is-a tentative value for Af. Maximicing (2) with 
respect to Af yields the ML estimate of Af, AfML, which is 
consistent and also asymptotically efficient [ 101 insofar as for 
N + 00 its variance equals the so-called CramCr-Rao Lower 
Bound (CRLB) uiR, a fundamental (i. e., that cannot be 
surpassed by any estimator) lower limit to the variance of any 
unbiased frequency estimator operating on a signal modeled as 
in (1) [ 1 11. The CRLB for our problem is easily found to be 

(3) 
2 3  1 

OCR =- 
2n2T: pN(N2 -1) 

where p indicates the carrier-to-noise ratio (CNR), defined as 
the ratio between the signal and noise powers in (1): 

A 1  p =-. 
2 cT2 (4) 

Unfortunately, a simple, closed-form solution to the 
problem of maximizing (2) cannot be derived, so that an exact 
determination of Af ML would require a numerical calculation, 
which is a complex and time-consuming task. An alternative 
suboptimal technique, providing estimates close to the CRLB 
with a moderate computation complexity, is introduced in the 
following. 

Taking the derivative of (2) with respect to A7 and 
equating it to zero yields 

N N  c (k - m)rk r;e-~2"AjT,(k--m) - - 0  (5) 
k=I m=l 

or, rearranging terms, 

} = O  

where R(k) denotes the estimated autocorrelation of the 
sequence rk , defined as 

(7) 

Equation (6) represents a necessary condition for the 
solution of our maximization problem to exist. Particular care 
must be taken in order to avoid those zeroes of (6) 
corresponding to local maxima of (2) different from the 

A I N  R(k) = - x r , r I : ' ,  O I k I N - 1  
- i=k+l 

solution of the likelihood equation (the absolute maximum). 
The "false maxima" can be avoided by appropriately 
restricting the operating range of the estimator, as will be 
shown in the sequel. We notice now that the term in braces in 
(6) can be thought of as the Discrete Fourier Transform of the 
estimated autocorrelation R(k) , weighted by the parabolic 
windowing function w(k) = k ( N  - k), k = 1,2,. . . , N - 1 . This 
weighing function accounts for the fact that, in the vicinity of 
k = 0 ,  the autocorrelation R(k) bears intrinsically little or no 
information on the frequency offset because it is derived from 
closely spaced signal samples. On the other hand, when k is 
close to N , R(k) becomes a poor estimate of the autocorrela- 
tion of rk ,  since the number of terms in the sum (7) building 
up such an estimate is small. In a suboptimum implementation 
of the frequency estimator, w(k) can be replaced by a rectan- 
gular sequence made up of all l's, k = 1,2,. . . , M ,  M I N - 1, to 
discard the unreliable autocorrelation estimates close to k = N, 
while retaining the "good" autocorrelation samples near k = 1. 
We obtain thus the following modified estimation strategy: 

For an ideal noiseless channel, R( k) = exp( j 2  nAf kT, ) and 
A j  = Af is still a trivial solution of the modified estimation 
strategy (8). When noise is present, the solutions of (6) and (8) 
will differ in general but, with a proper choice of M ,  their 
mean squared distance is expected to get negligible as the 
CNR increases. 

Under the assumptions of high CNR and low frequency 
deviation ( MAf T d ) ,  an approximate way of solving (8) can 
also be devised. In fact, replacing the exponential in (8) by its 
Taylor series expansion truncated to the linear term and 
rearranging, we get 

M 

(9) 

k=l 

which immediately yields the estimate A j  . We can also work 
out a simpler version of (9), which is better oriented to a 
straightforward DSP implementation of the frequency estima- 
tion algorithm, by arguing that under the above assumptions 
R(k) = exp( j2nAfkTS) + 9, G 1 + j2nkAf T, + ?,, with Vk an 
appropriate noise term, I Vk I 4, so that 

M 

k=l {k:l } xIm{R(k)}iZMarg x R ( k )  

