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in [7] was, unfortunately, based on the incorrect expression given 
in [5]. For example, the problem 

p1 = 0.22 q1 = 0.98 

p2 = 0.05 q2 = 0.8 

pj = 0.01 q3 = 0.71 

has P,(1,2) > P,(2,3) even though the condition in [7] is satis- 
fied. 

The actual necessary and sufficient condition for Pe(l, 2) < 
P,(2,3) is 

hl - lz121 < Pc(3) - P,(l). 
An example of this condition is given by the following prob- 

lem: 
p1 = 0.15 q1 = 0.95 

p2 = 0.5 q2 = 0.8 

p3 = 0.35 q3 = 0.6. 

We have 

p,(l) < P,(1,2) < P,(1,3) < P,(2,3) < P,(2) < P,(3). 

The Bayes rule for this problem does not use two variables. 
Thus, both variables X, and X, degrade performance even 
though they are independent of Xi. The best single variable is no 
worse than the best pair. Equation (3) shows that one of the 
variables in a pair must be worse than the pair itself. This 
ordering is an example of a previous result [4] that shows that the 
addition of an independent binary variable need not decrease the 
error probability. 

Cover [2] examines a repeated experiment, which is equivalent 
to imposing identical distributions on two variables. The error 
probability for two independent and identically distributed vari- 
ables Xi and X’ is 1 

P,(l,l’) = (l/2)(1 - I, - 2]1,h,]) < P,(l) = P,(l’). 

The example in [2] results in 

PJ2,2’) < P,(1,2) < P,(l,l’) = P,(l) < P,(2). 

Thus, repeating the poorer individual experiment provides more 
class discrimination than repeating the better one. 

IV. CONCLUSION 

We conclude that feature extraction with dichotomous features 
is fundamentally different from feature extraction with continu- 
ous features and must be approached with care. 
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Estimating the Frequency of a Noisy Sinusoid by 
Linear Regression 

STEVEN A. TRETTER, SENIOR MEMBER, IEEE 

Ahstruct-The estimation of the parameters of a sinusoid from observa- 
tions of signal samples corrupted by additive noise is investigated. At high 
signal-to-noise ratios the additive noise is viewed as an equivalent phase 
noise, suggesting frequency and phase estimation by linear regression on 
the signal phase. The variances of the regression estimates are shown to 
achieve the Cramer-Rao hounds. A formula for the variance of the 
regression frequency estimator is derived in terms of the noise power 
spectrum. A simple formula for the variance with l/f* phase noise is 
presented. 

I. INTRODUCTION 

This correspondence examines a method for estimating the 
frequency and phase of a sinusoid from a sequence of uniformly 
spaced signal samples corrupted by additive Gaussian noise. The 
method is linear regression on the instantaneous signal phase. 
The variances of the estimates are shown to be identical to the 
Cramer-Rao bounds [l] at high signal-to-noise ratios (SNR’s). 
Frequency and phase estimation has been studied extensively in 
the past. However, the linear regression technique presented here 
provides some new insight into the physical significance of the 
Cramer-Rao bounds. It is relatively simple computationally. 

A variety of techniques have been proposed for frequency and 
phase estimation. The maximum-likelihood method has been 
examined by Slepian [2] and Kelly et al. [3] for continuous-time 
observations. More recently, Rife and Boorstyn [4], [S] have 
examined the single-tone and multitone estimation problem for 
discrete-time observations. Standard techniques for FM demod- 
ulation such as the limiter-discriminator, the zero crossing detec- 
tor, and differential or product detector can be used. Lucky et al. 
[6, ch. 81 describe these methods and include a list of significant 
references. Lank et al. [7] examine a discrete-time technique for 
frequency estimation based on product detection. Frequency 
estimation from discrete-time observations using autoregressive 
models has been studied under a variety of names, including 
all-pole models, linear prediction, maximum entropy estimation, 
and maximum-likelihood whitening filter. Tufts and Kumaresan 
[8] summarize and extend this method to achive results close to 
the Cramer-Rao bound. They include an extensive list of refer- 
ences. This is just a small sample of the literature on frequency 
and phase estimation. 

