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Abstract. This paper considers feedforward carrier frequency estimation methods in burst-mode digital transmission, with 
tutorial objectives foremost. Assuming PSK modulation, two scenarios are envisaged in which frequency estimates are derived 
either from a preamble appended to the data block, or directly from the modulated signal. Several estimation algorithms are 
considered with different and somewhat contrasting characteristics. The characteristics we focus on are: estimation accuracy, 
estimation range, minimum operating signal-to-noise ratio (threshold), and implementation complexity. They provide a frame- 
work within which current estimation methods can be evaluated. The paper reviews and compares some prominent algorithms 
proposed in literature, trying to single out the best ones for a given application. 

1. INTRODUCTION 

Burst-mode transmission of digital data is employed in 
many applications such as satellite time-division multi- 
ple-access (TDMA) techniques and terrestrial mobile cel- 
lular radio. In conventional systems a preamble of known 
symbols is placed somewhere in each burst for carrier and 
clock recovery purposes. The use of the preamble allows 
data-aided (DA) operation and results in superior perfor- 
mance in comparison with non-data-aided (NDA) meth- 
ods. Even so, synchronization may prove difficult, espe- 
cially with coded modulations. For example, with QPSK 
signaling and rate 1/2, constraint length 7, convolutional 
coding, the signal-to-noise ratio E,/N,, needed to achieve 
a bit error rate of 10-6 is only 5 dB. Since it is desirable 
that the transmission system continues to operate even at 
higher error rates, a minimum of 2-3 dB is often set as a 
design target. Clearly, very efficient synchronization 
algorithms are needed in these conditions. 

Ideally, preambles should be as short as possible for 
they reduce the transmission rate. For example, current 
trends in satellite transmission for LAN interconnection 
indicate that an overhead of 10% is quite feasible [l]. 
Clearly, the next step is to get rid of preambles altogeth- 
er and estimate the synchronization parameters in an 
NDA fashion [2]. This route raises the following ques- 
tion. Lack of data information is expected to degrade 
synchronization accuracy for afixed estimation time. On 
the other hand, the estimation time does not need to be 
as short as when a preamble is used. In fact the whole 

data burst is available, not just a segment of it. Then, 
one wonders whether the extended estimation time will 
compensate for the NDA operation. The answer is not 
obvious and depends on the specific algorithms being 
used. For example, in [3] it is shown that carrier phase 
can be efficiently estimated without any preamble. 

In this paper we concentrate on carrier frequency 
estimation with PSK signaling. Our aim is to compare 
various feedforward estimation algorithms, either DA or 
NDA, that have been proposed in literature. In doing so 
we describe their features in terms of four performance 
indexes: 

i) estimation accuracy; 
ii) estimation range; 
iii) threshold (the critical signal-to-noise ratio below 

which large estimation errors begin to occur); 
iv) implementation complexity. 

It is worth noting that these indexes may be in contrast 
with each other. For example, achieving a low threshold 
implies a high complexity. Likewise, good estimation 
accuracy is often met at the price of a narrow estimation 
range. So, a trade off is called for between conflicting 
requirements and a judicious choice between various 
options can only be made by carefully specifying the 
actual operating conditions. 

The remainder of the paper is organized as follows. 
The next section concentrates on the signal model and 
describes the statistics of the sequence [ z ( k ) ]  as obtained 
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by eliminating the modulation from the samples at the 
matched filter output. Section 3 describes an algorithm 
derived from maximum likelihood criteria. Simpler 
methods are indicated in section 4. Other algorithms, 
based on correlation calculations, are reported in section 
5.  Computational complexity considerations are addres- 
sed in section 6 .  Finally, some conclusions are offered 
in section 7. 

2. SIGNAL MODEL 

In this study we make the following major assump- 
tions. The modulation is PSK and the channel noise is 
additive, white and Gaussian, with two-sided power 
spectral density N0/2. The channel filtering is equally 
apportioned between transmitter and receiver and the 
overall channel response is Nyquist in the absence offre- 
quency errors. Clock recovery is ideal. Indeed, excellent 
timing information can normally be derived even with 
frequency errors on the order of 10-20% of the symbol 
rate. In these conditions it is readily shown that the sam- 
ples from the matched filter are given by 

x ( k )  = Ck ej(2nfdkT;+@ + n(k) (1) 

where ( c k )  are data symbols from the PSK alphabet 
( e‘ZdM; rn = 0, 1,. . ., M - 1 ), fd is the carrier frequency 
offset we want to estimate, 8 represents the carrier 
phase, T is the symbol period, [ n ( k ) ]  are zero-mean 
Gaussian random variables with independent real and 
imaginary components, each of variance (Es/N0)-I/2, 
and E, is the signal energy per symbol. The phase 8 is 
uniformly distributed over [0,27r). 

It should be stressed that eq. (1) holds true only with 
rather limited values of fd (on the order of few percents 
of the symbol rate). In fact the right hand side does not 
reflect the mismatching between the’ incoming signal 
and the receive filter due to frequency emors. Actually, 
an exact expression for x( r )  is 

i t k  

where h(t)  is the convolution 

tude ( I h(0) I c 1). For heuristic reasons in the sequel we 
adopt the model ( I )  but the effects of intersymbol inter- 
ference will be pointed out in due time. 