M (  M + 1) M 

xkRe{R(k)} G ~ 

k=l L 

where arg(z) denotes the argument of the complex number z ,  
taken in the interval [--7c,n). Collecting (9)-(11), we are 
finally led to 
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very few performance results about the frequency recovery 
scheme could be found therein. 
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Fig. 1 - Normalized variance of the frequency 
estimation error for algorithm (12). 
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Fig. 2 - Dependence on M of the estimatox 
performance. 

which represents the final form of the frequency estimatio? 
algorithm we will focus on in the following. We note that Af 
is correctly determined as long as the argument of the 
summation at the right-hand side of (12) does not exceed kn. 
This limits the operating range of our frequency recovery 
scheme to the interval 

IAfk [ ( M + l ) T s ] - ' .  (13) 

where no ambiguity problems arise (see Eq. (2)). The proposed 
estimator is a generalization of a similar algorithm analyzed in 
[16], obtained from (12) by letting M = l .  As already 
mentioned, an approximate-ML frequency estimation 
algorithm similar to (12), but with a somewhat higher 
implementation complexity, is also discussed in [9]. However, 

B. Algorithm performunce 
We found that estimator (12) is asymptotically unbiased 

and we derived an expression of the estimation error variance 
0,' when the CNR is large, hereafter referred to as asymptotic 
error variance (AEV) of the algorithm. The calculation of the 
AEV under the assumption 2nAf T, M d  is outlined in the 
Appendix. The final result is 

1 min(N-r,N-m) - (N-r-m)u(N-r-m) 7 c c {  PM r=i (N-r)(M-m) ( N  - r)(M - m)  

(14) 
where min(.;) indicates the minimum between its two 
arguments and U(.) is the unit step function. Figure 1 shows 
the normalized frequency error variance (o,TT)' plotted as a 
function of p , for N = 40, Af = 0 and two different values of 
M. Solid thin lines represent the AEV (14), while symbols 
denote simulation results, obtained with the aid of the tool 
SPACE (Software PAckage for Communication Engineering) 
developed at the University of Pisa. Also shown for 
comparison is the normalized CRLB (thick curve). A 
remarkably good agreement between analysis and simulation 
is observed at medium-to-high values of CNR. Although the 
results in Fig. 1 are obtained for Af = 0, as will be apparent in 
the sequel (see Fig. 6), the error variance (o,T,)~ is 
remarkably independent of the particular value of Af , as long 
as the frequency offset stays within the operating range (13). 
Also, in the CNR range considered in Fig. 1, we did not 
observe any threshold effect in the estimator variance; this 
closely resembles the results presented in [ 141 about the "true" 
ML estimator of Af . 

It can also be seen that for M exceeding a few units (say, 
M 2 lo), the AEV curves approach closely the CRLB.The 
effect of a variation of M for a fixed N is illustrated in Fig. 2, 
where the ratio of the AEV to the CRLB is plotted vs. M ,  for 
different values of N .  From these curves it is seen that the 
optimum (i. e., with minimum departure from the CRLB) 
value of M is approximately N J 2  when N>>1 . Throughout the 
following, without further mention, M will be assumed equal 
to this optimum value. 

As previously noted, algorithm (12) yields correct 
frequency estimates in the frequency offset range given by 
(13), so that application of the algorithm requires some control 
on the maximum allowable frequency deviation of the signal. 

C. Algorithm implementation 

Algorithm (12) can be implemented by means of a few 
standard DSP components, as illustrated in Fig. 3. This scheme 
is easily obtained after inserting (7) in (12) and interchanging 
the summations on k and i. An N -tap shift register, which 
is to be initialized with a sequence of all Os, is supplied with 
the complex-conjugated sequence (1). At each clock step, the 
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(k=l, ..., N) 

1 - 

ROM :Computes 

Fig. 3 - Implementation of the estimator by means of DSP components. 