The low SNR threshold where the variances of parameter 
estimates increase rapidly above the Cramer-Rao bound is an 
important property of estimators. The threshold behavior of the 
linear regression frequency estimator is not investigated in this 
correspondence. However, this estimator has been successfully 
used with actual received radio signals with SNR greater than 15 
dB. The threshold behavior needs to be investigated and com- 
pared with other methods. 

The observed sequence is assumed to have the form 

r(n) = AeJ(WO”T+B) + z(n), 
for n = no, n, + l;.., n, + N - 1, (1) 
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where z(n) is a white Gaussian complex noise sequence; 
varz(n) = E{]z(n)J2} = $2; A, oe, and 0 are unknown con- 
stants; and T is the sampling period. The SNR is defined as 

SNR,. = A’/$. (4 

In Section II it is shown how for large SNR, the additive noise 
can be converted into an equivalent additive phase noise. This 
suggests estimating o,, and 6’ by linear regression on the ob- 
served signal phase. The estimator variances in the case of white 
noise are derived and found to be identical to the Cramer-Rao 
bounds. In Section III a  formula for the variance of the linear 
regression frequency estimator of II is derived for the case where 
the noise has an arbitrary power spectral density. A simple 
formula for the variance of the linear regression frequency esti- 
mator is derived in Section IV for the case of l/f2 phase noise. 

II. THE HIGH SNR APPROXIMATION 

The observed signal can be expressed as 

r(n) =  [l + IJ( rz)] Ael(Wo”T+e), 

where 
(3) 

“(n) = fz(n) e-l(%“~+8~ 

is a complex white noise sequence with 

var u( n) =  uz’,’ = l/SNR,. 

Let v(n) = vi(n) +ju,(n). Then 

1 + u(n) = ([l + u,(n)]* + “;(n))1’2 

(4) 

(5) 

For SNR, > 1 

1 + u(n) = exp[jtanluQ(n)] = exp[jUQ(n)], (7) 

so 
r(n) z Ae/[9”~+@+frp(~~)l 

(8) 

Thus, the additive noise has been converted into an equivalent 
phase noise vQ (n) with 

varuQ(n) = OSvaru(n) =&. 
r 

(9) 

All the information required to estimate wa and 0 is contained in 
the phase angle 

G(n) =  w,nT+ 19  + up(n). (10) 

This angle can be computed by applying a phase unwrapping 
algorithm [9]-[12] to the principal value of arg r(n) obtained by 
using an inverse tangent. 

The parameters we and 0 can be estimated by the method of 
least squares or linear regression. The least-squares estimates are 
equivalent to maximum-likelihood estimates when the noise is 
Gaussian. The parameters that minimize the square error 

n,+N-1 

A = c [+(nT) - 5,nT- $1’ (11) 
ll=n” 

are ,. 
UO [ 1  e  

where 

and 

=- 
12 

T2N2( N2 - 1) 

-T(Nn, +  P) 

T2(Nn2, +  2n,P + Q) 1 
(12) 

N-l 

P= c n=(N-1)N/2 
n=O 

N-l 
Q= c n2= (N - 1) N(2N - 1)/6. 

n=O 

These estimators are unbiased. The error covariance matrix is 
6 

cov 
= SNR,.T2N2( N2 - 1) 

.[ 

N -T(Nn, +  P) 

- T( Nn, +  P) I T’( Nni +  2n,P + Q) . (13) 

The variances of 8 and 5 are exactly the same as the Cramer-Rao 
bounds [l], [4]. 

The estimators depend on the choice of the initial time no. It is 
particularly convenient to choose no  to diagonalize the square 
matrix in (12), that is, 

n  o= -P/N = -(N - 1)/2. (14) 
Then r(0) becomes the center sample in the observed sequence. 
W ith this choice 

17 (N-1)/2 . 
w” = TN&‘- 1) n=-(N-1),2 c n+(n) (15) 

and 

82 
(N- 1W’. 