It is clear from (1) that the samples x( r )  depend on 
the modulation. As most frequency estimation algo- 
rithms are tailored for unmodulated carriers, the data 
symbols must be wiped out in some way. Two different 
approaches can be followed to do  so, depending on 
whether the trasmitted symbols ( c k }  are known or not. 
The first instance corresponds to DA algorithms and is 
handled by multiplying both sides of (1) by c; (the 
superscript “star” means complex conjugate) to yield 

z ( k )  = x(k )  c; DA operation ( 5 )  

from which, bearing in mind that ck has unit amplitude, 
we get 

where n’(k) 4 n ( k )  c; is a noise sequence statistically 
equivalent to [n(k) ] .  Eq. (6) indicates that z ( k )  is a sine 
wave embedded in noise. In the next sections we dis- 
cuss how to estimate its frequency from the observation 
of [z(k)l. 

In the absence of a preamble the modulation can be 
removed by feeding x ( k )  into some ad hoc non linearity 
[ 3 ] .  The simplest and only type of non linearity we con- 
sider in  this study consists of raising x ( k )  to the M- 
power (M is the number of modulation levels) and scal- 
ing the result to unit amplitude. Formally, the output of 
the non linearity is related to the input x ( k )  by 

It is readily checked that (7) may also be written as 

where 

( 3 )  

and g(t)  is the shape of the modulation pulses. Bear in 
mind that we have assumed a Nyquist h(r) forfJ = 0, i.e., 

Comparing ( 1 )  and (2) we see that they coincide only 
for very small frequency offsets. Otherwise, they are 
different because of the presence of intersymbol inter- 
ference in (2) and a reduction in  the useful signal ampli- 

Thus, we have again a sine wave but, in comparison 
to (6). its frequency is M times larger and the channel 
noise affects z (k )  only through a non-Gaussian phase 
disturbance qk. 

It is interesting to compare DA and NDA operations 
at high SNR. To this purpose let us rewrite ( 6 )  in the 
form 

or, equivalently, 
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Clearly, the amplitude of n"(k) becomes smaller and 
smaller relative to unity as E,/N, increases. Then, (12) 
tends to (8) with M = 1. In other words, at high SNR the 
model (8) is valid for both DA and NDA operations 
provided that we set M = 1 when dealing with DA. 

3. RIFE AND BOORSTYN ALGORITHM 

Having established a statistical model for the observ- 
ables [ ~ ( k ) ] ,  we now concentrate on frequency estima- 
tion algorithms. A powerful method has been indicated 
by Rife and Boorstyn (R&B) in [4]. Let us see how it 
works when the data are available (DA operation). 
Taking ( 6 )  as an exact model ( I ) ,  Rife and Boorstyn 
have shown that the maximum likelihood (ML) estimate 
of fd is the location where the amplitude of 

achieves a maximum, Lo being the observation length in 
symbol intervals. Formally, the R&B estimator reads 

From ( 6 )  it is readily checked that fd is independent 
of the carrier phase 8. It is also evident that Zcf) is a 
periodic function of period 1/T. This implies that the 
estimates provided by (14)  are ambiguous by multiples 
of the symbol rate or, in other words, that the estimation 
range is &1/(27). 

One difficulty with locating the maximum of Z(f) is 
apparent from Fig. 1 a) which illustrates a typical realiza- 
tion of I Zy) I as obtained by simulation with QPSK sig- 
naling and root-raised-cosine-rolloff (RRCR) pulses with 
rolloff a = 0.5. The observation length is L,, = 64 and 
Es/No is 10 dB. Also, the normalized frequency offsetfdl" 
is chosen equal to 0.1. As there are many local maxima, 
the largest maximum must be sought in two steps. The 
first one (coarse search) calculates Zcf, over a discrete 
set of f-values covering the uncertainty range of fd and 
determines that f which maximizes I Zy) I. The second 
step Vine search) interpolates between samples of 1 Zy) I 
and computes the local maximum nearest to the f-value 
picked up earlier. Note that, occasionally, I Zy) I will be 
so distorted by noise that its highest peak will be far from 
fd. When this happens the R&B algorithm makes large 
errors (outliers). The SNR below which the outliers start 
to wxur is referred to as the threshold of the estimator. 

Fig. 1 b) illustrates a realization of 120 I as obtained 
with the same parameters of Fig. 1 a), except that Es/No 
is now -10 dB. An outlier is clearly evident. Therefore, 

( I )  As mentioned in section 2, eq. (6) is only valid with small frequen- 
cy offsets. Whenf, increases. the receive filter is no longer matched 
to the incoming pulses and the more complex model (2) must be 
taken into account. 
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Fig. 1 a) A typical realization of 1 Zy) 1 for EJN, = 10 dB; b) 120 I 
for EJN, = -10 dB 

the coarse search will provide an estimate of fd of about 
0.3/T instead of fd = O.I/T. Since large errors have dis- 
abling effects on the receiver performance, frequency 
estimators must operate above threshold. 

In practice the coarse search can be efficiently per- 
formed using Fast Fourier Transform (FlT) techniques 
[ 4 ] ,  as is now explained. First, z ( k )  is zero-padded up to 
some length &K, yielding the sequence 

where K is a parameter called pruning factor. Second, 
the FFT of [ ~ ' ( k ) ]  is computed at the points 

to produce the set [Z(f,)]. Finally, the largest I Z(fJ I is 
sought and this gives the coarse frequency estimate. 

The choice of the pruning factor considerably affects 
the estimation performance. Rife and Boorstyn recorn- 
mend K values in the range from 2 to 8 to keep the 
threshold low. In these conditions their estimator turns 
out to be unbiased in the range *1/(27). 