Fig. 4 - Open-loop frequency recovery scheme for the satellite TDMA system. 
Thick lines indicate complex-valued signals. 

contents of the register are shifted, multiplied by the weights 
1/( N - i ) ,  i = 1,2 , .  . . , M, and summed up together. This type of 
processing is just that encountered in an FIR filter 
implementation. The output of such a filter is multiplied by the 
input signal rk and the result is accumulated so as to build up 
the summation at the right-hand side of (12) ,  whose argument 
is then extracted and appropriately scaled by a Read-only 
Memory (ROM). It is noted that the FIR filter has a complex- 
valued input and M < N real taps, so that each of the 
corresponding multipliers and adders are implemented as two 
decoupled real-input components, while the final multiplier by 
rk is a true complex multiplier made of four real multipliers 
and two real adders. Evaluation of a frequency estimate 
according to the scheme of Fig. 3 calls for a total of 
2NM + 4 N  real products, 2N(M - 1) + 2 N  - 2 real additions 
andaROMaccess. 

Adopting the optimum value M = N / 2 ,  it is seen that the 
computational complexity of the estimator grows as N 2 ,  due 
to the operation of FIR filtering described above. Thus, for 
large values of N such a filtering might call for an FFT-based 
implementation. On the other hand, since M can be 
substantially reduced with respect to its optimum value N / 2  
(say, by a factor 2 to 3) without losing much of the optimality 
of the estimator (see Fig. 2 ) ,  and since in most burst-mode 
communication applications N is in the order of a few tens, 
the convenience of an FFT-based filtering might be ques- 

tioned. As a final remark on this subject, we observe that the 
linear-regression algorithm presented in [6] has a complexity 
proportional to N , but reaches the CRLB only for large values 
of E b / N o  . 

m . TWO APPLICATIONS OF THE ALGORITHM 

A. Satellite TDMA 

Figure 4 shows the application of the previously described 
frequency estimator to a bandlimited QPSK receiver, suited for 
satellite TDMA systems. Assuming equally-split Nyquist 
filtering, the expression of the sampled, frequency-shifted and 
noise-corrupted preamble signal is 

md(t,)=m(t,)exp[j(2nAft, +@)I+n(t ,) ,  tk E ( ~ , Z ~ )  (15) 

where @ is the carrier phase, t, f kT + z are the sampling in- 
stants, 0 I z<  T denoting a possible timing offset, m(t,) is 
the filtered and baud-rate sampled burst preamble, ( z,, z2) is 
the observation interval and n(t,) are independent samples of 
a complex-valued Gaussian process whose real and imaginary 
components have variance 0,' = N , / T .  We explicitly observe 
that the signal model (15) can be considered valid as far as the 
frequency offset Af is small (i. e., a few percent) compared to 
the symbol rate, so that the mismatch of the Nyquist root- 
raised-cosine receive filter due to the frequency offset can be 
neglected. This is not a severe constraint in view of the typical 
operating range of the frequency estimator (Sect. 2.1). Under 
the assumption of perfect timing recovery (z  = 0), we have 
m(t, ) = c k ,  where ck is the k-th transmitted QPSK symbol, so 
that 

md(tk)=cl;2/2Pexp[j(2n~t, t k  E ( Z , , Z ~ )  

(16) 
where P is the received average signal power. Dividing (16) 
by m(t, ) = m c , ,  a complex-valued oscillation plus noise 
results 

-- m d ( t k )  - md(tk)c;/2/2P= exp[j(2nAftk + @ ) I +  v( tk ) ,  
m ( t k  ) 

where the noise term is defined as 

The complex samples v(t,) are Gaussian independent with 
independent I-Q components having a variance CT' = N o / 2 P T  
= ( 4  Eb/No)- ' ,  where E b / N o  is the energy-per-bit-to-one- 
sided-noise-spectral-density ratio. The properties of sequence 
(17) are thus identical to those of sequence (1) and the results 
derived in Sect. 2.2 for the frequency recovery algorithm apply 
exactly to the present case provided that T ,  and p are replaced 
by T and 2 E b / N o ,  respectively. In addition to those results, 
Figs. 5 and 6 show the mean and the RMS value of the 
frequency estimates as a function of the normalized frequency 
offset AfT with perfect timing recovery, derived by simulation 
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Fig. 7- Average frequency estimate for the QPSK 
signal with symbol timing error. 
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for a standard sign-alternating BPSK symbol sequence 
preamble. The curves were obtained letting E b / N o  =10 dB, 
N =96, M=47 and assuming a=0.3. As expected, the curves 
of Fig. 5 are linear and cross the Af axis at the origin and also 
at the frequencies f[( M + 1)Tl-'. The diagrams confirm that 
the estimates are practically unbiased in a broad range around 
Af = 0, and reveal that the error variance is almost flat in the 
same region. When Af approaches the limit-values 
f [ (M + l)T]-', the estimator exhibits an increasing bias due to 
the discontinuity of the arg{.} function in (12), so that the 
RMS estimation error grows considerably. 