N _ c +(n>. (16) 
n- -(N-1)/2 

The corresponding error covariance matrix is 

I 6  I 

SNR,T2N(N2 - 1) 
0 

cov 
1 (17) 

0  
2 NSNR, 1 

Now the frequency and phase estimation errors are uncorrelated. 
The variance of 0 is also minimized for this choice of no. This 
choice makes the basis functions 1 and n  orthogonal over the 
interval In,, no + N - I]. 

Rife and Boorstyn [4] have observed the dependence of the 
Cramer-Rao bounds on the initial time no. The derivation in this 
section shows that at high SNR’s the problem is equivalent to 
estimating the slope and intercept of a  linear ramp corruputed by 
additive noise, which explains this behavior. 

The estimators (15) and (16) are simple to compute given the 
instantaneous signal phase. At high SNR’s simple phase unwrap- 
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ping algorithms can be successfully used. The maximum-likeli- 
hood estimators require finding the peak of the periodogram of 
the obsewed signal sequence. Rife and Boorstyn [4] suggest first 
using a fast Fourier transform to find a coarse estimate of the 
peak location and then refining the estimate with a numerical 
search procedure. The autoregressive model technique requires 
lag product computations, an effective matrix inversion, and root 
finding. The linear regression estimators do not require any of 
these computations, but only an arc tangent, phase unwrapping, 
and the simple sums (15) and (16). In some applications it is 
useful to plot the instantaneous signal phase to see various 
anomalies such as periodic variations in phase slope or sudden 
changes in SNR. This sequence is generated for the linear regres- 
sion estimators but is hidden in the maximum-likelihood and 
autoregressive methods. 

where w,~ = 277/T. Substituting (26) into (25) yields 

To compute G(w), first observe that 
. wNT 

M sin 7 
H(~) = c e-~w”T = iT . 

(28) 
)1=--M sin - 

2 
Then 

G(w) = 5 
n=-M 

ne-.~w~lT = fe!Jw) 

I wNT wT 
III. VARIANCE OF THE LINEAR REGRESSION FREQUENCY j NT wNT T sin - cos - 

ESTIMATOR WITH C.OLORED NOISE 
2 2 = - cos 

WT 2 2 2 WT 
The linear regression frequency estimator given by (15) can be Tsiny sin - 

used even when the noise is not a white noise sequence. A 2 

formula for the variance of 9, in terms of the power spectral (29) 
density for u (n) will be derived in this section. 

Let f+(n)% ave the autocorrelation function Substituting (29) into (27) gives the desired result, 

R(n) = E{ uQ(k + n)uQ(k>> 
and power spectral density 

S(w) = f R( n)epJW”T. 

Also, let 

Since 

,)=-CC 

N -- 1 
n 0= 2 

M. 

12 
f n(w,nT+ 0): 

w” = TN(N2 - 1) ,,=pM 

the estimation error can be expressed as 
12 M 

,. w. - 00 = C fq(n>, TN(N* - 1) ,I=-M 

so 

var 9, = E{ (9, - w,)‘} 

= [ TN(;: _ l)]2n~MkrMwn - k). (23) 
In terms of the window function 

(19) 
wNT 2 

wNT wT sin 2 
cos ~ - cos - 

2 2 WT 1 do. (30) 
N sin T 

(20) IV. A SIMPLE ERROR VARIANCE FORMULA FOR l/f 2 
NOISE 

An oscillator often has a slow drift that can be modeled by a 

(21) 
random walk. This component is known as divergent noise and 
has a power spectral density that behaves like 1/w2. The error 
variance of the linear regression frequency estimate (15) resulting 
from divergent noise could be calculated by (30). However, a 
simple formula for the variance will be derived in this section by 

(22) 
a different method. 