Fig. 2 illustrates the accuracy of the R&B algorithm 
with QPSK modulation and root-raised-cosine-rolloff 
pulses with 50% roiloff, say RRCR(SO%). The ordi- 
nates give the estimation error variance normalized to 
the squared symbol rate. The pruning factor is K = 4 
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Fig. 2 - Accuracy of R&B algorithm with DA operation. 

and the observation interval is of 64 symbols. The low- 
est line represents the modified Cramer-Rao bound 
(MCRB) [5] which is given by 

T 2  xMCRB(f,)=-- 3 1 
2 x 2 G  E , / N o  

We see that the estimation accuracy keeps quite close 
to the bound up to E,IN, values below 0 dB. If E,INo is 
decreased further, however, a rapid increase in the error 
variance is observed. The abscissa at which the slope of 
the curve starts to change indicates the estimator threshold 
and is a manifestation of the occurrence of outliers. The 
mismatching between the incoming signal and the receiv- 
ing filter deteriorates the performance as& increases. 

Next we turn our attention to NDA operation. Recall- 
ing the comments at the end of the previous section it is 
clear that the R&B estimator can be used even for NDA 
operation provided that the sequence [ z (k) ]  is computed 
from (7) rather than (5). Also, bearing in mind that eq. 
(8) holds for either DA and NDA at high SNR (with M = 
1 for DA), it can be shown that NDA operation leads to 
an estimation ambiguity by multiples of IIMT, not 1/T as 
happens with DA operation. For example, with 8PSK 
modulation the estimation range reduces from &SIT to 
+0.0625/T in passing from DA to NDA. 

Fig. 3 shows simulation results for NDA operation. 
The modulation is still QPSK, the pruning factor is K = 
4 and the frequency offset is chosen equal to zero. The 
modified Cramer-Rao bounds corresponding to the vari- 
ous observation lengths are indicated. We see that the 
threshold is a decreasing function of &. Approximately, 
doubling Lo results in a threshold decrease by 2 dB. 
This feature of the R&B estimator is of great impor- 
tance with coded modulation for it makes this estimator 

Fig. 3 - Accuracy of R&B algorithm with NDA operation. 

suitable for operation at very low SNR (by adequately 
increasing the observation length). As we shall see, 
other estimators have a threshold almost independent of 
4, and, in consequence, they can only be employed at 
intermediatehigh SNR. 

Fig. 4 illustrates further results with NDA operation. 
Everything is as in Fig. 3, except that the modul.ation is 
8PSK. The curves have still the same shape but, as 
expected, the threshold is now considerably higher for a 
given observation length. 
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Fig. 4 -Accuracy of R&B algorithm with NDA operation and SPSK. 
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4. LEAST-SQUARES-BASED ESTIMATORS 

4.1. Tretter Estimator 

The R&B estimator has very good performance but, as 
we shall see later, has a rather high computational com- 
plexity. Simpler methods are desirable and, in fact, a 
number of alternatives have been proposed in literature. 
In this section we describe two schemes derived from 
least squares estimation criteria. Our goal is to indicate 
their logical basis and give an idea of their performance. 
In pursuing this task we shall employ the model (8) which 
is valid at high SNR for either DA and NDA operation. It 
should be stressed that adopting this model has only heur- 
istic purposes for, in effect, the algorithms we shall obtain 
are useful at any SNR (not necessarily high). 

The first algorithm has been proposed by Tretter [6] 
and is based on the following considerations. From (8) 
we see that 

With this adjustment the Tretter estimator takes its 
final form 

4.2. Kay estimator 

Kay [7] has shown that the unwrapping process can 
be obviated if the sequence (arg [ z ( k )  z* ( k  - l)]} is 
used in place of (arg [ ~ ( k ) ] } .  To see how this comes 
about observe that 

Then, from ( I  8) we have 
where the modulo-2x operation [XI:* means that x is 
reduced to the interval (-x, x]. Suppose for the moment 
that the variable M (2xkfdT + 8 + q k )  is within the 
interval (-9 x] (which may not be true since the ampli- 
tude of M (2xkfdT + 8 + qk) increases unboundedly 
with k ) .  Then the modulo-2x operation in (18) is imma- 
terial and the right hand side may be viewed as noisy 
samples of a straight line with slope M2xfdT. Clearly, 
estimating the slope of this line amounts to estimating 
fd, for the two quantities are proportional. Tretter [6] 
approaches this problem by least squares methods and 
comes up with the following solution 

where [win] are weighting coefficients given by 

To reiterate, eq. (19) is valid for either DA and NDA 
operation. In the former, the parameter M equals unity 
and z ( k )  is computed from (5);  in the latter, M equals 
the number of points in the signal constellation and z ( k )  
is computed from (7). 

A drawback with (19) is that the modulo-2x opera- 
tion cannot be ignored as it produces jumps by 2 x  in the 
trajectory of arg [ z ( k )  ] when M (2xkfdT + 8 + q k )  
crosses odd multiples of x. Luckily the jumps can be 
eliminated by unwrapping the sequence (arg [zik)]}.  
The unwrapping algorithm produces a new sequence 
[pun) ( k ) ]  which is related to (arg [~(k)]} by 
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Comparing with (18) it appears that the useful term in 
the right hand side in (18) has been turned into a constant, 
2xM&T. In consequence, the chance of phase 'umps has 
been greatly reduced, especially if 2 7 ~ ~  1 fd r' T is well 
internal to +n and the SNR is high. Then, paralleling the 
arguments leading to (19) produces the Kay estimator 

where the weights wLm are given by 

An essentially identical algorithm has been proposed 
by Bellini, Molinari and Tartara in [8]. 