In the previous analysis, we assumed that symbol timing is 
known at the receiver (i. e., z = 0). This assumption seems 
reasonable in view of the high stability of timing references 
used in TDMA systems, and also considering that the timing 
estimates can be periodically updated by means of clock 
extraction algorithms [ 181 providing correct operation in the 

Fig. 8 - RMS frequency estimation error for the 
QPSK signal with symbol timing error. 

range of frequency offsets typical of our application. 
Nonetheless, Figs. 7-8 show the effect of a non-negligible 
timing error z on the curves of the statistical expectation and 
RMS value of the estimates as a function of E b / N o ,  with 
Af = 2 .10-3/T. It is seen that the presence of a nonzero 
sampling offset does not introduce any further estimation bias, 
whereas the error variance of the estimator may undergo a 
substantial degradation, due to the presence of intersymbol 
interference. 

B. GSM transmissions. 

As is known, in the pan-European digital cellular mobile 
radio communication system GSM, the recommended 
modulation format is Gaussian Minimum Shift Keying 
(GMSK) with a normalized bandwidth factor pTb=0.3 [12], 
where l/Tb =270.8 kb/s is the channel bit rate. A nice property 
of the GMSK signal is its close similarity to an Offset 
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Quadrature Phase-Shift Keying (OQPSK) signal with an 
appropriate elementary pulse shape g( t )  [ 131. Accordingly, 
GMSK can be regarded as an approximately linear offset 
modulation, so that the complex envelope of the N,,-bit long 
received burst ( N,=148) can be expressed as follows: 

N,,/2-I NbI2-I 

s ( t ) ~  xu,h( t -2kTb)+ j xbhh(t-2kT, ,  -Tb)  (19) 

where a, and b, are IID symbols drawn from the alphabet 
a= {-l,l), h( t )  is the overall transmitter-plus-channel im- 
pulse response, i. e., h( t )  "= g ( t ) @ c ( t ) ,  c ( t )  being the 
impulse response of a Rayleigh-fading multipath propagation 
channel as described in [18]. The delays and attenuation 
profiles for the typical urban (TU), rural area (RA) and hilly 
terrain (HT) channels can be found in [181 as well. As is 
customary, the function h(t)  will be denoted in the sequel by 
the acronym CIR (Channel Impulse Response), not to be 
confused with c( t ) .  

According to the GSM specifications, the known 26-bit 
training sequence is allocated in the central portion of the 
burst, and is thus also called midamble. We can extract the 
midamble from the rest of the burst and write it in a form 
similar to (19): 

m(t)  A m,(t)+jm,(t) 

= x a,h( t - 2kTb ) + j x P , h (  t - 2kTb - T,, ) (20) 

where the time origin has been properly shifted and {a,],{Pk] 
denote the I and Q training sequences, of length N,,=13 bits. It 
is noted that symbols coming before and after the midamble 
may introduce a non negligible level of IS1 at the boundaries 
of m(t) ,  that is not accounted for in (20). 