Suppose the observed phase has the form 
+(n) = w,nT+ 8 +x(n), (31) 

where x(n) is the divergent phase noise with autocorrelation 
function R , (n) and power spectral density 

g(n) = i;t, 
for InI I M 
elsewhere ’ 

_ 2 
w2T2 ’ 

for IwTl -K 1. 

(23) becomes The estimation error for the linear regression frequency estimator 

var’o = [ TN($I _ ,)]2~-ilmg(~)r~rcg(n)R(n - k)’ 

(25) 

(15) can ‘j;T;l;= TN(; _ 1> i nx(n>. 
0 2 

(33) 

n M 

According to Parseval’s theorem This error can also be written as 

f g(n)R(n - k) =t~~~~~~(w).-/w~TG(-w) dw, 
6 

f [(M+l)M-(n+l)n] 
II = -- cc ’ = TN(N2 - 1) n=-M 

(26) .[x(n + 1) -x(n)]. (34) 
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This alternative formula can be derived by using the summation- 
by-parts formula from the calculus of finite differences 

a(n = 4% + l>b(n2 + 1) - 4%)b(%) 
I 

- 5  b(n + l)Au(n), (35) 
n=711 

where A is the finite differerice operator defitied for an arbitrary 
sequence f(n) as. 

Af(n> =f(n + 1) -f(n). (36) 
The sum on the left side of (35) becomes the sum on the right 
side of (33) if n2 = -n, = M, a(n) = x(n), and Ah(n) = h(n 
+ 1) - h(n) = n. A solution for b(n) is b(n) = n(n - 1)/2. 
Evaluating the right side of (35) and substituting into (33) gives 
(34). 

The error variance is 

varc= [ TN(;z-l)]2 ns~MkcfML(M+ l)M - cn + ljn l 
.[(MS l)M- (k-t- l)k]R,(n - k), (37) 

where 

R,(n) = E{Ax(k+ n)Ax(k)} (W 
is the autocorrelation function for Ax(n). The power spectral 
density for Ax(n) is 

S,( td) = leJwT - 112S( w) = c$. 

Thus, RA(n) = u,‘S,,,,, and (37) reduces to 

3u.,2 2M2+JM+1 
5T* M( M + 1)(2M + 1) 

For large M 

3 
varc E g@P‘2. 

Also, 

M  = (N - 1)/2 z N/2, for large N, 

so 

(39) 

(n + l)?z]’ 

(40) 

(4 > 

where 7;, = NT is the observation time. The estimation error 
variance behaves as N-’ for l/f2 noise but as Np3 for a white 
noise sequence according to (13). This difference is caused by the 
different noise spectra or, equivalently, autocorrelation functions. 
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Approximation of Locally Optimum 
Detector Nonlinearities 

STEVEN V. CZARNECKI, MEMBER,  IEEE, AND 
KENNETH S. VASTOLA, MEMBER,  IEEE 

Abslmct-The problem of finding a detector honlinearity that maxi- 
mizes the efficacy (or asymptotic processing gain) over a class of subopti- 
mal nonlinearities is considered. It is shown that this efficacy maximization 
problem is essentially the same as the problem of finding the minimum- 
mean-square-error approximation to the locally optimal detector nonlinear- 
ity. This result is compared with some intuitive ideas about suboptimal 
detection. 

I. INTRODUCTION 

An important practical problem arising in detection is the 
following. Given that the true noise density f and the true 
detector nonlinearity goP, are known, what is the best way to 
approximate g,,, within some specified constraints? This corre- 
spondence prdvldes a solution to this broadly posed question. 

The locally optimal (LO) detector structure [l]-[4] is a useful 
model for the detection of B signal that is known but Very small 
relative to the noise environment. For detecting a (constant) weak 
discrete-time signal in the presence of white non-Gaussian noise 
with first-order density f, it ib well known that the LO detector 
consists of a  memoryless nonlinearity (ZNL) of the form 

followed by summation and comparison with a threshold. 
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