It is a simple matter to show that Tretter and Kay 
estimators are equivalent. To see why, let us compare 
(21) with (23). We have 

Next, substituting into (26) yields 
c 

On the other hand it is readily checked from (20) and 
(27) that wr:, = w ~ ~ ~ ,  w(F = -w!F and 
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(30) 4 
Thus, (29) is identical to (22) and our claim is proved. 
Having established the equivalence between Tretter 

and Kay algorithms, in the sequel we concentrate on the 
latter. For convenience we start with DA operation, 
which implies that the z(k) are computed from ( 5 ) .  Fig. 
5 shows simulations for the expectation of fdT as a 
function of the actual frequency offset, We see that the 
estimates are unbiased over a range that gets wider as 
the SNR increases. With an infinite SNR the range 
becomes (2) kOS/T. 

A physical explanation of this fact is as follows. 
Assume SNR = - and ifd 1 I 0 3 T .  From (6)  we have 

Then, substituting into (26) (with M = 1) and bearing 
in mind that the weights wim add to unity, we see that f d  
equals fd, in agreement with the simulations. With a 
finite SNR the problem is more complex because the 
modulo-2~r operation in (25) comes into play (3). To get 
some insight into the problem suppose that 2 ~ f ~ T  is a lit- 
tle smaller than K and the SNR is large. Then, depending 
on the noise realizations, 2xfdT + q k  - q k - i  may either be 
confined to *K or it falls to the right of K. In the first 
instance arg [ z (k)  z' ( k  - l)] equals 2 x h T  + q k  - qk-,; in 
the latter it equals h f d T  - 2~ + q k  - Vk-1 (as a conse- 
quence of the modu lo -2~  operation). On average arg 
[z(k) z* ( k  - I)] is less than 2 x h T  and this agrees with 
the simulations. 

The above considerations are readily extended to 
NDA operation with the conclusion that the estimation 
range is t0.5IMT for SNR = Q) and gets narrower as 
SNR decreases. 
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Fig. 5 - Expectation offd7' versusid;T with Tretter or Kay algorithm. 

(?) Actually this i s  only true if the receive filter mismatching due to 
the frequency offset is ignored. In practice this approximation is not 
valid and the estimation range is narrower than iOS/T. 
( 3 )  I t  is understood that M = I in ( 2 5 )  for we are considering D A  
operation. 
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Fig. 6 - Accuracy of Kay algorithm with D A  operation. 

Fig. 6 illustrates the estimation accuracy of Kay algo- 
rithm with DA operation for Lo equal to 64 and 256. 
The simulation model is still as in Fig. 5. We see that 
the threshold is the same in both cases, which means 
that it cannot be lowered by increasing the observation 
length, as happens with the R&B algorithm. 

Fig. 7 compares DA versus NDA estimation variance 
with Kay algorithm for QPSK modulation. The parame- 
ter fd is set to zero. We see that NDA operation makes 
the threshold increase by about 6 dB. 

0 5 10 15 20 25 30 
YNrJ dB 

Fig. 7 - D A  versus N D A  accuracy with Kay algorithm. 

I OX E 7 T  



5. AUTOCORRELATION-BASED ESTIMATORS 

5.1.  Luise and Reggiannini estimator 

We have seen that Kay and Tretter algorithms are not 
a valid alternative to R&B method for they exhibit a 
rather high threshold that makes them ill-suited for most 
applications in digital transmission. In this section we 
report on alternative methods, all based on the sample 
autocorrelation of the sequence [z(k) l  

. L-1 2 z (k) z* (k - m) I R ( m )  4 - 
k = m  

Again, we point out that z (k )  must be computed from 
( 5 )  or (7) depending on whether DA or NDA operation 
is intended. Let us start with the estimation method pro- 
posed by Luise and Reggiannini (L&R) in [91: 

(33) 

where N is a design parameter and M is either unity (with 
DA operation) or equal to the number of signal constella- 
tion points (with NDA operation). 

An intuitive explanation of (33) is as follows. For 
SNR >> I the autocorrelation R ( m )  takes the form (4) 

R ( m )  = p M r n f d T  [ I  + i f l m ) l  (34) 

where y(m) is a zero-mean random variable which, sta- 
tistically, is much less than unity. Thus, R ( m )  is approx- 
imately equal to %“MrnsdT and the sum in the right hand 
side of (33) becomes 

sin (aMNfd T) 
p(fdT)p sin(aMfdT) 

narrow estimation range for practical purposes. For 
example, suppose we want an estimation variance of 
IO-Wat EJN0 = 10 dB with NDA operation and QPSK 
modulation (say, with RRCR(SO%) pulses). From Fig. 3 
we see that this corresponds to the MCRB for L,, = 128. 
The L&R estimator achieves this bound for N = &/2 = 
64. However, the corresponding estimation range is 
*I/(MNT) = +4 . lO-VT, which is insufficient in many 
applications. In summary, estimation accuracy and esti- 
mation range are contrasting characteristics in the L&R 
estimator. A trade off must be sought on the basis of the 
actual design requirements. 