In the all-digital GSM demodulator [ 121, the received 
signal is frequency-shifted, passed through a low-pass channel 
filter (an 8-pole Butterworth filter with bandwidth 0.375/Tb) 
and digitized at the rate 1/T,. The noise-corrupted midamble 
portion of the burst can thus be written in a form akin to (15): 

I=O h=O 

N,,, - 1 N,"-l 

,=I> h=O 

m d ( t k ) = m ( t , ) e x p [ j ( 2 ~ A f t ,  + @ > 1 + n ( t , ) 7  t, E ( Z , ? Z 2 )  (21) 

where t, A kT, + Z, T,  and z E [0, T' ] being the sample spac- 
ing and delay, respectively, m(t)  is the received midamble, 4 
is a constant phase and (TI, z2) is the observation interval. The 
channel filter is no longer matched to the incoming signal, and 
its bandwidth is supposed wide enough to let the useful signal 
pass undistorted, while bandlimiting the noise n(t)  . 

If we could exactly estimate the CIR h( t )  from observa- 
tions (21), we could also generate a distortion-free replica of 
the midamble m ( t h )  within the receiver. Then, dividing (21) 
by m(t, ) , a complex oscillation plus noise similar to that at the 
right-hand side of (17) would result. Unfortunately, the actual 
CIR estimate (as obtained for instance through the standard 
procedure outlined in [ 121) is somewhat distorted even with a 
non-dispersive channel as an effect of thermal noise and of the 
uncompensated frequency offset in (21), so that a performance 
degradation with respect to the ideal (as well as to the preced- 
ing TDMA) case is to be expected. 

Let now m, (tn ) denote the locally remodulated midamble 
in the interval t ,  E ( z,' , z,' ), i. e., in a convenient subset of 
( z ~ ,  z ~ )  where the boundary interference effects can be 
disregarded ( z,' -rIt = 20Tb, corresponding to N = 21 in the 
algorithm (7)-(12)). Then, dividing (21) by m,(t,) yields the 
sequence 

p ( t , ) = q ( t n ) e x p [ j ( 2 ~ A f t k + @ ) 1 + v ( t , ) ,  t, E ( Z l ' 7 Z 2 ' )  (22) 

where 

For moderate distortion, q( tn)  keeps close to unity, and 
p (  t ,  ) can be considered a good approximation of the sequence 
(1) provided that the noise samples ~ ( t , )  are Gaussian 
independent. This condition is exactly met when the sampling 
interval T ,  equals or exceeds the correlation time of the 
process n ( t ) ,  i. e., approximately the inverse of the channel 
filter bandwidth, or, in the GSM receiver, - 1.33Tb [12]. 
However, for ease of implementation, in all of our evaluations 
we found it  convenient to sample the signal at bit rate. 

Figures 9-10 show plots of the mean value of A7 as a 
function of Af for different values of E6/No  when the 
propagation channel is stationary, with c( t )  = 6(t)  (ideal 
stationary (IS) channel). As is seen from Fig. 9, the curves are 
now nonlinear and intersect the Af axis close to the origin and 
at two further points placed asymmetrically around Af = 0, 
approximately at fl=-13.5 kHz and f,=10.5 kHz. Thus the 
frequency estimates exhibit a bias that grows with IAfl and 
with the inverse of E,,/N,, . This undesirable behavior is the 
result of the CIR estimation errors due to the presence of 
channel Gaussian noise and, to a lesser extent, of IS1 inherent 
to the GMSK signal. Errors in CIR estimation due to the 
asymmetric spectral properties of the GSM channel probe 
sequence (20) are also responsible for the asymmetry of the 
average estimated frequency with respect to Af exhibited by 
the curves in Fig. 9. Finally, Fig. 11 shows the standard 
deviation 0, of the frequency estimation error as a function of 
Af and E,, f N,, in the same frequency range as in Fig. 9. 

IV. FREQUENCY TRACKING LOOP 

The accuracy attained by a single-burst estimation was 
illustrated in Figs. 5-8 for the satellite link and in Figs. 9-1 1 for 
the GSM system with an IS channel. Although this perfor- 
mance can be considered excellent in itself, as it closely 
approaches the CRLB, the residual frequency fluctuations after 
baseband conversion may still be too large, thus causing 
excessive phase rotations in the burst data section. Therefore, 
if the frequency sources in the system are stable over a 
sequence of consecutive bursts (as happens when the carrier 
frequencies, either fixed or frequency-hopped, are generated 
by means of a synthesizer driven by a single stable oscillator, 
and the Doppler shift rate is negligible), then the algorithm 
accuracy can be trivially improved by averaging a number L 
of consecutive single-burst estimates. For the GSM system, for 
instance, an Rh4S asymptotic error allowing correct receiver 
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Fig. 9 - Average frequency estimate for the GSM 
system. Perfect symbol timing recovery. 
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Fig. 10 - Close-up of Fig. 9 in the vicinity of 
Af=O. 

operation can be attained by averaging as few as L = 10 t 20 
estimates for Eb/No ranging from 5 dB to 10 dB on the ideal 
channel. This technique can be implemented directly in an 
open loop configuration similar to that shown in Fig. 4 so as to 
provide frequency estimates from the observation of 
(nonoverlapping) groups of L consecutive bursts, with every 
estimate used to correct the frequency offset in the subsequent 
L bursts. This scheme is simple to implement and is 
unconditionally stable but, as pointed out in Sect. 3.2, it may 
suffer, in the case of the GSM receiver, from the presence of 
an error bias induced both by thermal noise and imperfect 
knowledge of the signaling pulse shape. 

The cited drawback may be overcome by a recursive 
(“closed loop”) scheme, wherein the frequency estimate at step 
k is used to correct, and not to replace, the one available at 
step k - 1, until the estimation error is brought down to 
negligible levels. Figure 12 shows the functional block 

E t I 20 dB 

; 1 0 ’  
- 1 4000 0 14000 

F r e q u e n c y  O f f s e t  A f  ( H z )  

Fig. 1 I - RMS frequency estimation error for the 
GSM system. Ideal channel conditions. 

diagram of a receiver utilizing such a mixed open-loopklosed- 
loop frequency tracker. The received signal, after baseband 
conversion, is passed through an antialiasing stage, then 
sampled at the rate f, = l /T, ,  +lJ3 converted and frequency 
downshifted by the amount Sf,, i. e., by the closed-lqop 
frequency estimate at step k . This estimate is related to Sf,-, 
as follows 

where y is the updating stepsize and Af,-, is now the estimate 
of the Cesidual frequency offset fA,,-, at step k - 1, fA, , - ,  A 
Af - Sf,-, , derived according to (12) from observation of L 
consecutive bursts at the output of the matched (or channel) 
filter. Three different operating rates may now be identified in 
the scheme of Fig. 12: l /Tc in the digital front-end filtering, 
1/T for TDMA or l /Tb for GSM after filtering, for data 

estimations (decimator not shown), and the frequency estimate 
update rate l / T A ,  TA 4 T,, . L PT,, where T,, is the 
frame repetition period. 

The tracking performance of algorithm (24) can be 
analyzed through standard techniques under the assumption 
that the tracking error is small enough to allow for loop 
linearization [19]. The performance of the system depicted in 
Fig. 12 was evaluated in the most challenging of the two 
scenarios outlined in the previous section, namely, GSM 
mobile transmissions. Theoretical analysis was focused on the 
evaluation of the tracking error jitter variance, while 
simulation was used to assess both the steady-state and the 
transient behavior of the tracker, and also to investigate the 
BER performance of the receiver. As already mentioned, 
channel filtering is carried out numerically with an 
oversampling factor of 4 t 8 times the bit rate, while recon- 
struction of the training signal is carried out on Tb-spaced 
samples. 

The results presented in the following were derived under 
the assumption that each residual frequency offset estimate 
Afk-l is generated from the observation of L = 10 consecutive 
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Fig. 13 - Frequency acquisition transients in the GSM receiver (IS and TU 

channels) 
Fig. 15 - Average BER vs. Af for the GSM 

receiver on the TU channel. 

bursts, i. e., 6jk is updated every TA = lOT,, = 46.2 ms. 
Also, the stepsize y is such that the normalized loop noise 
equivalent bandwidth is fixed at BnTFRAME = 5 .  When 
dealing with the standard GSM channels, we conventionally 
use the symbol E, to denote the average bit energy received 
through the 0-dB path. 