Fig. 8 illustrates the accuracy of L&R algorithm for 
some values of L,,. The modulation is QPSK as in Fig. 7 
and the estimation operation is NDA. The true frequen- 
cy error is zero. The parameter N is chosen equal to 16 
for any L, so that the estimation range is constant and 
equal iO.O15/T. We see that the MCRB is achieved 
only for Lo = 32, corresponding to the condition N = 
w2. With longer observation intervals the variance is 
always above the MCRB. It is difficult to gather from 
the figure the exact position of the threshold because the 
curves have smoothly varying slopes. Precise threshold 
measurements can only be made looking for the first 
appearance of outliers as the SNR decreases. For exam- 
ple, it is found that the threshold for L,, = 32 occurs at 9 
dB while for Lo = 256 it decreases to 5.5 dB. This says 
that the L&R algorithm can operate at low SNR provid- 
ed that sufficiently long observation intervals are used. 

5.2. Fitz estimator 

The following alternative estimator has been pro- 
posed by Fitz in [ 101 

(36) 

Note that p &T) is a bell shaped function of& which 
takes positive values in the range I f d l  5 I/ (MNT).  
Therefore, in this range, the argument of (35) equals aA4 
(N + I)fdTand eq. (33) yields the correct estimate,& 

Important issues about L&R algorithm are the estima- 
tion range and the role of the parameter N. At high SNR 
the estimation range is clearly *l/(MNT). Beyond these 
limits, in fact, p CfdT) takes negative values and this 
makes the estimates incorrect. Also, in [ 9 ]  it is shown 
that the estimation variance considerably depends on N 
and achieves a minimum for N = L0/2. This minimum 
coincides with the MCRB at high SNR. 

Unfortunately, choosing N = LOR may result in a too 

(4) This formula is readily derived by inserting (8) into (32) and bearing 
in mind drat the noise-induced disturbance qr is small for SNR >> I .  
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i NDA Operation 
fd = 0, N = 16 
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Fig. 8 - Accuracy of L&R algorithm with NDA operation. 
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1 "  
~ K M T  ,,,=, 

j d  = - WLF)  arg [ R(m)] (37) 

where N is a design parameter and [w(,R] are weighting 
coefficients given by 

6m 
w ( F )  = l < m l N  

Itl N ( N + 1 ) ( 2 N + 1 )  
An intuitive explanation of Fitz algorithm is as fol- 

lows. Assuming SNR >> 1, from (34) we have 

that N is chosen equal to 8 (to obtain the same estima- 
tion range of iO.O15/T as in Fig. 8). We see that the 
estimation accuracy is slightly inferior to L&R's. AS 
with L&R estimator, it is difficult to understand from 
the figure the exact position of the threshold. Searching 
for the SNR value corresponding to the first appearance 
of the outliers it turns out that the threshold decreases 
steadily as L, increases. For example, the threshold is 
10 dB at & = 64 and7  dB at &= 256. 

5.3. Lank, Reed and Pollon estimator 

with 

Now, suppose that 21rMmfdT is well internal to the 
interval -e?r so that the modulo-2~ operation is ineffec- 
tive in (39). Then, arg [R(m)]  may be viewed as a noisy 
measurement of 2xMmf,T and the problem of estimat- 
ingfd can be approached by smoothing out the statistics 
(arg [ R ( m ) ] )  so as to improve the estimation process. 
This leads to eq. (37). 

As with the L&R algorithm, the estimation range and 
the role of the parameter N are of interest. We have seen 
earlier that a critical condition to make arg [R(m)]  an 
unbiased estimate is that 21UMmfdT be internal to the inter- 
val +K. As this must be true for any index m comprised 
between 1 and N, it follows that& must be limited within 
iCl/(u.INT). In conclusion, Fitz estimator has an estimation 
range half of L&Rs (for the same parameters M and N). 

Fig. 9 illustrates the performance of the Fitz estimator 
with & as a parameter. Everything is as in Fig. 8 except 
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Fig. Y - Accuracy of Fitz algorithm with NDA opemion. 

A considerable simplification to Fitz estimator is 
obtained by keeping only the last term in the sum (37). 
As a result we get 

This is the algorithm proposed by Lank, Reed and 
Pollon (LRP) in [ l l ] .  It turns out that its estimation 
range coincides with that of Fitz's (for the same N) but 
its performance is inferior. 

5.4. Mengali and Morelli estimator 

One problem with Fitz algorithm is that the modulo-2~ 
operation in (39) cannot be ignored at intermediate and 
low SNR and, in fact, it leads to significant degradations 
in estimation accuracy. A possible solution would be to 
first unwrap the sequence (arg [ R ( m ) ] )  and then insert 
the result into Fitz eq. (37). perhaps with different weight- 
ing coefficients. Mengali and Morelli (M&M) [ 121 have 
shown that the unwrapping process can be avoided by 
using the quantities (arg [R(m) R' (m - l)]} in place of 
(arg [ R ( m > ] ) .  Their reasoning essentially follows the 
steps outlined with Kay's algorithm. Skipping the details, 
they come up with the formula 

I N  
*d -- ~ W L M M & M ) a r g [ R ( m ) R ' ( m - I ) ]  (42)  * - 2 x M T  ,,,=, 

where 

and N is a design parameter. For N = L,/2 the algorithm 
achieves the MCRB at high SNR [ 121. 

The curves in Fig. 10 illustrate the estimation accuracy 
of the M&M algorithm for some values of & and QPSK 
modulation. NDA operation is assumed. We see that the 
estimator achieves the MCRB for any L, at high SNR and 
the threshold decreases steadily as L, increases. 