Figure 13 shows some examples of frequency acquisition of 
the GSM receiver of Fig. 12. The curves were obtained by 
simulation letting E , / N ,  = 10 dB and starting the acquisition 
from various normalized frequency offsets Af T,. The curves 
above the horizontal axis (positive frequency offsets) were 
derived for the IS propagation channel, while those character- 
ized by negative initial offsets are relevant to a TU channel. 
The acquisition times are essentially the same with these two 
channels, and the error fluctuations around the steady-state 
value, although a little more pronounced for the TU channel, 
are still moderate and compatible with a correct operation of 
the receiver. Slightly better results were obtained with the RA 

and HT channels. 
Figure 14 shows a plot of the RMS value of of the closed- 

loop frequency estimation error vs. E b / N n  on the TU channel, 
comparing simulations (marks) and analytical results (solid 
curve). These latter were derived under the assumption, 
validated by simula_tion, of a flat power spectral density of the 
loop error signal Af k-, . 

A few words on the impact of the frequency recovery loop 
on the average BER of the receiver are now in order. Data 
symbol recovery is accomplished in the GSM receiver by 
means of a maximum likelihood sequence estimation strategy 
(in the form of a so-called Viterbi equalizer), to compensate 
for channel distortions [12]. Some results are summarized in 
Fig. 15, where the average BER of such a receiver, derived by 
simulation, is plotted as a function of Af for the TU channel 
when E b / N o  equals 10 dB or 20 dB. Squares and dots indicate 
presence and absence of the frequency recovery loop, 
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respectively, and solid curves are used to interpolate the simu- 
lation results. It is seen that the frequency recovery loop makes 
the receiver almost insensitive to the frequency offset, setting 
its performance at approximately the same level as in the ideal 
case, i. e., when Af = 0 and the loop is absent. 

APPENDIX 

W: compute hereafter an expression for the error variance 
E{(Af- Af)2} of estimator (12) under the assumptions p*l 
and 2nAfTsM4 (asymptotic error variance). To simplify 
notations let 

5 A exp[jnAfT, ( M  + l)] (AI) 

M I N  M 
f A exp[ jnAjT,* ( M  + I)] = c R( m) = C - c rkri-m 

m=1 m=l - k=m+l 

& A n(Aj-Af)Tv(M+l) 

so that 

E { E 2 ) .  
1 

m A .  - Af )2  1 = 
7c2Ts2 ( M  + 1)2 

On the other hand, 

Recalling (1) and letting ZiJ A nAfT,, we get 

Under the assumption of high CNR, the noisexnoise term 
GkCi - ln  can be neglected, yielding 

sin( M a )  

After squaring (A7) and taking the expectation, we are left 
with 

I o2 s i n 2 a  1 E(& }= -  , 

2 sin2(ElM) zz (N - m)(N - r) 

N N  

. C C(-2cos[2m(k + r- I -  M - 1)16(1 - k +  m )  
k=m+l I=r+l 

+2cos [2 t i r (k -1 ) ]6 (k -m-I - r )  
-2 cos[25i~(m - k + I - M - 1)]6(k - 1 - r) 
+2 cos[2a(k - m + r - I)]S(I - k ) }  (A8) 

so that, after rather tedious but straightforward manipulations, 
we find 

- 1 sin2 ( nAf T, ) - 
E{(A’- )211 P+- - n’T? (M + 1)’p sin2 (nAfT,M) 

min( N - r, N - m) cos[ 2 nAjTs ( m  - r)] 

cos[2nAfls (m + r - M - l)] (N - r - m )  U( N - r - m )  
(N - r)( N - m )  

- 

where U(.) denotes the unit step function. 
Equation (A9) shows a dependence of the AEV on the 

frequency offset Af. On the other hand, when 2nAjT$4<tl the 
following approximate relation holds true 

[sin( nAfTs)/sin( nAf T,M)]’ 5 1/M2 

and the cosine functions can be replaced by unity. As a final 
result, we are led to 

min(N-r,N-m) (N-r -m)u(N-r -m)  - 
(N - r)( M - m )  (N - r)(M - m )  
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