5.5. Crozier and Moreland estimcitor 

The following alternative method has been proposed by 
Crozier and Moreland (CBrM) in [ 131. Write (39) in the 
form 

I10 ETT 
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Fig. 10 - Accuracy of M&M algorithm with NDA operation. 

where k(m)  is an integer that serves to reduce the sum 
27~Mrnf~T + p(m)  + 2nk(m) to the interval AX. Denoting 

becomes 
W A = 2nfdT and v(m) 4 p(m)/(Mm), the above equation 

(45) 

which indicates that the left hand side may be viewed as 
a noisy measurement of w. In other words, the quantity 
arg [ R ( m ) ] / ( M m )  is an ambiguous measurement of 0, 
with an ambiguity quanrum of 2wl(Mm). The larger the 
index rn. the smaller the quantum and the more potential 
phase ambiguities. If the ambiguity could be resolved, 
an estimate of w (and eventually offd) could be derived 
from arg [ R ( m ) ] / ( M m ) .  

Crozier and Moreland discuss the following proce- 
dure to overcome the ambiguity. Consider a sequence of 
estimates [h (mi)] associated with the following particu- 
lar values of the autocorrelation lag 

mi=2'-1 i=1 ,2 ,  ..., B (46) 

Eq. (45) suggests computing d (mi)  as follows 

(47) 

where k ( q )  is a suitable integer. How can we determine 
k(m,)  and, ultimately, compute d (mi)? Suppose that a 
previous unambiguous estimate 6 (mi-,) is available. 
Then, a reasonable value for k ( n i i )  is the one which 

makes the right hand side of (47) closest to h (mi.-l). 
Bearing in mind that h (mi) has an ambiguity quantum of 
27r/(Mmi) this leads to (for i = 2, 3,. . ., B )  

or, equivalently, 

& ( m i )  = 

For i = 1 we have ml  = 1. The corresponding estimate 
can be computed from (47) setting k ( 1 )  = 0, provided 
that w is within +n/M or, which is the same, that the 
frequency error f d  is within 21/ (2MT) .  Assuming that 
this is true, one starts with the,initial value 

and computes the successive estimates by application of 
(49) up to the final estimate corresponding to i = B .  In 
[I31 it is shown that the minimum estimation variance 
is achieved for B = 1 + logz (2&,/3). The degradation 
incurred with slightly different values is limited. how- 
ever. In fact in the simulations reported later we have 
set B = logz (f.,,) for convenience. 

Fig. I I gives an idea of the estimation nnges for some 
algorithms discussed so far. Note that the LRP estimator 
has essentially the same characteristics as Fitz's and-is not 
shown. The ordinates yield the expectation Of f d T  as 
obtained by simulation versus the true frequency error 
fdT. The modulation is QPSK with RRCR(SO%) pulses. 
DA operation is assumed and the SNR is 5 dB. The obser- 
vation length &, equals 64 and the parameter N is chosen 
equal to 5. We see that Fitz algorithm gives (on avenge) 
accurate estimates over a range slightly smaller than 
+lo% of l/T, The L&R algorithm has an estimation range 
of about +15% of 1/T and, finally, the M&M and C&M 
algorithms give correct results over *45% of LIT. 

Fig. 12 shows the estimation accuracy of the C&M 
method for various observation lengths and the same 

DA Operation 0.4 

0.2 

F 
--" 0.0 
w 

-0.2 
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Normalized Frequency Offset f,T 

Fig. 11 - Expectation off,T versus/,T with various algorithms. 
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Fig. 12 - Accuracy of C&M algorithm with NDA operation. 

Algorithm 

modulation format as with the M&M algorithm in Fig. 
10. Although the results with the latter are slightly 
superior, we shall soon see that the former requires a 
smaller computational load. 

Real Products & Additions ROM Access 

6. COMPUTATIONAL COMPLEXITY 

Tretter 

Kay 
L&R 

L&R (FFT-based) 

One important issue that influences the choice of an 
estimation algorithm is its computational complexity. In 

4 L , - 3  

3 L 9 - 4  

3 L ,  + 7 N - 2  + 10 (L, + N )  log, (L, + N) 

4 L , ( N + 1 ) - 2  1 

1 

this section we address this problem and, in particular, 
we assess the computational load associated with the 
algorithms described so far. This load is expressed in 
terms of number of operations (real multiplications and 
additions) and accesses to a Read-Only-Memory (ROM). 
For convenience we make a distinction between DA and 
NDA operations. In the first instance the raw data are 
represented by (3, in the second they are given by (7). 
Note that, depending on the estimator being used, it is 
useful to think of z(k)  as expressed in polar rather than 
rectangular coordinates. This is the case with estimators 
using arg [z (k ) ]  for it obviates the need of a ROM to map 
z (k)  into arg [z(k)l. 

Fitz (FFT-based) 

LRP 

M&M 

6.1. R& B estimator 

3 L , + 5 N -  1 + lO(L,+N)lOg,(L,-N) N 

8 (Lo-N)-  1 1 

N (8L, - 4N - 3 )  - 2 N 

We limit ourselves to the consideration of the coarse 
search since the fine search involves only minor extra 
operations. The problem is to compute KL, samples of 

1 Z(f, I (see (13) )  via an FFI'. As is known [ 141, the FIT 
involves about KL,  log, (KL0)/2 complex multiplica- 
tions, KL, log, (KL,,) complex additions and K L ,  mod- 
ulus extractions. This leads to the R&B line in Table 1 
with p = 1. In writing this line we have taken into ac- 
count the fact that a complex multiplication corresponds 
to four (real) multiplications and two (real) additions, 
each modulus extraction requires two multiplications and 
one addition and searching for the maximum in the set 
[ I Z(Jn) 1 ] requires KL, comparisons. All these opera- 
tions have been put together since in a DSP implementa- 
tion they have approximately the same weight. 

M&M(FFT-based) 1 C&M 

Table 1 - Computational load with DA operation 

3L9 + 6 N -  2 + 10 (4 + N) log2 (4 + N) 

8 (&B-2') + 2 8  + 5 

N 

B 

112 Ell- 



Some saving in the FFT calculation is obtained by 
eliminating operations on zeros, which is commonly 
referred to as pruning [ 151. It can be shown that pruning 
reduces the number of multiplications and additions by 
a factor 

- 

Algorithm Real Products & Additions 

R&B KLo [4 + 2.5 P log2 (K4,)I 

Tretter 4L0 - 3 

Kay 3L0 - 4 

L&R 

L&R (FFT-based) 

Fitz 

Fitz (FFT-based) 

LRP 3(L,-N)-1 

0.5N (6Lo - 3N + 1) - 2 

3Lo + 7 N - 2  + 7.5 (L, + N) log2 (L, + N) 

0.5N (6L, -  3 N -  3 )  - 1 

3Lo + 5N - 1 + 7.5 (L, + N) log, (Lo + N) 

log, ( K )  + 2(1/ K - 1) p = l -  
log2 (KL,,) 

ROM Access 

K L ,  P log, (al) 

N (2L, - N -  1) + 1 

1 +(43+N)IO&(L,+N)  

N (2LO - N) 

N +  (L, + N) log, (Lo + N) 

2 ( L n - N ) + 1  

Correspondingly the R&B line becomes as indicated 
in Table 1 for a generic p. Note that for K =  2 we have 
p = 1 and the pruning does not allow any computational 
saving. 

M&M(FFT-based) 

C&M 

tions are required in ( 1  9). This yields the Tretter lines in 
Tables 1 and 2.  

3L0 + 6 N -  2 + 7.5 (Lo + N) log? (Lo + N) N +  + N) log2 (L, + N )  

3 ( 4 B  - Z B )  + 2B 2 (L"B - 28) + B + 2 

6.3. Kay estimator 

Again, we use the data arg [ ~ ( k ) ] .  As is seen from (23), 
the calculation of the set arg [z(k) Z* (k  - l)], 1 I k 5 L,,, 
requires L, - 1 additions while the right hand side in (26) 
involves L, - 1 products and & - 2 additions. This leads 
to the Kay line in Tables 1 and 2. 

6.4. LdiR estimator 

6.4.1. DA OPERATION 

6.1.2. NDA OPERATION 

Recalling that '1  z(k) I = 1 , the generic term in (13) 
may be written as 

So, starting from (arg [z(k)]; k = 0, 1 ,..., Lo - 1 }', we 
need one addition and two ROM accesses to compute 
z ( k )  e-j*WT (for sin ( x )  and cos(x)). Therefore the 
pruned FFT requires 5KL0 p log, (KL0)/2 additions and 
K L ,  p log, (KL,) ROM accesses. Adding the operations 
for modulus extraction and maximization over the set 
[ I ZUn) I ] produces the line R&B in Table 2. 

6.2. Tretter estimator 

Using the data arg [z(k)], there are 2 (L,, - 1) additions 
involved in (21). Also, L,, - 1 additions and L, multiplica- 

Luise and Reggiannini [9 ]  have proposed a clever 
method to compute fd that significantly reduces the 
computational load. The interested reader is referred to 
their paper for details. The resulting complexity is indi- 
cated in the L&R line in Table 1. Alternatively, the 
computation of the set [R(m)],  m = 1, 2,  ... N,  can be car- 
ried out in the frequency domain through the following 
steps [ 14, p. 5561: 

i) form an (Lo + N)-point sequence by adding N 
zeroes to [ ~ ( k ) ]  

ii) compute the (Lo + N)-point Discrete Fourier 
Transform (DFT) 

Z(n)  = 

k = O  

Table 2 - Computational load with NDA operation 

I NDA Operation I 
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iii) compute the (Lo  + N)-point inverse DFT of 
I z(n) I * 

1 
h + N  

y ( m )  = -. 

iv) finally, compute R(m) as 

The FIT is used to efficiently perform operations ii) 
and iii). The  resulting complexity is indicated in the 
L&R (FFT-based) line in Table 1.  

6.4.2. NDA OPERATION 

It turns out that the procedure described in [9]  is not 
useful with NDA operation. Instead, the following 
approach can be used. From the formula 

additions and N ROM accesses. In both cases the final 
calculation off,  involves N further multiplications and 
N-  1 additions. 

6.5.2. NDA OPERATION 

Writing t ( k )  z* (k - m )  as in (56) allows us to com- 
pute the set [8 (m)]  through N (64 ,  - 3 N -  7 ) / 2  additions 
and N (2L, - N) ROM accesses in the time domain. 
Alternatively, in the frequency domain we need 2 (L, + 
N) [l + log, (L, + N)] products, (L, + N) [l  + 5.5 logl 
(L, + N ) ]  additions and N + (L,, + N) log2 (L, + N) ROM 
accesses. The steps to compute f, remain the same as 
with DA operation. 

6.6. U P  estimator 

The LRP estimator can be treated as a special case of 
Fitz method. Here, however, the FFT-based method is 
not useful since only one autocomelation is needed. 

6.7. MQM estimator 

From (32) and (58) we have 

arg [R(m)  R” (rn - I ) ]  = [ O  (m)  - 8 (m - l)Jfn (59 )  
it is clear that the computation of z ( k )  zf ( k  - m) requires 
one addition and two ROM accesses (for sin(x) and 
cos(x)). Thus, the calculation of the set [R(m)] ,  m = 1. 
2, ..A, in the time domain involves 2N multiplications, N 
(64, - 3N - 7 ) / 2  additions and N (2L,  - N - I )  ROM 
accesses. Viceversa, in the frequency domain (FFT-based 
method), we need 2 (4, + 2N) + 2 (&, + N) log, (4, + N) 
products, L, + N + 5.5 (4 + N) log, (&, + N) additions 
and (4 + N))0g2 (&, + N) ROM accesses. The final com- 
putation of f, from (33) requires 2 ( N  - 1) further addi- 
tions and one ROM access. 

6.5. Fitz estimator 

So, once the sequence [8 (m) ]  is computed (see Fitz 
estimator), the right hand side of (42) requires N multi- 
plications and 2 (N - 1)  additions. 

6.8. C&M estimator 

6.8.1. DA OPERATION 

The computation of the set (arg [ R ( m i ) ] }  (mi = 2I-l 
and i = I ,  2.. . ., B)  requires & B + I + 28 complex prod- 
ucts, (&, - I )  B + 1 - 2B complex additions and B ROM 
accesses. Also, the recursions (49) involve 2 ( B  - 1)  
multiplications and additions. 

6.5.1. DA OPERATION 
6.8.2. NDA OPERATION 

Bearing in mind the definition (32) we can rewrite 
the Fitz estimator in the form 

(57) 

Then, the computation of the set [8 (m)] in  the time 
domain requires 2N (2L, - N - 1) multiplications. 2N 
(24, - N - 2) additions and N ROM accesses. In the fre- 
quency domain, viceversa. i t  needs 2 ( L ,  + N) [ I  + 2 
log, (4) + N)] products. (& + M [I + 6 log? (4, + N)1 

The computation of the set (arg [R(m, ) ] )  requires 3 
(L, B + 1 - 28) - 2B additions and 2 (& B + 1 - 2B) + B 
ROM accesses while the steps involved in (49) remain 
the same. The FIT-based method has not been consid- 
ered since only few autocorrelations are needed. 

6.9. COMPAFWONS 

Fig. 13 shows complexity comparisons between some 
of the above estimation schemes with DA operation. 
Each curve gives the total number of multiplications 
and additions as a function of the observation length 4,. 
A pruning factor of K = 4 has been chosen with the 
R&B algorithm and three different values for N have 
been used with the M&M method. Finally, the pamme- 

l I4 
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ter B in the C&M estimator has been set equal to log, 
(Lo). The complexity of the M&M estimator depends on 
whether the set R ( m ) ,  m = 1, 2 ,..., N ,  is computed in the 
time or frequency domain. For each Lo value in Fig. 13 
we have chosen the method requiring the minimum 
complexity. The sudden variation in the curve slopes 
indicates the passage from time to the frequency 
domain calculations. Curves for the L&R estimator are 
not indicated as they are very close to those for the 
M&M algorithm. We see that the Kay algorithm is by 
far the simplest. The M&M estimator is always simpler 
than R&B, but the difference is not overwhelming. 
Finally, the C&M method is simpler than M&M except 
with very short observation lengths. 

It should be pointed out that the above conclusions 
apply to high SNR operating conditions. In these cir- 
cumstances, in fact, the same estimation accuracy is 
essentially obtained for a given L, with any of the above 
estimators. At intermediate or low SNR, however, the 
situation may be quite different. To be specific suppose 
we want a threshold of 3 dB, which might not be that 
outlandish with coded modulation. It turns out that the 
R&B method attains this threshold with L, = 1024 
while the M&M and C&M methods need L, = 8 196 and 
Lo = 16384 respectively. Assuming B = log, (Lo) and 
N = &/2, we see from Table 2 that this corresponds to a 
total of about 18 1 kilo-operations (including multiplica- 
tions, additions and ROM accesses) with R&B, 1472 
kilo-operations with M&M and 1065 kilo-operations 
with C&M. 

7. CONCLUSIONS 

We have illustrated some feedforward methods for 
estimating the carrier frequency in data transmission. A 
distinction has been made between DA and NDA opera- 
tion. In the former a preamble of known symbols is 
exploited for estimation purposes whereas, in the latter, 
the canier frequency is directly derived from the mod- 
ulated signal making use of some non linearity. 
Generally speaking, the effect of the non linearity is to 
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increase the estimation threshold while leaving the esti- 
mation accuracy unaffected at intermediateAarge SNR 
values. 

When the estimation range is limited (to the order of 
few percents of the symbol rate) either the LRP or F iu  
or L&R algorithms can be used. Greater estimation 
ranges call for other techniques such as R&B, M&M 
and C&M. All these methods exhibit an estimation 
accuracy that is close to the modified CRB when oper- 
ating well above threshold. The  ‘threshold value is 
strongly related to L, and decreases as Lo increases. 

Comparisons have been made between estimation 
algorithms in terms of estimation accuracy, estimation 
range, threshold and complexity. Complexity seems a 
tricky subject in so far as it gives different answers 
depending on the operating-conditions. At SNR well 
over the threshold the C&M method is the simplest. On 
the contrary, at low SNR the R&B method seems pref- 
erable. 
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